Non‐Linear Dimensionality Reduction With a Variational Encoder Decoder to Understand Convective Processes in Climate Models

Deep learning can accurately represent sub‐grid‐scale convective processes in climate models, learning from high resolution simulations. However, deep learning methods usually lack interpretability due to large internal dimensionality, resulting in reduced trustworthiness in these methods. Here, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of advances in modeling earth systems Jg. 14; H. 8; S. e2022MS003130 - n/a
Hauptverfasser: Behrens, Gunnar, Beucler, Tom, Gentine, Pierre, Iglesias‐Suarez, Fernando, Pritchard, Michael, Eyring, Veronika
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States John Wiley & Sons, Inc 01.08.2022
American Geophysical Union (AGU)
Schlagworte:
ISSN:1942-2466, 1942-2466
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!