A complex-variable cohesive finite element subroutine to enable efficient determination of interfacial cohesive material parameters
A new complex-variable version of a cohesive element is presented that provides highly accurate first order derivatives of the nodal displacements with respect to the cohesive fracture parameters. These sensitivities are provided as a byproduct of the analysis using the complex Taylor series expansi...
Uložené v:
| Vydané v: | Engineering fracture mechanics Ročník 247; číslo C; s. 107638 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Elsevier Ltd
15.04.2021
Elsevier BV Elsevier |
| Predmet: | |
| ISSN: | 0013-7944, 1873-7315 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | A new complex-variable version of a cohesive element is presented that provides highly accurate first order derivatives of the nodal displacements with respect to the cohesive fracture parameters. These sensitivities are provided as a byproduct of the analysis using the complex Taylor series expansion method. This information is useful for inversely determining the cohesive fracture parameters from experimental or synthetic data using a finite element-based approach. In particular, the PPR cohesive element (Park et al., 2009), was extended using complex variables as a user element for the well-known commercial finite element program, Abaqus. The source code for the element is provided as an educational resource. The advantage of having accurate first order derivatives on both accuracy and efficiency is demonstrated through numerical examples.
•A complex-variable cohesive element for the computation of sensitivities is presented.•The sensitivities are obtained along with the traditional finite element results.•Highly accurate-step size independent derivatives are obtained using the CTSE method.•Source code for the Abaqus complex-valued UEL is provided for educational purposes.•The sensitivities are used to determine the interfacial properties of a joint. |
|---|---|
| AbstractList | A new complex-variable version of a cohesive element is presented that provides highly accurate first order derivatives of the nodal displacements with respect to the cohesive fracture parameters. These sensitivities are provided as a byproduct of the analysis using the complex Taylor series expansion method. This information is useful for inversely determining the cohesive fracture parameters from experimental or synthetic data using a finite element-based approach. In particular, the PPR cohesive element (Park et al., 2009), was extended using complex variables as a user element for the well-known commercial finite element program, Abaqus. The source code for the element is provided as an educational resource. The advantage of having accurate first order derivatives on both accuracy and efficiency is demonstrated through numerical examples. A new complex-variable version of a cohesive element is presented that provides highly accurate first order derivatives of the nodal displacements with respect to the cohesive fracture parameters. These sensitivities are provided as a byproduct of the analysis using the complex Taylor series expansion method. This information is useful for inversely determining the cohesive fracture parameters from experimental or synthetic data using a finite element-based approach. In particular, the PPR cohesive element (Park et al., 2009), was extended using complex variables as a user element for the well-known commercial finite element program, Abaqus. The source code for the element is provided as an educational resource. The advantage of having accurate first order derivatives on both accuracy and efficiency is demonstrated through numerical examples. •A complex-variable cohesive element for the computation of sensitivities is presented.•The sensitivities are obtained along with the traditional finite element results.•Highly accurate-step size independent derivatives are obtained using the CTSE method.•Source code for the Abaqus complex-valued UEL is provided for educational purposes.•The sensitivities are used to determine the interfacial properties of a joint. A new complex-variable version of a cohesive element is presented that provides highly accurate first order derivatives of the nodal displacements with respect to the cohesive fracture parameters. These sensitivities are provided as a byproduct of the analysis using the complex Taylor series expansion method. This information is useful for inversely determining the cohesive fracture parameters from experimental or synthetic data using a finite element-based approach. In particular, the PPR cohesive element [1], was programmed as a user element for the well-known commercial finite element program, Abaqus. The source code for the element is provided as an educational resource. The application is demonstrated through the numerical examples. |
| ArticleNumber | 107638 |
| Author | Millwater, Harry Gupta, Varun Restrepo, David Montoya, Arturo Ramirez-Tamayo, Daniel Soulami, Ayoub |
| Author_xml | – sequence: 1 givenname: Daniel surname: Ramirez-Tamayo fullname: Ramirez-Tamayo, Daniel email: daniel.ramirez@my.utsa.edu organization: Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA – sequence: 2 givenname: Ayoub orcidid: 0000-0002-1297-8300 surname: Soulami fullname: Soulami, Ayoub email: ayoub.soulami@pnnl.gov organization: Pacific Northwest National Labs, Richland, WA, USA – sequence: 3 givenname: Varun surname: Gupta fullname: Gupta, Varun email: varun.gupta@exxonmobil.com organization: ExxonMobil Upstream Research Company, Spring, TX, USA – sequence: 4 givenname: David orcidid: 0000-0001-5462-5434 surname: Restrepo fullname: Restrepo, David email: david.restrepo@utsa.edu organization: Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA – sequence: 5 givenname: Arturo surname: Montoya fullname: Montoya, Arturo email: arturo.montoya@utsa.edu organization: Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA – sequence: 6 givenname: Harry surname: Millwater fullname: Millwater, Harry email: harry.millwater@utsa.edu organization: Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA |
| BackLink | https://www.osti.gov/biblio/1768671$$D View this record in Osti.gov |
| BookMark | eNqNUU1r3DAUFCWFbtL-Bzc9e6OvtaRTCUuSBgK95C5k-amrxZY2knZpz_njleNASk85ScybN7yZOUdnIQZA6CvBa4JJd7VfQ_jlkrET2N2aYkoqLjomP6AVkYK1gpHNGVphTOpfcf4Jnee8x7iSJF6h5-vGxukwwu_2ZJI3_QgV2EH2J2icD75AAyNMEEqTj32Kx-IDNCU2EF7I4Jy3fh4PUCBNPpjiY2iia3yogDPWm_FNczIVnJGDSWaaV_Jn9NGZMcOX1_cCPd7ePG5_tA8_7-631w-t5VSUFpRRUg2UiQ56KzrO1SCp5CCGjmGQ1GKmpKVcCdpbJTndbJhTfKCulz2wC3S5yMZcvM62WrM7G0MAWzSpcXSCVNK3hXRI8ekIueh9PKZQz9J0QxmpySpVWWph2RRzTuD0IfnJpD-aYD33ovf6n1703Iteeqm73__brZe8ZFaS8eO7FLaLAtSwTh7SbAaChcGn2csQ_TtU_gIOJLXo |
| CitedBy_id | crossref_primary_10_1016_j_conbuildmat_2024_135694 crossref_primary_10_1007_s11071_024_09449_3 crossref_primary_10_1016_j_finel_2025_104419 crossref_primary_10_3390_app12052738 crossref_primary_10_1016_j_compstruc_2024_107467 crossref_primary_10_3390_app13127125 crossref_primary_10_1016_j_ijsolstr_2022_111545 |
| Cites_doi | 10.1016/S0045-7930(01)00044-5 10.1093/comjnl/7.4.308 10.1002/nme.1286 10.1038/s41592-019-0686-2 10.1016/j.engfracmech.2013.02.008 10.2514/1.J057231 10.1016/j.cemconres.2010.02.004 10.12732/ijam.v27i4.2 10.1016/j.mechrescom.2016.09.004 10.1016/j.ijpvp.2015.05.006 10.1016/S0013-7944(01)00087-X 10.1016/0008-8846(76)90007-7 10.1023/A:1010869706996 10.1145/2450153.2450158 10.1177/0021998303034505 10.1002/(SICI)1097-024X(199712)27:12<1427::AID-SPE138>3.0.CO;2-Q 10.1016/0020-7683(95)00255-3 10.1115/1.3173064 10.1016/j.ijadhadh.2013.02.006 10.1016/j.engfracmech.2006.03.006 10.1177/002199839803201401 10.1115/1.4023110 10.1016/j.finel.2011.05.003 10.1016/j.jmps.2013.08.020 10.2514/2.1270 10.2514/1.J053282 10.1007/BF02472525 10.1016/j.engfracmech.2019.106581 10.1016/j.engfracmech.2014.04.004 10.1016/j.jmps.2008.10.003 10.1016/0022-5096(94)90003-5 10.1016/0022-5096(90)90001-K 10.1061/(ASCE)0733-9445(1984)110:4(871) 10.1016/j.engfracmech.2017.12.013 10.1016/S0143-7496(02)00062-3 10.1137/S003614459631241X 10.1016/0022-5096(60)90013-2 10.1016/j.engfracmech.2008.04.013 10.1145/2168773.2168774 10.1016/0021-8928(59)90157-1 10.1016/j.engfracmech.2012.02.007 10.1016/j.engfracmech.2016.04.002 10.1016/j.engfracmech.2018.09.023 10.1007/s11340-010-9342-6 10.2514/1.19225 10.1080/10556788.2018.1435650 10.1109/99.537089 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors Copyright Elsevier BV Apr 15, 2021 |
| Copyright_xml | – notice: 2021 The Authors – notice: Copyright Elsevier BV Apr 15, 2021 |
| CorporateAuthor | Pacific Northwest National Lab. (PNNL), Richland, WA (United States) |
| CorporateAuthor_xml | – name: Pacific Northwest National Lab. (PNNL), Richland, WA (United States) |
| DBID | 6I. AAFTH AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 OTOTI |
| DOI | 10.1016/j.engfracmech.2021.107638 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts OSTI.GOV |
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-7315 |
| ExternalDocumentID | 1768671 10_1016_j_engfracmech_2021_107638 S0013794421001028 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW VH1 WUQ ZY4 ~HD 7SR 7TB 8BQ 8FD FR3 JG9 KR7 6XO AALMO AAPBV ABPIF ABPTK OTOTI |
| ID | FETCH-LOGICAL-c427t-e9a989d2376ebc76449d8284e7d630e82c0398c24972bc9842553f94d2fb8be3 |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000640448800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0013-7944 |
| IngestDate | Thu May 18 22:32:44 EDT 2023 Sun Nov 09 06:38:46 EST 2025 Sat Nov 29 07:32:17 EST 2025 Tue Nov 18 21:04:26 EST 2025 Fri Feb 23 02:43:30 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | C |
| Keywords | Complex Taylor series expansion Complex-variable finite element method Inverse determination of material parameters UEL Automatic differentiation |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c427t-e9a989d2376ebc76449d8284e7d630e82c0398c24972bc9842553f94d2fb8be3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE AC05-76RL01830 PNNL-SA-156440 |
| ORCID | 0000-0001-5462-5434 0000-0002-1297-8300 0000000212978300 0000000154625434 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.engfracmech.2021.107638 |
| PQID | 2523163899 |
| PQPubID | 2045482 |
| ParticipantIDs | osti_scitechconnect_1768671 proquest_journals_2523163899 crossref_primary_10_1016_j_engfracmech_2021_107638 crossref_citationtrail_10_1016_j_engfracmech_2021_107638 elsevier_sciencedirect_doi_10_1016_j_engfracmech_2021_107638 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-04-15 |
| PublicationDateYYYYMMDD | 2021-04-15 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United Kingdom |
| PublicationTitle | Engineering fracture mechanics |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV – name: Elsevier |
| References | van Mier, van Vliet (b3) 2002; 69 Montoya, Ramirez-Tamayo, Millwater, Kirby (b31) 2018; 202 Hascoet, Pascual (b12) 2013; 39 Bischof, Khademi, Mauer, Carle (b8) 1996; 3 Ramirez Tamayo, Montoya, Millwater (b33) 2018; 56 Needleman (b42) 1990; 38 Nelder, Mead (b14) 1965; 7 Hillerborg, Modéer, Petersson (b35) 1976; 6 Camanho, Davila, de Moura (b19) 2003; 37 Mergheim, Kuhl, Steinmann (b38) 2005; 63 Phipps, Gay (b10) 2006 Garza, Millwater (b52) 2015; 53 Millwater, Shirinkam (b54) 2014; 27 Bischof, Roh, Mauer-Oats (b9) 1997; 27 Griewank, Walther (b11) 2008 Voorhees, Millwater, Bagley (b47) 2011; 47 Freed, Banks-Sills (b44) 2008; 75 Park, Paulino, Roesler (b22) 2010; 40 Valoroso, Sessa, Lepore, Cricrì (b5) 2013; 104 Xu, Siegmund, Ramani (b20) 2003; 23 Aguirre-Mesa, Ramirez-Tamayo, Garcia, Montoya, Millwater (b30) 2019; 218 Campilho, Banea, Neto, da Silva (b23) 2013; 44 Ingraffea, Gerstk, Gergely, Saouma (b36) 1984; 110 Shen, Paulino (b4) 2011; 51 Tamayo, Montoya, Millwater (b32) 2018; 192 Burg, Newman III (b49) 2003; 32 Yang, Thouless (b18) 2001; 110 Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, Burovski, Peterson, Weckesser, Bright (b56) 2020; 17 Park, Choi, Paulino (b40) 2016; 78 Park, Paulino (b26) 2012; 93 Gomez-Farias, Montoya, Millwater (b55) 2015; 132–133 (b27) 2015 Camacho, Ortiz (b39) 1996; 33 Fike, Alonso (b58) 2011 Park, Paulino (b45) 2013; 64 Squire, Trapp (b28) 1998; 40 Needleman (b41) 1987; 54 Wang, Apte (b51) 2006; 44 Dugdale (b34) 1960; 8 Pascual, Hascoët (b13) 2018; 33 Park (b46) 2009 Montoya, Fielder, Gomez-Farias, Millwater (b50) 2015; 141 Beltz, Rice (b43) 1991 Mi, Crisfield, Davies, Hellweg (b1) 1998; 32 Shah, Swartz, Ouyang (b2) 1995 Spring, Paulino (b25) 2014; 126 JMcGarry, Máirtín, Parry, Beltz (b24) 2014; 63 Xu, Needleman (b37) 1994; 42 Nocedal, Wright (b57) 2006 Millwater, Wagner, Baines, Montoya (b29) 2016; 162 Park, Paulino, Roesler (b15) 2009; 57 Anderson, Newman, Whitfield, Nielsen (b48) 2001; 39 Xie, Waas (b21) 2006; 73 Lantoine, Russell, Dargent (b53) 2012; 38 Taylor (b6) 2014 Barenblatt (b7) 1959; 23 (b16) 1976; 6 Wittmann, Rokugo, Brühwiler, Mihashi, Simonin (b17) 1988; 21 Montoya (10.1016/j.engfracmech.2021.107638_b50) 2015; 141 Bischof (10.1016/j.engfracmech.2021.107638_b9) 1997; 27 Park (10.1016/j.engfracmech.2021.107638_b45) 2013; 64 van Mier (10.1016/j.engfracmech.2021.107638_b3) 2002; 69 Griewank (10.1016/j.engfracmech.2021.107638_b11) 2008 Burg (10.1016/j.engfracmech.2021.107638_b49) 2003; 32 Ingraffea (10.1016/j.engfracmech.2021.107638_b36) 1984; 110 Gomez-Farias (10.1016/j.engfracmech.2021.107638_b55) 2015; 132–133 Shen (10.1016/j.engfracmech.2021.107638_b4) 2011; 51 Camacho (10.1016/j.engfracmech.2021.107638_b39) 1996; 33 Anderson (10.1016/j.engfracmech.2021.107638_b48) 2001; 39 JMcGarry (10.1016/j.engfracmech.2021.107638_b24) 2014; 63 Dugdale (10.1016/j.engfracmech.2021.107638_b34) 1960; 8 Xu (10.1016/j.engfracmech.2021.107638_b37) 1994; 42 Bischof (10.1016/j.engfracmech.2021.107638_b8) 1996; 3 Park (10.1016/j.engfracmech.2021.107638_b46) 2009 Nelder (10.1016/j.engfracmech.2021.107638_b14) 1965; 7 Freed (10.1016/j.engfracmech.2021.107638_b44) 2008; 75 Park (10.1016/j.engfracmech.2021.107638_b15) 2009; 57 Mi (10.1016/j.engfracmech.2021.107638_b1) 1998; 32 Park (10.1016/j.engfracmech.2021.107638_b26) 2012; 93 Virtanen (10.1016/j.engfracmech.2021.107638_b56) 2020; 17 Nocedal (10.1016/j.engfracmech.2021.107638_b57) 2006 Xu (10.1016/j.engfracmech.2021.107638_b20) 2003; 23 (10.1016/j.engfracmech.2021.107638_b16) 1976; 6 Phipps (10.1016/j.engfracmech.2021.107638_b10) 2006 Valoroso (10.1016/j.engfracmech.2021.107638_b5) 2013; 104 Shah (10.1016/j.engfracmech.2021.107638_b2) 1995 Camanho (10.1016/j.engfracmech.2021.107638_b19) 2003; 37 Wittmann (10.1016/j.engfracmech.2021.107638_b17) 1988; 21 Mergheim (10.1016/j.engfracmech.2021.107638_b38) 2005; 63 Xie (10.1016/j.engfracmech.2021.107638_b21) 2006; 73 Fike (10.1016/j.engfracmech.2021.107638_b58) 2011 Taylor (10.1016/j.engfracmech.2021.107638_b6) 2014 Millwater (10.1016/j.engfracmech.2021.107638_b54) 2014; 27 Needleman (10.1016/j.engfracmech.2021.107638_b42) 1990; 38 (10.1016/j.engfracmech.2021.107638_b27) 2015 Campilho (10.1016/j.engfracmech.2021.107638_b23) 2013; 44 Yang (10.1016/j.engfracmech.2021.107638_b18) 2001; 110 Ramirez Tamayo (10.1016/j.engfracmech.2021.107638_b33) 2018; 56 Lantoine (10.1016/j.engfracmech.2021.107638_b53) 2012; 38 Millwater (10.1016/j.engfracmech.2021.107638_b29) 2016; 162 Wang (10.1016/j.engfracmech.2021.107638_b51) 2006; 44 Needleman (10.1016/j.engfracmech.2021.107638_b41) 1987; 54 Aguirre-Mesa (10.1016/j.engfracmech.2021.107638_b30) 2019; 218 Hillerborg (10.1016/j.engfracmech.2021.107638_b35) 1976; 6 Voorhees (10.1016/j.engfracmech.2021.107638_b47) 2011; 47 Squire (10.1016/j.engfracmech.2021.107638_b28) 1998; 40 Tamayo (10.1016/j.engfracmech.2021.107638_b32) 2018; 192 Barenblatt (10.1016/j.engfracmech.2021.107638_b7) 1959; 23 Beltz (10.1016/j.engfracmech.2021.107638_b43) 1991 Pascual (10.1016/j.engfracmech.2021.107638_b13) 2018; 33 Park (10.1016/j.engfracmech.2021.107638_b40) 2016; 78 Hascoet (10.1016/j.engfracmech.2021.107638_b12) 2013; 39 Park (10.1016/j.engfracmech.2021.107638_b22) 2010; 40 Garza (10.1016/j.engfracmech.2021.107638_b52) 2015; 53 Spring (10.1016/j.engfracmech.2021.107638_b25) 2014; 126 Montoya (10.1016/j.engfracmech.2021.107638_b31) 2018; 202 |
| References_xml | – volume: 56 start-page: 4632 year: 2018 end-page: 4637 ident: b33 article-title: Complex-variable finite-element method for mixed mode fracture and interface cracks publication-title: AIAA J – year: 2015 ident: b27 article-title: Abaqus finite element software – volume: 42 start-page: 1397 year: 1994 end-page: 1434 ident: b37 article-title: Numerical simulations of fast crack growth in brittle solids publication-title: J Mech Phys Solids – volume: 6 start-page: 773 year: 1976 end-page: 781 ident: b35 article-title: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements publication-title: Cem Concr Res – volume: 38 start-page: 289 year: 1990 end-page: 324 ident: b42 article-title: An analysis of tensile decohesion along an interface publication-title: J Mech Phys Solids – volume: 51 start-page: 143 year: 2011 end-page: 163 ident: b4 article-title: Direct extraction of cohesive fracture properties from digital image correlation: a hybrid inverse technique publication-title: Exp Mech – volume: 141 year: 2015 ident: b50 article-title: Finite-element sensitivity for plasticity using complex variable methods publication-title: J Eng Mech – year: 2006 ident: b57 article-title: Numerical optimization – volume: 73 start-page: 1783 year: 2006 end-page: 1796 ident: b21 article-title: Discrete cohesive zone model for mixed-mode fracture using finite element analysis publication-title: Eng Fract Mech – start-page: 886 year: 2011 ident: b58 article-title: The development of hyper-dual numbers for exact second-derivative calculations publication-title: 49th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition – volume: 3 start-page: 18 year: 1996 end-page: 32 ident: b8 article-title: Adifor 2.0: Automatic differentiation of fortran 77 programs publication-title: IEEE Comput Sci Eng – year: 2006 ident: b10 article-title: Automatic differentation of C++ codes with sacado – volume: 40 start-page: 110 year: 1998 end-page: 112 ident: b28 article-title: Using complex variables to estimate derivatives of real functions publication-title: SIAM Rev – volume: 6 start-page: 773 year: 1976 end-page: 781 ident: b16 article-title: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements publication-title: Cem Concr Res – volume: 132–133 start-page: 27 year: 2015 end-page: 42 ident: b55 article-title: Complex finite element sensitivity method for creep analysis publication-title: Int J Press Vessel Pip – volume: 39 start-page: 56 year: 2001 end-page: 63 ident: b48 article-title: Sensitivity analysis for Navier-Stokes equations on unstructured meshes using complex variables publication-title: AIAA J – volume: 27 start-page: 311 year: 2014 end-page: 334 ident: b54 article-title: Multicomplex taylor series expansion for computing high order derivatives publication-title: Int J Appl Math – volume: 53 start-page: 1188 year: 2015 end-page: 1198 ident: b52 article-title: Multicomplex newmark-beta time integration method for sensitivity analysis in structural dynamics publication-title: AIAA J – volume: 47 start-page: 1146 year: 2011 end-page: 1156 ident: b47 article-title: Complex variable methods for shape sensitivity of finite element models publication-title: Finite Elem Anal Des – volume: 27 start-page: 1427 year: 1997 end-page: 1456 ident: b9 article-title: Adic: an extensible automatic differentiation tool for ansi-c publication-title: Softw - Pract Exp – volume: 110 start-page: 175 year: 2001 end-page: 187 ident: b18 article-title: Mixed-mode fracture analyses of plastically-deforming adhesive joints publication-title: Int J Fract – volume: 104 start-page: 56 year: 2013 end-page: 79 ident: b5 article-title: Identification of mode-i cohesive parameters for bonded interfaces based on DCB test publication-title: Eng Fract Mech – start-page: 457 year: 1991 end-page: 480 ident: b43 article-title: Dislocation nucleation versus cleavage decohesion at crack tips publication-title: Model Deformation Cryst Solids – volume: 162 start-page: 95 year: 2016 end-page: 111 ident: b29 article-title: A virtual crack extension method to compute energy release rates using a complex variable finite element method publication-title: Eng Fract Mech – volume: 33 start-page: 2899 year: 1996 end-page: 2938 ident: b39 article-title: Computational modelling of impact damage in brittle materials publication-title: Int J Solids Struct – volume: 44 start-page: 48 year: 2013 end-page: 56 ident: b23 article-title: Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer publication-title: Int J Adhes Adhes – volume: 21 start-page: 21 year: 1988 end-page: 32 ident: b17 article-title: Fracture energy and strain softening of concrete as determined by means of compact tension specimens publication-title: Mater Struct – year: 2009 ident: b46 article-title: Potential-based fracture mechanics using cohesive zone and virtual internal bond modeling – volume: 23 start-page: 9 year: 2003 end-page: 13 ident: b20 article-title: Rate-dependent crack growth in adhesives: I. Modeling approach publication-title: Int J Adhes Adhes – volume: 75 start-page: 4583 year: 2008 end-page: 4593 ident: b44 article-title: A new cohesive zone model for mixed mode interface fracture in bimaterials publication-title: Eng Fract Mech – volume: 17 start-page: 261 year: 2020 end-page: 272 ident: b56 article-title: Scipy 1.0: fundamental algorithms for scientific computing in python publication-title: Nat Methods – volume: 93 start-page: 239 year: 2012 end-page: 262 ident: b26 article-title: Computational implementation of the PPR potential-based cohesive model in ABAQUS: educational perspective publication-title: Eng Fract Mech – volume: 69 start-page: 235 year: 2002 end-page: 247 ident: b3 article-title: Uniaxial tension test for the determination of fracture parameters of concrete: state of the art publication-title: Eng Fract Mech – volume: 126 start-page: 190 year: 2014 end-page: 216 ident: b25 article-title: A growing library of three-dimensional cohesive elements for use in ABAQUS publication-title: Eng Fract Mech – volume: 110 start-page: 871 year: 1984 end-page: 890 ident: b36 article-title: Fracture mechanics of bond in reinforced concrete publication-title: J Struct Eng – volume: 39 start-page: 20 year: 2013 ident: b12 article-title: The tapenade automatic differentiation tool: principles, model, and specification publication-title: ACM Trans Math Softw (TOMS) – volume: 33 start-page: 1192 year: 2018 end-page: 1206 ident: b13 article-title: Mixed-language automatic differentiation publication-title: Optim Methods Softw – volume: 78 start-page: 71 year: 2016 end-page: 78 ident: b40 article-title: Assessment of cohesive traction-separation relationships in ABAQUS: A comparative study publication-title: Mech Res Commun – volume: 63 start-page: 276 year: 2005 end-page: 289 ident: b38 article-title: A finite element method for the computational modelling of cohesive cracks publication-title: Internat J Numer Methods Engrg – volume: 8 start-page: 100 year: 1960 end-page: 104 ident: b34 article-title: Yielding of steel sheets containing slits publication-title: J Mech Phys Solids – volume: 44 start-page: 2958 year: 2006 end-page: 2961 ident: b51 article-title: Complex variable method for eigensolution sensitivity analysis publication-title: AIAA J – volume: 202 start-page: 242 year: 2018 end-page: 258 ident: b31 article-title: A complex-variable virtual crack extension finite element method for elastic-plastic fracture mechanics publication-title: Eng Fract Mech – year: 2014 ident: b6 article-title: FEAP-A finite element analysis program – volume: 54 start-page: 525 year: 1987 end-page: 531 ident: b41 article-title: A continuum model for void nucleation by inclusion debonding publication-title: ASME J Appl Mech – year: 1995 ident: b2 article-title: Fracture mechanics of concrete: applications of fracture mechanics to concrete, rock and other quasi-brittle materials – volume: 38 start-page: 16:1 year: 2012 end-page: 16:21 ident: b53 article-title: Using multicomplex variables for automatic computation of high-order derivatives publication-title: ACM Trans Math Software – volume: 192 start-page: 328 year: 2018 end-page: 342 ident: b32 article-title: A virtual crack extension method for thermoelastic fracture using a complex-variable finite element method publication-title: Eng Fract Mech – volume: 218 year: 2019 ident: b30 article-title: A stiffness derivative local hypercomplex-variable finite element method for computing the energy release rate publication-title: Eng Fract Mech – volume: 64 year: 2013 ident: b45 article-title: Cohesive zone models: A critical review of traction-separation relationships across fracture surfaces publication-title: Appl Mech Rev – volume: 63 start-page: 336 year: 2014 end-page: 362 ident: b24 article-title: Potential-based and non-potential-based cohesive zone formulations under mixed-mode separation and over-closure. Part I: Theoretical analysis publication-title: J Mech Phys Solids – volume: 57 start-page: 891 year: 2009 end-page: 908 ident: b15 article-title: A unified potential-based cohesive model of mixed-mode fracture publication-title: J Mech Phys Solids – volume: 32 start-page: 373 year: 2003 end-page: 383 ident: b49 article-title: Computationally efficient, numerically exact design space derivatives via the complex taylor’s series expansion method publication-title: Comput & Fluids – volume: 23 start-page: 622 year: 1959 end-page: 636 ident: b7 article-title: The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks publication-title: J Appl Math Mech – year: 2008 ident: b11 article-title: Evaluating derivatives: principles and techniques of algorithmic differentiation, Vol. 105 – volume: 40 start-page: 956 year: 2010 end-page: 965 ident: b22 article-title: Cohesive fracture model for functionally graded fiber reinforced concrete publication-title: Cem Concr Res – volume: 32 start-page: 1246 year: 1998 end-page: 1272 ident: b1 article-title: Progressive delamination using interface elements publication-title: J Compos Mater – volume: 37 start-page: 1415 year: 2003 end-page: 1438 ident: b19 article-title: Numerical simulation of mixed-mode progressive delamination in composite materials publication-title: J Compos Mater – volume: 7 start-page: 308 year: 1965 end-page: 313 ident: b14 article-title: A simplex method for function minimization publication-title: Comput J – volume: 32 start-page: 373 issue: 3 year: 2003 ident: 10.1016/j.engfracmech.2021.107638_b49 article-title: Computationally efficient, numerically exact design space derivatives via the complex taylor’s series expansion method publication-title: Comput & Fluids doi: 10.1016/S0045-7930(01)00044-5 – volume: 7 start-page: 308 issue: 4 year: 1965 ident: 10.1016/j.engfracmech.2021.107638_b14 article-title: A simplex method for function minimization publication-title: Comput J doi: 10.1093/comjnl/7.4.308 – volume: 63 start-page: 276 issue: 2 year: 2005 ident: 10.1016/j.engfracmech.2021.107638_b38 article-title: A finite element method for the computational modelling of cohesive cracks publication-title: Internat J Numer Methods Engrg doi: 10.1002/nme.1286 – volume: 17 start-page: 261 issue: 3 year: 2020 ident: 10.1016/j.engfracmech.2021.107638_b56 article-title: Scipy 1.0: fundamental algorithms for scientific computing in python publication-title: Nat Methods doi: 10.1038/s41592-019-0686-2 – volume: 104 start-page: 56 year: 2013 ident: 10.1016/j.engfracmech.2021.107638_b5 article-title: Identification of mode-i cohesive parameters for bonded interfaces based on DCB test publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2013.02.008 – volume: 56 start-page: 4632 issue: 11 year: 2018 ident: 10.1016/j.engfracmech.2021.107638_b33 article-title: Complex-variable finite-element method for mixed mode fracture and interface cracks publication-title: AIAA J doi: 10.2514/1.J057231 – year: 2015 ident: 10.1016/j.engfracmech.2021.107638_b27 – volume: 40 start-page: 956 issue: 6 year: 2010 ident: 10.1016/j.engfracmech.2021.107638_b22 article-title: Cohesive fracture model for functionally graded fiber reinforced concrete publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2010.02.004 – volume: 27 start-page: 311 issue: 4 year: 2014 ident: 10.1016/j.engfracmech.2021.107638_b54 article-title: Multicomplex taylor series expansion for computing high order derivatives publication-title: Int J Appl Math doi: 10.12732/ijam.v27i4.2 – volume: 78 start-page: 71 year: 2016 ident: 10.1016/j.engfracmech.2021.107638_b40 article-title: Assessment of cohesive traction-separation relationships in ABAQUS: A comparative study publication-title: Mech Res Commun doi: 10.1016/j.mechrescom.2016.09.004 – volume: 132–133 start-page: 27 year: 2015 ident: 10.1016/j.engfracmech.2021.107638_b55 article-title: Complex finite element sensitivity method for creep analysis publication-title: Int J Press Vessel Pip doi: 10.1016/j.ijpvp.2015.05.006 – year: 2014 ident: 10.1016/j.engfracmech.2021.107638_b6 – volume: 69 start-page: 235 issue: 2 year: 2002 ident: 10.1016/j.engfracmech.2021.107638_b3 article-title: Uniaxial tension test for the determination of fracture parameters of concrete: state of the art publication-title: Eng Fract Mech doi: 10.1016/S0013-7944(01)00087-X – volume: 6 start-page: 773 issue: 6 year: 1976 ident: 10.1016/j.engfracmech.2021.107638_b35 article-title: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements publication-title: Cem Concr Res doi: 10.1016/0008-8846(76)90007-7 – start-page: 886 year: 2011 ident: 10.1016/j.engfracmech.2021.107638_b58 article-title: The development of hyper-dual numbers for exact second-derivative calculations – volume: 110 start-page: 175 issue: 2 year: 2001 ident: 10.1016/j.engfracmech.2021.107638_b18 article-title: Mixed-mode fracture analyses of plastically-deforming adhesive joints publication-title: Int J Fract doi: 10.1023/A:1010869706996 – volume: 39 start-page: 20 issue: 3 year: 2013 ident: 10.1016/j.engfracmech.2021.107638_b12 article-title: The tapenade automatic differentiation tool: principles, model, and specification publication-title: ACM Trans Math Softw (TOMS) doi: 10.1145/2450153.2450158 – year: 2009 ident: 10.1016/j.engfracmech.2021.107638_b46 – volume: 37 start-page: 1415 issue: 16 year: 2003 ident: 10.1016/j.engfracmech.2021.107638_b19 article-title: Numerical simulation of mixed-mode progressive delamination in composite materials publication-title: J Compos Mater doi: 10.1177/0021998303034505 – volume: 27 start-page: 1427 issue: 12 year: 1997 ident: 10.1016/j.engfracmech.2021.107638_b9 article-title: Adic: an extensible automatic differentiation tool for ansi-c publication-title: Softw - Pract Exp doi: 10.1002/(SICI)1097-024X(199712)27:12<1427::AID-SPE138>3.0.CO;2-Q – volume: 33 start-page: 2899 issue: 20 year: 1996 ident: 10.1016/j.engfracmech.2021.107638_b39 article-title: Computational modelling of impact damage in brittle materials publication-title: Int J Solids Struct doi: 10.1016/0020-7683(95)00255-3 – volume: 54 start-page: 525 issue: 3 year: 1987 ident: 10.1016/j.engfracmech.2021.107638_b41 article-title: A continuum model for void nucleation by inclusion debonding publication-title: ASME J Appl Mech doi: 10.1115/1.3173064 – volume: 44 start-page: 48 year: 2013 ident: 10.1016/j.engfracmech.2021.107638_b23 article-title: Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer publication-title: Int J Adhes Adhes doi: 10.1016/j.ijadhadh.2013.02.006 – year: 2006 ident: 10.1016/j.engfracmech.2021.107638_b10 – volume: 73 start-page: 1783 issue: 13 year: 2006 ident: 10.1016/j.engfracmech.2021.107638_b21 article-title: Discrete cohesive zone model for mixed-mode fracture using finite element analysis publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2006.03.006 – volume: 32 start-page: 1246 issue: 14 year: 1998 ident: 10.1016/j.engfracmech.2021.107638_b1 article-title: Progressive delamination using interface elements publication-title: J Compos Mater doi: 10.1177/002199839803201401 – volume: 64 issue: 6 year: 2013 ident: 10.1016/j.engfracmech.2021.107638_b45 article-title: Cohesive zone models: A critical review of traction-separation relationships across fracture surfaces publication-title: Appl Mech Rev doi: 10.1115/1.4023110 – volume: 47 start-page: 1146 issue: 10 year: 2011 ident: 10.1016/j.engfracmech.2021.107638_b47 article-title: Complex variable methods for shape sensitivity of finite element models publication-title: Finite Elem Anal Des doi: 10.1016/j.finel.2011.05.003 – year: 2008 ident: 10.1016/j.engfracmech.2021.107638_b11 – volume: 63 start-page: 336 year: 2014 ident: 10.1016/j.engfracmech.2021.107638_b24 article-title: Potential-based and non-potential-based cohesive zone formulations under mixed-mode separation and over-closure. Part I: Theoretical analysis publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2013.08.020 – volume: 39 start-page: 56 issue: 1 year: 2001 ident: 10.1016/j.engfracmech.2021.107638_b48 article-title: Sensitivity analysis for Navier-Stokes equations on unstructured meshes using complex variables publication-title: AIAA J doi: 10.2514/2.1270 – start-page: 457 year: 1991 ident: 10.1016/j.engfracmech.2021.107638_b43 article-title: Dislocation nucleation versus cleavage decohesion at crack tips publication-title: Model Deformation Cryst Solids – volume: 53 start-page: 1188 issue: 5 year: 2015 ident: 10.1016/j.engfracmech.2021.107638_b52 article-title: Multicomplex newmark-beta time integration method for sensitivity analysis in structural dynamics publication-title: AIAA J doi: 10.2514/1.J053282 – volume: 21 start-page: 21 issue: 1 year: 1988 ident: 10.1016/j.engfracmech.2021.107638_b17 article-title: Fracture energy and strain softening of concrete as determined by means of compact tension specimens publication-title: Mater Struct doi: 10.1007/BF02472525 – volume: 218 year: 2019 ident: 10.1016/j.engfracmech.2021.107638_b30 article-title: A stiffness derivative local hypercomplex-variable finite element method for computing the energy release rate publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2019.106581 – volume: 126 start-page: 190 year: 2014 ident: 10.1016/j.engfracmech.2021.107638_b25 article-title: A growing library of three-dimensional cohesive elements for use in ABAQUS publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2014.04.004 – volume: 57 start-page: 891 issue: 6 year: 2009 ident: 10.1016/j.engfracmech.2021.107638_b15 article-title: A unified potential-based cohesive model of mixed-mode fracture publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2008.10.003 – year: 1995 ident: 10.1016/j.engfracmech.2021.107638_b2 – volume: 42 start-page: 1397 issue: 9 year: 1994 ident: 10.1016/j.engfracmech.2021.107638_b37 article-title: Numerical simulations of fast crack growth in brittle solids publication-title: J Mech Phys Solids doi: 10.1016/0022-5096(94)90003-5 – volume: 38 start-page: 289 issue: 3 year: 1990 ident: 10.1016/j.engfracmech.2021.107638_b42 article-title: An analysis of tensile decohesion along an interface publication-title: J Mech Phys Solids doi: 10.1016/0022-5096(90)90001-K – volume: 110 start-page: 871 issue: 4 year: 1984 ident: 10.1016/j.engfracmech.2021.107638_b36 article-title: Fracture mechanics of bond in reinforced concrete publication-title: J Struct Eng doi: 10.1061/(ASCE)0733-9445(1984)110:4(871) – volume: 192 start-page: 328 year: 2018 ident: 10.1016/j.engfracmech.2021.107638_b32 article-title: A virtual crack extension method for thermoelastic fracture using a complex-variable finite element method publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2017.12.013 – volume: 23 start-page: 9 issue: 1 year: 2003 ident: 10.1016/j.engfracmech.2021.107638_b20 article-title: Rate-dependent crack growth in adhesives: I. Modeling approach publication-title: Int J Adhes Adhes doi: 10.1016/S0143-7496(02)00062-3 – volume: 40 start-page: 110 issue: 1 year: 1998 ident: 10.1016/j.engfracmech.2021.107638_b28 article-title: Using complex variables to estimate derivatives of real functions publication-title: SIAM Rev doi: 10.1137/S003614459631241X – volume: 8 start-page: 100 issue: 2 year: 1960 ident: 10.1016/j.engfracmech.2021.107638_b34 article-title: Yielding of steel sheets containing slits publication-title: J Mech Phys Solids doi: 10.1016/0022-5096(60)90013-2 – volume: 75 start-page: 4583 issue: 15 year: 2008 ident: 10.1016/j.engfracmech.2021.107638_b44 article-title: A new cohesive zone model for mixed mode interface fracture in bimaterials publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2008.04.013 – volume: 38 start-page: 16:1 issue: 3 year: 2012 ident: 10.1016/j.engfracmech.2021.107638_b53 article-title: Using multicomplex variables for automatic computation of high-order derivatives publication-title: ACM Trans Math Software doi: 10.1145/2168773.2168774 – volume: 23 start-page: 622 issue: 3 year: 1959 ident: 10.1016/j.engfracmech.2021.107638_b7 article-title: The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks publication-title: J Appl Math Mech doi: 10.1016/0021-8928(59)90157-1 – volume: 93 start-page: 239 year: 2012 ident: 10.1016/j.engfracmech.2021.107638_b26 article-title: Computational implementation of the PPR potential-based cohesive model in ABAQUS: educational perspective publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2012.02.007 – volume: 162 start-page: 95 year: 2016 ident: 10.1016/j.engfracmech.2021.107638_b29 article-title: A virtual crack extension method to compute energy release rates using a complex variable finite element method publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2016.04.002 – volume: 202 start-page: 242 year: 2018 ident: 10.1016/j.engfracmech.2021.107638_b31 article-title: A complex-variable virtual crack extension finite element method for elastic-plastic fracture mechanics publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2018.09.023 – volume: 51 start-page: 143 issue: 2 year: 2011 ident: 10.1016/j.engfracmech.2021.107638_b4 article-title: Direct extraction of cohesive fracture properties from digital image correlation: a hybrid inverse technique publication-title: Exp Mech doi: 10.1007/s11340-010-9342-6 – volume: 141 issue: 2 year: 2015 ident: 10.1016/j.engfracmech.2021.107638_b50 article-title: Finite-element sensitivity for plasticity using complex variable methods publication-title: J Eng Mech – volume: 44 start-page: 2958 issue: 12 year: 2006 ident: 10.1016/j.engfracmech.2021.107638_b51 article-title: Complex variable method for eigensolution sensitivity analysis publication-title: AIAA J doi: 10.2514/1.19225 – year: 2006 ident: 10.1016/j.engfracmech.2021.107638_b57 – volume: 33 start-page: 1192 issue: 4–6 year: 2018 ident: 10.1016/j.engfracmech.2021.107638_b13 article-title: Mixed-language automatic differentiation publication-title: Optim Methods Softw doi: 10.1080/10556788.2018.1435650 – volume: 6 start-page: 773 issue: 6 year: 1976 ident: 10.1016/j.engfracmech.2021.107638_b16 article-title: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements publication-title: Cem Concr Res doi: 10.1016/0008-8846(76)90007-7 – volume: 3 start-page: 18 issue: 3 year: 1996 ident: 10.1016/j.engfracmech.2021.107638_b8 article-title: Adifor 2.0: Automatic differentiation of fortran 77 programs publication-title: IEEE Comput Sci Eng doi: 10.1109/99.537089 |
| SSID | ssj0007680 |
| Score | 2.3822887 |
| Snippet | A new complex-variable version of a cohesive element is presented that provides highly accurate first order derivatives of the nodal displacements with respect... |
| SourceID | osti proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 107638 |
| SubjectTerms | Automatic differentiation Cohesion Complex Taylor series expansion Complex variables Complex-variable finite element method Finite element method Inverse determination of material parameters Parameter sensitivity Series expansion Source code Taylor series UEL User elements |
| Title | A complex-variable cohesive finite element subroutine to enable efficient determination of interfacial cohesive material parameters |
| URI | https://dx.doi.org/10.1016/j.engfracmech.2021.107638 https://www.proquest.com/docview/2523163899 https://www.osti.gov/biblio/1768671 |
| Volume | 247 |
| WOSCitedRecordID | wos000640448800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-7315 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007680 issn: 0013-7944 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqLkJwQDy1ZRdkJG5VVomTbGyJS7RaBAitOFSotyh2HNjVNqnSpupy5ffwH5mJnUeBReXAJapijet0vo5nJt-MCXkNThsLpRs6ysVsVca0k_JIOlkgVai8LMvyps_sx-jigs_n4tNo9KOthdlcR0XBt1ux_K-qhnugbCyd_Qd1d5PCDfgMSocrqB2ueyk-NjRxvXU2EAc3lVGq_Kobmnp-iS7mVBvO-HRVy6qEpRTN-RnalFHppqkEDmctVab1KrG3RJWnTZa9mxNc3uaxpthFfIEiq510f9_wcJpjSRa-sVhoLDgeEu3TBdjeb84sXaQ3ZV_73iWAyhqg2zAP4puylh1tqF4a9_dzWtV9UZvGEphluUvat7kN5uFrGlPdaRJu1jsYGnDPd8CEmByENjabR3DPt3LWqDPTx9Oi9-yPm4XJW1yd6OILPj8--gmuAkbA6vJ-h-x4ix4EZ6fYseCARaGAfeAgfn8-_9Bt_TDstkdm4Crvklc9ofCWr7nNIRqXYON_8xAat2f2kDyw8QqNDc4ekZEuHpP7A6U-Id9j-iviaIsOahBHLeJojzi6LqlBHO0QR3cQR8ucDhDXz9kijvaIe0pmb89nZ-8ce7aHowIWrR0tUsFFhpwsLVUEXrnIIPgPdJSd-q7mTLm-4IoFImJSCXxZHPq5AGOSSy61_4yMi7LQh4RKEYBXCnFFmgcB7F8iFzrQSng8DX03lRPC2983UbbvPR6_cp20BMerZKCaBFWTGNVMCOtEl6b5yz5Cb1olJtaLNd5pArjbR_wIFY-i2MVZId0NZC3yJuS4xUNibc4qYSEEaRh5iOd_FT4i9_o_2TEZr6tavyB31GZ9uapeWiz_BH3-2pQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+complex-variable+cohesive+finite+element+subroutine+to+enable+efficient+determination+of+interfacial+cohesive+material+parameters&rft.jtitle=Engineering+fracture+mechanics&rft.au=Ramirez-Tamayo%2C+Daniel&rft.au=Soulami%2C+Ayoub&rft.au=Gupta%2C+Varun&rft.au=Restrepo%2C+David&rft.date=2021-04-15&rft.pub=Elsevier&rft.issn=0013-7944&rft.eissn=1873-7315&rft.volume=247&rft.issue=C&rft_id=info:doi/10.1016%2Fj.engfracmech.2021.107638&rft.externalDocID=1768671 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7944&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7944&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7944&client=summon |