Constrained ear decompositions in graphs and digraphs

Ear decompositions of graphs are a standard concept related to several major problems in graph theory like the Traveling Salesman Problem. For example, the Hamiltonian Cycle Problem, which is notoriously N P-complete, is equivalent to deciding whether a given graph admits an ear decomposition in whi...

Full description

Saved in:
Bibliographic Details
Published in:Discrete Mathematics and Theoretical Computer Science Vol. 21 no. 4; no. Graph Theory; pp. COV2 - 19
Main Authors: Havet, Frédéric, Nisse, Nicolas
Format: Journal Article
Language:English
Published: Nancy DMTCS 02.09.2019
Discrete Mathematics & Theoretical Computer Science
Subjects:
ISSN:1365-8050, 1462-7264, 1365-8050
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Ear decompositions of graphs are a standard concept related to several major problems in graph theory like the Traveling Salesman Problem. For example, the Hamiltonian Cycle Problem, which is notoriously N P-complete, is equivalent to deciding whether a given graph admits an ear decomposition in which all ears except one are trivial (i.e. of length 1). On the other hand, a famous result of Lovász states that deciding whether a graph admits an ear decomposition with all ears of odd length can be done in polynomial time. In this paper, we study the complexity of deciding whether a graph admits an ear decomposition with prescribed ear lengths. We prove that deciding whether a graph admits an ear decomposition with all ears of length at most is polynomial-time solvable for all fixed positive integer. On the other hand, deciding whether a graph admits an ear decomposition without ears of length in F is N P-complete for any finite set F of positive integers. We also prove that, for any k ≥ 2, deciding whether a graph admits an ear decomposition with all ears of length 0 mod k is N P-complete. We also consider the directed analogue to ear decomposition, which we call handle decomposition, and prove analogous results : deciding whether a digraph admits a handle decomposition with all handles of length at most is polynomial-time solvable for all positive integer ; deciding whether a digraph admits a handle decomposition without handles of length in F is N P-complete for any finite set F of positive integers (and minimizing the number of handles of length in F is not approximable up to n(1 −)); for any k ≥ 2, deciding whether a digraph admits a handle decomposition with all handles of length 0 mod k is N P-complete. Also, in contrast with the result of Lovász, we prove that deciding whether a digraph admits a handle decomposition with all handles of odd length is N P-complete. Finally, we conjecture that, for every set A of integers, deciding whether a digraph has a handle decomposition with all handles of length in A is N P-complete, unless there exists h ∈ N such that A = {1, · · · , h}.
AbstractList Ear decompositions of graphs are a standard concept related to several major problems in graph theory like the Traveling Salesman Problem. For example, the Hamiltonian Cycle Problem, which is notoriously NP-complete, is equivalent to deciding whether a given graph admits an ear decomposition in which all ears except one are trivial (i.e. of length 1). On the other hand, a famous result of Lovasz states that deciding whether a graph admits an ear decomposition with all ears of odd length can be done in polynomial time. In this paper, we study the complexity of deciding whether a graph admits an ear decomposition with prescribed ear lengths. We prove that deciding whether a graph admits an ear decomposition with all ears of length at most l is polynomial-time solvable for all fixed positive integer l. On the other hand, deciding whether a graph admits an ear decomposition without ears of length in F is NP-complete for any finite set F of positive integers. We also prove that, for any k [greater than or equal to] 2, deciding whether a graph admits an ear decomposition with all ears of length 0 mod k is NP-complete. We also consider the directed analogue to ear decomposition, which we call handle decomposition, and prove analogous results : deciding whether a digraph admits a handle decomposition with all handles of length at most l is polynomial-time solvable for all positive integer l; deciding whether a digraph admits a handle decomposition without handles of length in F is NP -complete for any finite set F of positive integers (and minimizing the number of handles of length in F is not approximable up to n(1 - [epsilon])); for any k [greater than or equal to] 2, deciding whether a digraph admits a handle decomposition with all handles of length 0 mod k is NP-complete. Also, in contrast with the result of Lovasz, we prove that deciding whether a digraph admits a handle decomposition with all handles of odd length is NP-complete. Finally, we conjecture that, for every set A of integers, deciding whether a digraph has a handle decomposition with all handles of length in A is NP-complete, unless there exists h [member of] N such that A = 1, ***, h.
Ear decompositions of graphs are a standard concept related to several major problems in graph theory like the Traveling Salesman Problem. For example, the Hamiltonian Cycle Problem, which is notoriously N P-complete, is equivalent to deciding whether a given graph admits an ear decomposition in which all ears except one are trivial (i.e. of length 1). On the other hand, a famous result of Lovász states that deciding whether a graph admits an ear decomposition with all ears of odd length can be done in polynomial time. In this paper, we study the complexity of deciding whether a graph admits an ear decomposition with prescribed ear lengths. We prove that deciding whether a graph admits an ear decomposition with all ears of length at most is polynomial-time solvable for all fixed positive integer. On the other hand, deciding whether a graph admits an ear decomposition without ears of length in F is N P-complete for any finite set F of positive integers. We also prove that, for any k ≥ 2, deciding whether a graph admits an ear decomposition with all ears of length 0 mod k is N P-complete. We also consider the directed analogue to ear decomposition, which we call handle decomposition, and prove analogous results : deciding whether a digraph admits a handle decomposition with all handles of length at most is polynomial-time solvable for all positive integer ; deciding whether a digraph admits a handle decomposition without handles of length in F is N P-complete for any finite set F of positive integers (and minimizing the number of handles of length in F is not approximable up to n(1 −)); for any k ≥ 2, deciding whether a digraph admits a handle decomposition with all handles of length 0 mod k is N P-complete. Also, in contrast with the result of Lovász, we prove that deciding whether a digraph admits a handle decomposition with all handles of odd length is N P-complete. Finally, we conjecture that, for every set A of integers, deciding whether a digraph has a handle decomposition with all handles of length in A is N P-complete, unless there exists h ∈ N such that A = {1, · · · , h}.
Ear decompositions of graphs are a standard concept related to several major problems in graph theory like the Traveling Salesman Problem. For example, the Hamiltonian Cycle Problem, which is notoriously ЛЛР-complete, is equivalent to deciding whether a given graph admits an ear decomposition in which all ears except one are trivial (i.e. of length 1). On the other hand, a famous result of Lovász states that deciding whether a graph admits an ear decomposition with all ears of odd length can be done in polynomial time. In this paper, we study the complexity of deciding whether a graph admits an ear decomposition with prescribed ear lengths. We prove that deciding whether a graph admits an ear decomposition with all ears of length at most £. is polynomial-time solvable for all fixed positive integer 1. On the other hand, deciding whether a graph admits an ear decomposition without ears of length in У is AiP-complete for any finite set У of positive integers. We also prove that, for any к > 2, deciding whether a graph admits an ear decomposition with all ears of length 0 mod к is AfP-complete. We also consider the directed analogue to ear decomposition, which we call handle decomposition, and prove analogous results : deciding whether a digraph admits a handle decomposition with all handles of length at most is polynomial-time solvable for all positive integer 1; deciding whether a digraph admits a handle decomposition without handles of length in У is AP-complete for any finite set У of positive integers (and minimizing the number of handles of length in У is not approximable up to n(l - e)); for any к > 2, deciding whether a digraph admits a handle decomposition with all handles of length 0 mod k is AfP-complete. Also, in contrast with the result of Lovász, we prove that deciding whether a digraph admits a handle decomposition with all handles of odd length is AfP-complete. Finally, we conjecture that, for every set Л of integers, deciding whether a digraph has a handle decomposition with all handles of length in A is AfP-complete, unless there exists h E N such that A = {1, * * * , h\.
Ear decompositions of graphs are a standard concept related to several major problems in graph theory like the Traveling Salesman Problem. For example, the Hamiltonian Cycle Problem, which is notoriously NP-complete, is equivalent to deciding whether a given graph admits an ear decomposition in which all ears except one are trivial (i.e. of length 1). On the other hand, a famous result of Lovasz states that deciding whether a graph admits an ear decomposition with all ears of odd length can be done in polynomial time. In this paper, we study the complexity of deciding whether a graph admits an ear decomposition with prescribed ear lengths. We prove that deciding whether a graph admits an ear decomposition with all ears of length at most l is polynomial-time solvable for all fixed positive integer l. On the other hand, deciding whether a graph admits an ear decomposition without ears of length in F is NP-complete for any finite set F of positive integers. We also prove that, for any k [greater than or equal to] 2, deciding whether a graph admits an ear decomposition with all ears of length 0 mod k is NP-complete.
Audience Academic
Author Havet, Frédéric
Nisse, Nicolas
Author_xml – sequence: 1
  givenname: Frédéric
  orcidid: 0000-0002-3447-8112
  surname: Havet
  fullname: Havet, Frédéric
– sequence: 2
  givenname: Nicolas
  orcidid: 0000-0003-4500-5078
  surname: Nisse
  fullname: Nisse, Nicolas
BackLink https://inria.hal.science/hal-01798795$$DView record in HAL
BookMark eNptkUtvEzEUhUeoSLSFJfuRWLGY1u_HMgr0IQV10bK2nOvr1FEyDvYUiX-Pm0HQSsgL28fnfr72OetOxjxi132k5IJxxc3ll28Py_uB0UEM_E13SrmSgyGSnLxYv-vOat0SQpkV-rSTyzzWqfg0YujRlz4g5P0h1zSldtKnsd8Uf3isvR9DH9K8ed-9jX5X8cOf-bz7fvX1YXkzrO6ub5eL1QCC6WmICtaAXimPgBFotBAVMgKegF0ziUF7Y0wAyo30UoNBG6wAQ9fRotX8vLuduSH7rTuUtPfll8s-uaOQy8b5MiXYoQPFJUGBCggI3m6lgmu0SkS9loCysT7PrEe_e4W6Wazcs0aotkZb-ZM376fZeyj5xxPWyW3zUxnbUx0nwlApuVb_XBvfGkhjzO0jYZ8quIViWjOh2TPr4j-uNgLuE7QEY2r6q4JhLoCSay0Y_3ZLiTsG7Y5BO0adcJz_BtUKmxU
ContentType Journal Article
Copyright COPYRIGHT 2019 DMTCS
Copyright DMTCS 2019
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: COPYRIGHT 2019 DMTCS
– notice: Copyright DMTCS 2019
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BFMQW
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
1XC
VOOES
DOA
DOI 10.23638/DMTCS-21-4-3
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Continental Europe Database
Technology collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
CrossRef
Publicly Available Content Database



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1365-8050
EndPage 19
ExternalDocumentID oai_doaj_org_article_c6350e4e6c0c43cea1437e964f7b5ce5
oai:HAL:hal-01798795v3
A627724723
10_23638_DMTCS_21_4_3
GeographicLocations France
GeographicLocations_xml – name: France
GroupedDBID -~9
.4S
.DC
29G
2WC
5GY
5VS
8FE
8FG
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACIWK
ACUHS
ADBBV
ADQAK
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
B0M
BAIFH
BBTPI
BCNDV
BENPR
BFMQW
BGLVJ
BPHCQ
CCPQU
CITATION
EAP
EBS
ECS
EDO
EJD
EMK
EPL
EST
ESX
GROUPED_DOAJ
HCIFZ
I-F
IAO
IBB
ICD
ITC
J9A
KQ8
KWQ
L6V
M7S
MK~
ML~
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PV9
REM
RNS
RSU
RZL
TR2
TUS
XSB
~8M
M~E
ADOJU
AZQEC
DWQXO
PKEHL
PQEST
PQUKI
PRINS
PUEGO
1XC
VOOES
ID FETCH-LOGICAL-c427t-f6cbcea66aecefc1f9cf6e20ca0c9b25ed7a888dc1385a57c8e9d94c81bf9e973
IEDL.DBID M7S
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000490759800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1365-8050
1462-7264
IngestDate Fri Oct 03 12:51:02 EDT 2025
Tue Oct 14 20:50:52 EDT 2025
Sun Sep 07 23:59:54 EDT 2025
Wed Mar 19 01:48:23 EDT 2025
Mon Oct 20 16:15:47 EDT 2025
Sat Nov 29 08:04:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Graph Theory
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-f6cbcea66aecefc1f9cf6e20ca0c9b25ed7a888dc1385a57c8e9d94c81bf9e973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3447-8112
0000-0003-4500-5078
OpenAccessLink https://www.proquest.com/docview/3048155376?pq-origsite=%requestingapplication%
PQID 3048155376
PQPubID 946337
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_c6350e4e6c0c43cea1437e964f7b5ce5
hal_primary_oai_HAL_hal_01798795v3
proquest_journals_3048155376
gale_infotracmisc_A627724723
gale_infotracacademiconefile_A627724723
crossref_primary_10_23638_DMTCS_21_4_3
PublicationCentury 2000
PublicationDate 2019-09-02
PublicationDateYYYYMMDD 2019-09-02
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-02
  day: 02
PublicationDecade 2010
PublicationPlace Nancy
PublicationPlace_xml – name: Nancy
PublicationTitle Discrete Mathematics and Theoretical Computer Science
PublicationYear 2019
Publisher DMTCS
Discrete Mathematics & Theoretical Computer Science
Publisher_xml – name: DMTCS
– name: Discrete Mathematics & Theoretical Computer Science
SSID ssj0012947
ssib044734695
Score 2.1209416
Snippet Ear decompositions of graphs are a standard concept related to several major problems in graph theory like the Traveling Salesman Problem. For example, the...
SourceID doaj
hal
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage COV2
SubjectTerms [info.info-cc]computer science [cs]/computational complexity [cs.cc]
[info.info-dm]computer science [cs]/discrete mathematics [cs.dm]
Computational Complexity
Computer Science
Decomposition
Decomposition (Mathematics)
Discrete Mathematics
Ear
Graph theory
Graphs
Handles
Integers
Mathematical research
Polynomials
Traveling salesman problem
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T-QwELUAUUDB8XGIvQNkoRNUFontxHG5fIkCEBKcRGc544nYJiB24fff2ElW7DU0lEmsxHnj8cwok_cY-6OrRlIaXgoIaIQ24EXtCxS5aQKFg8LXuU9iE-burnp6svefpL5iT1hHD9wBdwoUETPUWEIGWgF6CvAGbakbUxeAib2Usp6hmOq_H0irTceoKRWtsNOL28fzByGpXBJqIQIlov75drz8HLsh_9uUU6S52mQbfYrIx93UttgSttvsxyC_wHtv3Gbrt3PK1ekOK6L0ZhJ8wMBp-fKAsV186Mnik5Yncuop923gYdId_GR_ry4fz69Fr4kgQEszE00JNYFQlh4BG8gbC02JMgOfga1lgcF4KmoD5KoqfGGgQhusBspOG4vWqF220r60uMd4VumYraGSNdWEpqq1qXRQRoEi0GszYscDTu61o75wVDIkQF0C1MncaadG7CyiOB8UGavTCbKj6-3ovrLjiJ1EG7joVwQW-P73AJprZKhy41JSIaCNpMftL4wkf4CFy0dkxYXJXI9vXDwXd58orv4R7zEY2fVOO3UqcedEfptf3_FGv9kaZVddQ5rcZyuzt3c8YKvwMZtM3w7Tev0H4yLurg
  priority: 102
  providerName: Directory of Open Access Journals
Title Constrained ear decompositions in graphs and digraphs
URI https://www.proquest.com/docview/3048155376
https://inria.hal.science/hal-01798795
https://doaj.org/article/c6350e4e6c0c43cea1437e964f7b5ce5
Volume 21 no. 4
WOSCitedRecordID wos000490759800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: DOA
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044734695
  issn: 1365-8050
  databaseCode: M~E
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BFMQW
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: PIMPY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLfYxgEODAaIwqgihOBkLfFHnJxQNzoNiVYVG9I4Wc6zM3pJR1N25G_nPScpKgcuXCIlthwn78PvOS-_H2NvVVELDMNzDj4Yrgw4XjkdeGZqj8uBdlXmItmEmc-L6-ty0W-4tX1Z5eATo6P2K6A98hMZgU0IfOTD7Q9OrFH0dbWn0NhjB4SSIGLp3uX2K4IolelwNYVEPTv5OLs6u-QCkyYud9ahCNe_dcp736km8i_XHNeb88P_nelj9qiPNJNJpxpP2L3QHLHDgcUh6Y36iD2cbZFb26dME4Nn5I0IPkErSHygqvOhtCtZNknEuG4T1_jEL7uTZ-zr-fTq7IL31AoclDAbXudQQXB57gKEGrK6hDoPIgWXQlkJHbxxmBt7yGShnTZQhNKXCjDIrctQGvmc7TerJrxgSVooCvqCFBWmlqaolCmUl0aChFxWZsTeDS_a3nYIGhYzjygRGyViRWaVlSN2SmLYdiLg63hhtb6xvR1ZHFKnQYUcUlASHwHjPRPKXNWm0hD0iL0nIVoyT3xZ4Pq_DHCuBHRlJ7nAfEIZgbc73umJZgU7zW9QDXYmczH5bOkaOTHiaL-jMQYVsL3tt_aP_F_-u_kVe4DhV1exJo7Z_mb9M7xm9-Fus2zXY3ZwOp0vvozjLsE4KjYdf02xZfFptvj2GzOMAdM
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH_aOiTgwGCAKAyIEIyTtcR24uTAoduoOq2tQBSxm3Gena2XdDRliH-Kv5HnfBSVA7cdOMa2HH_88j7i5_cDeC3TgpMZnjC0TjGp0LDcxI5FqrCkDmKTR6Ymm1DTaXp-nn3Ygl_dXRgfVtnJxFpQ2wX6f-SHok5s4pOPtBGUZ-7nD_LPqnenJ7SZbzgfvp8dj1hLIcBQcrViRYI5OpMkxqErMCoyLBLHQzQhZjmPnVWGfECLkUhjEytMXWYziWTMFZnLlKB-D66-Mc9S5U9zW8qObdhJk0zIHuwcDScfv6zPLXgmVZPJkwtC9uHJZHb8iXFy05jY0Hw1QcBaDWxf-ijMv5RBreGGu__b2tyHe60tHQwa8D-ALVfuwW7HUxG0YmsP7k7WuWmrhxB7jtKaGcPZgOYRWOfj6rvgtWBeBnUW7yowpQ3svHl4BJ9vZHaPoVcuSvcEgjCV3qx1gufkPKs0lyqVViiBAhORqz4cdBurr5ocIZp8qxoBukaA5pGWWvThyG_7upFP7V0XLJYXupUUmrqMQyddgiFKQVMgi1a5LJGFymN0cR_eetBoL4BosdC09yhorD6Vlx4knDwmqTi9bn-jJQkO3Kh-RbDbGMxoMNa-zItpz0J_7fvoIKdb6VbpP3h7-u_ql3B7NJuM9fh0evYM7pCx2cTn8X3orZbf3XO4hderebV80X5IAXy9acj-BvFhX9M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+ear+decompositions+in+graphs+and+digraphs&rft.jtitle=Discrete+mathematics+and+theoretical+computer+science&rft.au=Havet%2C+Fr%C3%A9d%C3%A9ric&rft.au=Nisse%2C+Nicolas&rft.date=2019-09-02&rft.pub=DMTCS&rft.issn=1462-7264&rft.eissn=1365-8050&rft.volume=21+no.+4&rft_id=info:doi/10.23638%2FDMTCS-21-4-3&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01798795v3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8050&client=summon