A complex-variable cohesive finite element subroutine to enable efficient determination of interfacial cohesive material parameters

A new complex-variable version of a cohesive element is presented that provides highly accurate first order derivatives of the nodal displacements with respect to the cohesive fracture parameters. These sensitivities are provided as a byproduct of the analysis using the complex Taylor series expansi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Engineering fracture mechanics Ročník 247; číslo C; s. 107638
Hlavní autori: Ramirez-Tamayo, Daniel, Soulami, Ayoub, Gupta, Varun, Restrepo, David, Montoya, Arturo, Millwater, Harry
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Elsevier Ltd 15.04.2021
Elsevier BV
Elsevier
Predmet:
ISSN:0013-7944, 1873-7315
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A new complex-variable version of a cohesive element is presented that provides highly accurate first order derivatives of the nodal displacements with respect to the cohesive fracture parameters. These sensitivities are provided as a byproduct of the analysis using the complex Taylor series expansion method. This information is useful for inversely determining the cohesive fracture parameters from experimental or synthetic data using a finite element-based approach. In particular, the PPR cohesive element (Park et al., 2009), was extended using complex variables as a user element for the well-known commercial finite element program, Abaqus. The source code for the element is provided as an educational resource. The advantage of having accurate first order derivatives on both accuracy and efficiency is demonstrated through numerical examples. •A complex-variable cohesive element for the computation of sensitivities is presented.•The sensitivities are obtained along with the traditional finite element results.•Highly accurate-step size independent derivatives are obtained using the CTSE method.•Source code for the Abaqus complex-valued UEL is provided for educational purposes.•The sensitivities are used to determine the interfacial properties of a joint.
AbstractList A new complex-variable version of a cohesive element is presented that provides highly accurate first order derivatives of the nodal displacements with respect to the cohesive fracture parameters. These sensitivities are provided as a byproduct of the analysis using the complex Taylor series expansion method. This information is useful for inversely determining the cohesive fracture parameters from experimental or synthetic data using a finite element-based approach. In particular, the PPR cohesive element (Park et al., 2009), was extended using complex variables as a user element for the well-known commercial finite element program, Abaqus. The source code for the element is provided as an educational resource. The advantage of having accurate first order derivatives on both accuracy and efficiency is demonstrated through numerical examples.
A new complex-variable version of a cohesive element is presented that provides highly accurate first order derivatives of the nodal displacements with respect to the cohesive fracture parameters. These sensitivities are provided as a byproduct of the analysis using the complex Taylor series expansion method. This information is useful for inversely determining the cohesive fracture parameters from experimental or synthetic data using a finite element-based approach. In particular, the PPR cohesive element (Park et al., 2009), was extended using complex variables as a user element for the well-known commercial finite element program, Abaqus. The source code for the element is provided as an educational resource. The advantage of having accurate first order derivatives on both accuracy and efficiency is demonstrated through numerical examples. •A complex-variable cohesive element for the computation of sensitivities is presented.•The sensitivities are obtained along with the traditional finite element results.•Highly accurate-step size independent derivatives are obtained using the CTSE method.•Source code for the Abaqus complex-valued UEL is provided for educational purposes.•The sensitivities are used to determine the interfacial properties of a joint.
A new complex-variable version of a cohesive element is presented that provides highly accurate first order derivatives of the nodal displacements with respect to the cohesive fracture parameters. These sensitivities are provided as a byproduct of the analysis using the complex Taylor series expansion method. This information is useful for inversely determining the cohesive fracture parameters from experimental or synthetic data using a finite element-based approach. In particular, the PPR cohesive element [1], was programmed as a user element for the well-known commercial finite element program, Abaqus. The source code for the element is provided as an educational resource. The application is demonstrated through the numerical examples.
ArticleNumber 107638
Author Millwater, Harry
Gupta, Varun
Restrepo, David
Montoya, Arturo
Ramirez-Tamayo, Daniel
Soulami, Ayoub
Author_xml – sequence: 1
  givenname: Daniel
  surname: Ramirez-Tamayo
  fullname: Ramirez-Tamayo, Daniel
  email: daniel.ramirez@my.utsa.edu
  organization: Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
– sequence: 2
  givenname: Ayoub
  orcidid: 0000-0002-1297-8300
  surname: Soulami
  fullname: Soulami, Ayoub
  email: ayoub.soulami@pnnl.gov
  organization: Pacific Northwest National Labs, Richland, WA, USA
– sequence: 3
  givenname: Varun
  surname: Gupta
  fullname: Gupta, Varun
  email: varun.gupta@exxonmobil.com
  organization: ExxonMobil Upstream Research Company, Spring, TX, USA
– sequence: 4
  givenname: David
  orcidid: 0000-0001-5462-5434
  surname: Restrepo
  fullname: Restrepo, David
  email: david.restrepo@utsa.edu
  organization: Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
– sequence: 5
  givenname: Arturo
  surname: Montoya
  fullname: Montoya, Arturo
  email: arturo.montoya@utsa.edu
  organization: Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
– sequence: 6
  givenname: Harry
  surname: Millwater
  fullname: Millwater, Harry
  email: harry.millwater@utsa.edu
  organization: Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
BackLink https://www.osti.gov/biblio/1768671$$D View this record in Osti.gov
BookMark eNqNUU1r3DAUFCWFbtL-Bzc9e6OvtaRTCUuSBgK95C5k-amrxZY2knZpz_njleNASk85ScybN7yZOUdnIQZA6CvBa4JJd7VfQ_jlkrET2N2aYkoqLjomP6AVkYK1gpHNGVphTOpfcf4Jnee8x7iSJF6h5-vGxukwwu_2ZJI3_QgV2EH2J2icD75AAyNMEEqTj32Kx-IDNCU2EF7I4Jy3fh4PUCBNPpjiY2iia3yogDPWm_FNczIVnJGDSWaaV_Jn9NGZMcOX1_cCPd7ePG5_tA8_7-631w-t5VSUFpRRUg2UiQ56KzrO1SCp5CCGjmGQ1GKmpKVcCdpbJTndbJhTfKCulz2wC3S5yMZcvM62WrM7G0MAWzSpcXSCVNK3hXRI8ekIueh9PKZQz9J0QxmpySpVWWph2RRzTuD0IfnJpD-aYD33ovf6n1703Iteeqm73__brZe8ZFaS8eO7FLaLAtSwTh7SbAaChcGn2csQ_TtU_gIOJLXo
CitedBy_id crossref_primary_10_1016_j_conbuildmat_2024_135694
crossref_primary_10_1007_s11071_024_09449_3
crossref_primary_10_1016_j_finel_2025_104419
crossref_primary_10_3390_app12052738
crossref_primary_10_1016_j_compstruc_2024_107467
crossref_primary_10_3390_app13127125
crossref_primary_10_1016_j_ijsolstr_2022_111545
Cites_doi 10.1016/S0045-7930(01)00044-5
10.1093/comjnl/7.4.308
10.1002/nme.1286
10.1038/s41592-019-0686-2
10.1016/j.engfracmech.2013.02.008
10.2514/1.J057231
10.1016/j.cemconres.2010.02.004
10.12732/ijam.v27i4.2
10.1016/j.mechrescom.2016.09.004
10.1016/j.ijpvp.2015.05.006
10.1016/S0013-7944(01)00087-X
10.1016/0008-8846(76)90007-7
10.1023/A:1010869706996
10.1145/2450153.2450158
10.1177/0021998303034505
10.1002/(SICI)1097-024X(199712)27:12<1427::AID-SPE138>3.0.CO;2-Q
10.1016/0020-7683(95)00255-3
10.1115/1.3173064
10.1016/j.ijadhadh.2013.02.006
10.1016/j.engfracmech.2006.03.006
10.1177/002199839803201401
10.1115/1.4023110
10.1016/j.finel.2011.05.003
10.1016/j.jmps.2013.08.020
10.2514/2.1270
10.2514/1.J053282
10.1007/BF02472525
10.1016/j.engfracmech.2019.106581
10.1016/j.engfracmech.2014.04.004
10.1016/j.jmps.2008.10.003
10.1016/0022-5096(94)90003-5
10.1016/0022-5096(90)90001-K
10.1061/(ASCE)0733-9445(1984)110:4(871)
10.1016/j.engfracmech.2017.12.013
10.1016/S0143-7496(02)00062-3
10.1137/S003614459631241X
10.1016/0022-5096(60)90013-2
10.1016/j.engfracmech.2008.04.013
10.1145/2168773.2168774
10.1016/0021-8928(59)90157-1
10.1016/j.engfracmech.2012.02.007
10.1016/j.engfracmech.2016.04.002
10.1016/j.engfracmech.2018.09.023
10.1007/s11340-010-9342-6
10.2514/1.19225
10.1080/10556788.2018.1435650
10.1109/99.537089
ContentType Journal Article
Copyright 2021 The Authors
Copyright Elsevier BV Apr 15, 2021
Copyright_xml – notice: 2021 The Authors
– notice: Copyright Elsevier BV Apr 15, 2021
CorporateAuthor Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
CorporateAuthor_xml – name: Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
DBID 6I.
AAFTH
AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
OTOTI
DOI 10.1016/j.engfracmech.2021.107638
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Materials Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7315
ExternalDocumentID 1768671
10_1016_j_engfracmech_2021_107638
S0013794421001028
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
VH1
WUQ
ZY4
~HD
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
6XO
AALMO
AAPBV
ABPIF
ABPTK
OTOTI
ID FETCH-LOGICAL-c427t-e9a989d2376ebc76449d8284e7d630e82c0398c24972bc9842553f94d2fb8be3
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000640448800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0013-7944
IngestDate Thu May 18 22:32:44 EDT 2023
Sun Nov 09 06:38:46 EST 2025
Sat Nov 29 07:32:17 EST 2025
Tue Nov 18 21:04:26 EST 2025
Fri Feb 23 02:43:30 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Complex Taylor series expansion
Complex-variable finite element method
Inverse determination of material parameters
UEL
Automatic differentiation
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c427t-e9a989d2376ebc76449d8284e7d630e82c0398c24972bc9842553f94d2fb8be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
AC05-76RL01830
PNNL-SA-156440
ORCID 0000-0001-5462-5434
0000-0002-1297-8300
0000000212978300
0000000154625434
OpenAccessLink https://dx.doi.org/10.1016/j.engfracmech.2021.107638
PQID 2523163899
PQPubID 2045482
ParticipantIDs osti_scitechconnect_1768671
proquest_journals_2523163899
crossref_primary_10_1016_j_engfracmech_2021_107638
crossref_citationtrail_10_1016_j_engfracmech_2021_107638
elsevier_sciencedirect_doi_10_1016_j_engfracmech_2021_107638
PublicationCentury 2000
PublicationDate 2021-04-15
PublicationDateYYYYMMDD 2021-04-15
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United Kingdom
PublicationTitle Engineering fracture mechanics
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
– name: Elsevier
References van Mier, van Vliet (b3) 2002; 69
Montoya, Ramirez-Tamayo, Millwater, Kirby (b31) 2018; 202
Hascoet, Pascual (b12) 2013; 39
Bischof, Khademi, Mauer, Carle (b8) 1996; 3
Ramirez Tamayo, Montoya, Millwater (b33) 2018; 56
Needleman (b42) 1990; 38
Nelder, Mead (b14) 1965; 7
Hillerborg, Modéer, Petersson (b35) 1976; 6
Camanho, Davila, de Moura (b19) 2003; 37
Mergheim, Kuhl, Steinmann (b38) 2005; 63
Phipps, Gay (b10) 2006
Garza, Millwater (b52) 2015; 53
Millwater, Shirinkam (b54) 2014; 27
Bischof, Roh, Mauer-Oats (b9) 1997; 27
Griewank, Walther (b11) 2008
Voorhees, Millwater, Bagley (b47) 2011; 47
Freed, Banks-Sills (b44) 2008; 75
Park, Paulino, Roesler (b22) 2010; 40
Valoroso, Sessa, Lepore, Cricrì (b5) 2013; 104
Xu, Siegmund, Ramani (b20) 2003; 23
Aguirre-Mesa, Ramirez-Tamayo, Garcia, Montoya, Millwater (b30) 2019; 218
Campilho, Banea, Neto, da Silva (b23) 2013; 44
Ingraffea, Gerstk, Gergely, Saouma (b36) 1984; 110
Shen, Paulino (b4) 2011; 51
Tamayo, Montoya, Millwater (b32) 2018; 192
Burg, Newman III (b49) 2003; 32
Yang, Thouless (b18) 2001; 110
Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, Burovski, Peterson, Weckesser, Bright (b56) 2020; 17
Park, Choi, Paulino (b40) 2016; 78
Park, Paulino (b26) 2012; 93
Gomez-Farias, Montoya, Millwater (b55) 2015; 132–133
(b27) 2015
Camacho, Ortiz (b39) 1996; 33
Fike, Alonso (b58) 2011
Park, Paulino (b45) 2013; 64
Squire, Trapp (b28) 1998; 40
Needleman (b41) 1987; 54
Wang, Apte (b51) 2006; 44
Dugdale (b34) 1960; 8
Pascual, Hascoët (b13) 2018; 33
Park (b46) 2009
Montoya, Fielder, Gomez-Farias, Millwater (b50) 2015; 141
Beltz, Rice (b43) 1991
Mi, Crisfield, Davies, Hellweg (b1) 1998; 32
Shah, Swartz, Ouyang (b2) 1995
Spring, Paulino (b25) 2014; 126
JMcGarry, Máirtín, Parry, Beltz (b24) 2014; 63
Xu, Needleman (b37) 1994; 42
Nocedal, Wright (b57) 2006
Millwater, Wagner, Baines, Montoya (b29) 2016; 162
Park, Paulino, Roesler (b15) 2009; 57
Anderson, Newman, Whitfield, Nielsen (b48) 2001; 39
Xie, Waas (b21) 2006; 73
Lantoine, Russell, Dargent (b53) 2012; 38
Taylor (b6) 2014
Barenblatt (b7) 1959; 23
(b16) 1976; 6
Wittmann, Rokugo, Brühwiler, Mihashi, Simonin (b17) 1988; 21
Montoya (10.1016/j.engfracmech.2021.107638_b50) 2015; 141
Bischof (10.1016/j.engfracmech.2021.107638_b9) 1997; 27
Park (10.1016/j.engfracmech.2021.107638_b45) 2013; 64
van Mier (10.1016/j.engfracmech.2021.107638_b3) 2002; 69
Griewank (10.1016/j.engfracmech.2021.107638_b11) 2008
Burg (10.1016/j.engfracmech.2021.107638_b49) 2003; 32
Ingraffea (10.1016/j.engfracmech.2021.107638_b36) 1984; 110
Gomez-Farias (10.1016/j.engfracmech.2021.107638_b55) 2015; 132–133
Shen (10.1016/j.engfracmech.2021.107638_b4) 2011; 51
Camacho (10.1016/j.engfracmech.2021.107638_b39) 1996; 33
Anderson (10.1016/j.engfracmech.2021.107638_b48) 2001; 39
JMcGarry (10.1016/j.engfracmech.2021.107638_b24) 2014; 63
Dugdale (10.1016/j.engfracmech.2021.107638_b34) 1960; 8
Xu (10.1016/j.engfracmech.2021.107638_b37) 1994; 42
Bischof (10.1016/j.engfracmech.2021.107638_b8) 1996; 3
Park (10.1016/j.engfracmech.2021.107638_b46) 2009
Nelder (10.1016/j.engfracmech.2021.107638_b14) 1965; 7
Freed (10.1016/j.engfracmech.2021.107638_b44) 2008; 75
Park (10.1016/j.engfracmech.2021.107638_b15) 2009; 57
Mi (10.1016/j.engfracmech.2021.107638_b1) 1998; 32
Park (10.1016/j.engfracmech.2021.107638_b26) 2012; 93
Virtanen (10.1016/j.engfracmech.2021.107638_b56) 2020; 17
Nocedal (10.1016/j.engfracmech.2021.107638_b57) 2006
Xu (10.1016/j.engfracmech.2021.107638_b20) 2003; 23
(10.1016/j.engfracmech.2021.107638_b16) 1976; 6
Phipps (10.1016/j.engfracmech.2021.107638_b10) 2006
Valoroso (10.1016/j.engfracmech.2021.107638_b5) 2013; 104
Shah (10.1016/j.engfracmech.2021.107638_b2) 1995
Camanho (10.1016/j.engfracmech.2021.107638_b19) 2003; 37
Wittmann (10.1016/j.engfracmech.2021.107638_b17) 1988; 21
Mergheim (10.1016/j.engfracmech.2021.107638_b38) 2005; 63
Xie (10.1016/j.engfracmech.2021.107638_b21) 2006; 73
Fike (10.1016/j.engfracmech.2021.107638_b58) 2011
Taylor (10.1016/j.engfracmech.2021.107638_b6) 2014
Millwater (10.1016/j.engfracmech.2021.107638_b54) 2014; 27
Needleman (10.1016/j.engfracmech.2021.107638_b42) 1990; 38
(10.1016/j.engfracmech.2021.107638_b27) 2015
Campilho (10.1016/j.engfracmech.2021.107638_b23) 2013; 44
Yang (10.1016/j.engfracmech.2021.107638_b18) 2001; 110
Ramirez Tamayo (10.1016/j.engfracmech.2021.107638_b33) 2018; 56
Lantoine (10.1016/j.engfracmech.2021.107638_b53) 2012; 38
Millwater (10.1016/j.engfracmech.2021.107638_b29) 2016; 162
Wang (10.1016/j.engfracmech.2021.107638_b51) 2006; 44
Needleman (10.1016/j.engfracmech.2021.107638_b41) 1987; 54
Aguirre-Mesa (10.1016/j.engfracmech.2021.107638_b30) 2019; 218
Hillerborg (10.1016/j.engfracmech.2021.107638_b35) 1976; 6
Voorhees (10.1016/j.engfracmech.2021.107638_b47) 2011; 47
Squire (10.1016/j.engfracmech.2021.107638_b28) 1998; 40
Tamayo (10.1016/j.engfracmech.2021.107638_b32) 2018; 192
Barenblatt (10.1016/j.engfracmech.2021.107638_b7) 1959; 23
Beltz (10.1016/j.engfracmech.2021.107638_b43) 1991
Pascual (10.1016/j.engfracmech.2021.107638_b13) 2018; 33
Park (10.1016/j.engfracmech.2021.107638_b40) 2016; 78
Hascoet (10.1016/j.engfracmech.2021.107638_b12) 2013; 39
Park (10.1016/j.engfracmech.2021.107638_b22) 2010; 40
Garza (10.1016/j.engfracmech.2021.107638_b52) 2015; 53
Spring (10.1016/j.engfracmech.2021.107638_b25) 2014; 126
Montoya (10.1016/j.engfracmech.2021.107638_b31) 2018; 202
References_xml – volume: 56
  start-page: 4632
  year: 2018
  end-page: 4637
  ident: b33
  article-title: Complex-variable finite-element method for mixed mode fracture and interface cracks
  publication-title: AIAA J
– year: 2015
  ident: b27
  article-title: Abaqus finite element software
– volume: 42
  start-page: 1397
  year: 1994
  end-page: 1434
  ident: b37
  article-title: Numerical simulations of fast crack growth in brittle solids
  publication-title: J Mech Phys Solids
– volume: 6
  start-page: 773
  year: 1976
  end-page: 781
  ident: b35
  article-title: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements
  publication-title: Cem Concr Res
– volume: 38
  start-page: 289
  year: 1990
  end-page: 324
  ident: b42
  article-title: An analysis of tensile decohesion along an interface
  publication-title: J Mech Phys Solids
– volume: 51
  start-page: 143
  year: 2011
  end-page: 163
  ident: b4
  article-title: Direct extraction of cohesive fracture properties from digital image correlation: a hybrid inverse technique
  publication-title: Exp Mech
– volume: 141
  year: 2015
  ident: b50
  article-title: Finite-element sensitivity for plasticity using complex variable methods
  publication-title: J Eng Mech
– year: 2006
  ident: b57
  article-title: Numerical optimization
– volume: 73
  start-page: 1783
  year: 2006
  end-page: 1796
  ident: b21
  article-title: Discrete cohesive zone model for mixed-mode fracture using finite element analysis
  publication-title: Eng Fract Mech
– start-page: 886
  year: 2011
  ident: b58
  article-title: The development of hyper-dual numbers for exact second-derivative calculations
  publication-title: 49th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition
– volume: 3
  start-page: 18
  year: 1996
  end-page: 32
  ident: b8
  article-title: Adifor 2.0: Automatic differentiation of fortran 77 programs
  publication-title: IEEE Comput Sci Eng
– year: 2006
  ident: b10
  article-title: Automatic differentation of C++ codes with sacado
– volume: 40
  start-page: 110
  year: 1998
  end-page: 112
  ident: b28
  article-title: Using complex variables to estimate derivatives of real functions
  publication-title: SIAM Rev
– volume: 6
  start-page: 773
  year: 1976
  end-page: 781
  ident: b16
  article-title: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements
  publication-title: Cem Concr Res
– volume: 132–133
  start-page: 27
  year: 2015
  end-page: 42
  ident: b55
  article-title: Complex finite element sensitivity method for creep analysis
  publication-title: Int J Press Vessel Pip
– volume: 39
  start-page: 56
  year: 2001
  end-page: 63
  ident: b48
  article-title: Sensitivity analysis for Navier-Stokes equations on unstructured meshes using complex variables
  publication-title: AIAA J
– volume: 27
  start-page: 311
  year: 2014
  end-page: 334
  ident: b54
  article-title: Multicomplex taylor series expansion for computing high order derivatives
  publication-title: Int J Appl Math
– volume: 53
  start-page: 1188
  year: 2015
  end-page: 1198
  ident: b52
  article-title: Multicomplex newmark-beta time integration method for sensitivity analysis in structural dynamics
  publication-title: AIAA J
– volume: 47
  start-page: 1146
  year: 2011
  end-page: 1156
  ident: b47
  article-title: Complex variable methods for shape sensitivity of finite element models
  publication-title: Finite Elem Anal Des
– volume: 27
  start-page: 1427
  year: 1997
  end-page: 1456
  ident: b9
  article-title: Adic: an extensible automatic differentiation tool for ansi-c
  publication-title: Softw - Pract Exp
– volume: 110
  start-page: 175
  year: 2001
  end-page: 187
  ident: b18
  article-title: Mixed-mode fracture analyses of plastically-deforming adhesive joints
  publication-title: Int J Fract
– volume: 104
  start-page: 56
  year: 2013
  end-page: 79
  ident: b5
  article-title: Identification of mode-i cohesive parameters for bonded interfaces based on DCB test
  publication-title: Eng Fract Mech
– start-page: 457
  year: 1991
  end-page: 480
  ident: b43
  article-title: Dislocation nucleation versus cleavage decohesion at crack tips
  publication-title: Model Deformation Cryst Solids
– volume: 162
  start-page: 95
  year: 2016
  end-page: 111
  ident: b29
  article-title: A virtual crack extension method to compute energy release rates using a complex variable finite element method
  publication-title: Eng Fract Mech
– volume: 33
  start-page: 2899
  year: 1996
  end-page: 2938
  ident: b39
  article-title: Computational modelling of impact damage in brittle materials
  publication-title: Int J Solids Struct
– volume: 44
  start-page: 48
  year: 2013
  end-page: 56
  ident: b23
  article-title: Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer
  publication-title: Int J Adhes Adhes
– volume: 21
  start-page: 21
  year: 1988
  end-page: 32
  ident: b17
  article-title: Fracture energy and strain softening of concrete as determined by means of compact tension specimens
  publication-title: Mater Struct
– year: 2009
  ident: b46
  article-title: Potential-based fracture mechanics using cohesive zone and virtual internal bond modeling
– volume: 23
  start-page: 9
  year: 2003
  end-page: 13
  ident: b20
  article-title: Rate-dependent crack growth in adhesives: I. Modeling approach
  publication-title: Int J Adhes Adhes
– volume: 75
  start-page: 4583
  year: 2008
  end-page: 4593
  ident: b44
  article-title: A new cohesive zone model for mixed mode interface fracture in bimaterials
  publication-title: Eng Fract Mech
– volume: 17
  start-page: 261
  year: 2020
  end-page: 272
  ident: b56
  article-title: Scipy 1.0: fundamental algorithms for scientific computing in python
  publication-title: Nat Methods
– volume: 93
  start-page: 239
  year: 2012
  end-page: 262
  ident: b26
  article-title: Computational implementation of the PPR potential-based cohesive model in ABAQUS: educational perspective
  publication-title: Eng Fract Mech
– volume: 69
  start-page: 235
  year: 2002
  end-page: 247
  ident: b3
  article-title: Uniaxial tension test for the determination of fracture parameters of concrete: state of the art
  publication-title: Eng Fract Mech
– volume: 126
  start-page: 190
  year: 2014
  end-page: 216
  ident: b25
  article-title: A growing library of three-dimensional cohesive elements for use in ABAQUS
  publication-title: Eng Fract Mech
– volume: 110
  start-page: 871
  year: 1984
  end-page: 890
  ident: b36
  article-title: Fracture mechanics of bond in reinforced concrete
  publication-title: J Struct Eng
– volume: 39
  start-page: 20
  year: 2013
  ident: b12
  article-title: The tapenade automatic differentiation tool: principles, model, and specification
  publication-title: ACM Trans Math Softw (TOMS)
– volume: 33
  start-page: 1192
  year: 2018
  end-page: 1206
  ident: b13
  article-title: Mixed-language automatic differentiation
  publication-title: Optim Methods Softw
– volume: 78
  start-page: 71
  year: 2016
  end-page: 78
  ident: b40
  article-title: Assessment of cohesive traction-separation relationships in ABAQUS: A comparative study
  publication-title: Mech Res Commun
– volume: 63
  start-page: 276
  year: 2005
  end-page: 289
  ident: b38
  article-title: A finite element method for the computational modelling of cohesive cracks
  publication-title: Internat J Numer Methods Engrg
– volume: 8
  start-page: 100
  year: 1960
  end-page: 104
  ident: b34
  article-title: Yielding of steel sheets containing slits
  publication-title: J Mech Phys Solids
– volume: 44
  start-page: 2958
  year: 2006
  end-page: 2961
  ident: b51
  article-title: Complex variable method for eigensolution sensitivity analysis
  publication-title: AIAA J
– volume: 202
  start-page: 242
  year: 2018
  end-page: 258
  ident: b31
  article-title: A complex-variable virtual crack extension finite element method for elastic-plastic fracture mechanics
  publication-title: Eng Fract Mech
– year: 2014
  ident: b6
  article-title: FEAP-A finite element analysis program
– volume: 54
  start-page: 525
  year: 1987
  end-page: 531
  ident: b41
  article-title: A continuum model for void nucleation by inclusion debonding
  publication-title: ASME J Appl Mech
– year: 1995
  ident: b2
  article-title: Fracture mechanics of concrete: applications of fracture mechanics to concrete, rock and other quasi-brittle materials
– volume: 38
  start-page: 16:1
  year: 2012
  end-page: 16:21
  ident: b53
  article-title: Using multicomplex variables for automatic computation of high-order derivatives
  publication-title: ACM Trans Math Software
– volume: 192
  start-page: 328
  year: 2018
  end-page: 342
  ident: b32
  article-title: A virtual crack extension method for thermoelastic fracture using a complex-variable finite element method
  publication-title: Eng Fract Mech
– volume: 218
  year: 2019
  ident: b30
  article-title: A stiffness derivative local hypercomplex-variable finite element method for computing the energy release rate
  publication-title: Eng Fract Mech
– volume: 64
  year: 2013
  ident: b45
  article-title: Cohesive zone models: A critical review of traction-separation relationships across fracture surfaces
  publication-title: Appl Mech Rev
– volume: 63
  start-page: 336
  year: 2014
  end-page: 362
  ident: b24
  article-title: Potential-based and non-potential-based cohesive zone formulations under mixed-mode separation and over-closure. Part I: Theoretical analysis
  publication-title: J Mech Phys Solids
– volume: 57
  start-page: 891
  year: 2009
  end-page: 908
  ident: b15
  article-title: A unified potential-based cohesive model of mixed-mode fracture
  publication-title: J Mech Phys Solids
– volume: 32
  start-page: 373
  year: 2003
  end-page: 383
  ident: b49
  article-title: Computationally efficient, numerically exact design space derivatives via the complex taylor’s series expansion method
  publication-title: Comput & Fluids
– volume: 23
  start-page: 622
  year: 1959
  end-page: 636
  ident: b7
  article-title: The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks
  publication-title: J Appl Math Mech
– year: 2008
  ident: b11
  article-title: Evaluating derivatives: principles and techniques of algorithmic differentiation, Vol. 105
– volume: 40
  start-page: 956
  year: 2010
  end-page: 965
  ident: b22
  article-title: Cohesive fracture model for functionally graded fiber reinforced concrete
  publication-title: Cem Concr Res
– volume: 32
  start-page: 1246
  year: 1998
  end-page: 1272
  ident: b1
  article-title: Progressive delamination using interface elements
  publication-title: J Compos Mater
– volume: 37
  start-page: 1415
  year: 2003
  end-page: 1438
  ident: b19
  article-title: Numerical simulation of mixed-mode progressive delamination in composite materials
  publication-title: J Compos Mater
– volume: 7
  start-page: 308
  year: 1965
  end-page: 313
  ident: b14
  article-title: A simplex method for function minimization
  publication-title: Comput J
– volume: 32
  start-page: 373
  issue: 3
  year: 2003
  ident: 10.1016/j.engfracmech.2021.107638_b49
  article-title: Computationally efficient, numerically exact design space derivatives via the complex taylor’s series expansion method
  publication-title: Comput & Fluids
  doi: 10.1016/S0045-7930(01)00044-5
– volume: 7
  start-page: 308
  issue: 4
  year: 1965
  ident: 10.1016/j.engfracmech.2021.107638_b14
  article-title: A simplex method for function minimization
  publication-title: Comput J
  doi: 10.1093/comjnl/7.4.308
– volume: 63
  start-page: 276
  issue: 2
  year: 2005
  ident: 10.1016/j.engfracmech.2021.107638_b38
  article-title: A finite element method for the computational modelling of cohesive cracks
  publication-title: Internat J Numer Methods Engrg
  doi: 10.1002/nme.1286
– volume: 17
  start-page: 261
  issue: 3
  year: 2020
  ident: 10.1016/j.engfracmech.2021.107638_b56
  article-title: Scipy 1.0: fundamental algorithms for scientific computing in python
  publication-title: Nat Methods
  doi: 10.1038/s41592-019-0686-2
– volume: 104
  start-page: 56
  year: 2013
  ident: 10.1016/j.engfracmech.2021.107638_b5
  article-title: Identification of mode-i cohesive parameters for bonded interfaces based on DCB test
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2013.02.008
– volume: 56
  start-page: 4632
  issue: 11
  year: 2018
  ident: 10.1016/j.engfracmech.2021.107638_b33
  article-title: Complex-variable finite-element method for mixed mode fracture and interface cracks
  publication-title: AIAA J
  doi: 10.2514/1.J057231
– year: 2015
  ident: 10.1016/j.engfracmech.2021.107638_b27
– volume: 40
  start-page: 956
  issue: 6
  year: 2010
  ident: 10.1016/j.engfracmech.2021.107638_b22
  article-title: Cohesive fracture model for functionally graded fiber reinforced concrete
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2010.02.004
– volume: 27
  start-page: 311
  issue: 4
  year: 2014
  ident: 10.1016/j.engfracmech.2021.107638_b54
  article-title: Multicomplex taylor series expansion for computing high order derivatives
  publication-title: Int J Appl Math
  doi: 10.12732/ijam.v27i4.2
– volume: 78
  start-page: 71
  year: 2016
  ident: 10.1016/j.engfracmech.2021.107638_b40
  article-title: Assessment of cohesive traction-separation relationships in ABAQUS: A comparative study
  publication-title: Mech Res Commun
  doi: 10.1016/j.mechrescom.2016.09.004
– volume: 132–133
  start-page: 27
  year: 2015
  ident: 10.1016/j.engfracmech.2021.107638_b55
  article-title: Complex finite element sensitivity method for creep analysis
  publication-title: Int J Press Vessel Pip
  doi: 10.1016/j.ijpvp.2015.05.006
– year: 2014
  ident: 10.1016/j.engfracmech.2021.107638_b6
– volume: 69
  start-page: 235
  issue: 2
  year: 2002
  ident: 10.1016/j.engfracmech.2021.107638_b3
  article-title: Uniaxial tension test for the determination of fracture parameters of concrete: state of the art
  publication-title: Eng Fract Mech
  doi: 10.1016/S0013-7944(01)00087-X
– volume: 6
  start-page: 773
  issue: 6
  year: 1976
  ident: 10.1016/j.engfracmech.2021.107638_b35
  article-title: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements
  publication-title: Cem Concr Res
  doi: 10.1016/0008-8846(76)90007-7
– start-page: 886
  year: 2011
  ident: 10.1016/j.engfracmech.2021.107638_b58
  article-title: The development of hyper-dual numbers for exact second-derivative calculations
– volume: 110
  start-page: 175
  issue: 2
  year: 2001
  ident: 10.1016/j.engfracmech.2021.107638_b18
  article-title: Mixed-mode fracture analyses of plastically-deforming adhesive joints
  publication-title: Int J Fract
  doi: 10.1023/A:1010869706996
– volume: 39
  start-page: 20
  issue: 3
  year: 2013
  ident: 10.1016/j.engfracmech.2021.107638_b12
  article-title: The tapenade automatic differentiation tool: principles, model, and specification
  publication-title: ACM Trans Math Softw (TOMS)
  doi: 10.1145/2450153.2450158
– year: 2009
  ident: 10.1016/j.engfracmech.2021.107638_b46
– volume: 37
  start-page: 1415
  issue: 16
  year: 2003
  ident: 10.1016/j.engfracmech.2021.107638_b19
  article-title: Numerical simulation of mixed-mode progressive delamination in composite materials
  publication-title: J Compos Mater
  doi: 10.1177/0021998303034505
– volume: 27
  start-page: 1427
  issue: 12
  year: 1997
  ident: 10.1016/j.engfracmech.2021.107638_b9
  article-title: Adic: an extensible automatic differentiation tool for ansi-c
  publication-title: Softw - Pract Exp
  doi: 10.1002/(SICI)1097-024X(199712)27:12<1427::AID-SPE138>3.0.CO;2-Q
– volume: 33
  start-page: 2899
  issue: 20
  year: 1996
  ident: 10.1016/j.engfracmech.2021.107638_b39
  article-title: Computational modelling of impact damage in brittle materials
  publication-title: Int J Solids Struct
  doi: 10.1016/0020-7683(95)00255-3
– volume: 54
  start-page: 525
  issue: 3
  year: 1987
  ident: 10.1016/j.engfracmech.2021.107638_b41
  article-title: A continuum model for void nucleation by inclusion debonding
  publication-title: ASME J Appl Mech
  doi: 10.1115/1.3173064
– volume: 44
  start-page: 48
  year: 2013
  ident: 10.1016/j.engfracmech.2021.107638_b23
  article-title: Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer
  publication-title: Int J Adhes Adhes
  doi: 10.1016/j.ijadhadh.2013.02.006
– year: 2006
  ident: 10.1016/j.engfracmech.2021.107638_b10
– volume: 73
  start-page: 1783
  issue: 13
  year: 2006
  ident: 10.1016/j.engfracmech.2021.107638_b21
  article-title: Discrete cohesive zone model for mixed-mode fracture using finite element analysis
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2006.03.006
– volume: 32
  start-page: 1246
  issue: 14
  year: 1998
  ident: 10.1016/j.engfracmech.2021.107638_b1
  article-title: Progressive delamination using interface elements
  publication-title: J Compos Mater
  doi: 10.1177/002199839803201401
– volume: 64
  issue: 6
  year: 2013
  ident: 10.1016/j.engfracmech.2021.107638_b45
  article-title: Cohesive zone models: A critical review of traction-separation relationships across fracture surfaces
  publication-title: Appl Mech Rev
  doi: 10.1115/1.4023110
– volume: 47
  start-page: 1146
  issue: 10
  year: 2011
  ident: 10.1016/j.engfracmech.2021.107638_b47
  article-title: Complex variable methods for shape sensitivity of finite element models
  publication-title: Finite Elem Anal Des
  doi: 10.1016/j.finel.2011.05.003
– year: 2008
  ident: 10.1016/j.engfracmech.2021.107638_b11
– volume: 63
  start-page: 336
  year: 2014
  ident: 10.1016/j.engfracmech.2021.107638_b24
  article-title: Potential-based and non-potential-based cohesive zone formulations under mixed-mode separation and over-closure. Part I: Theoretical analysis
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2013.08.020
– volume: 39
  start-page: 56
  issue: 1
  year: 2001
  ident: 10.1016/j.engfracmech.2021.107638_b48
  article-title: Sensitivity analysis for Navier-Stokes equations on unstructured meshes using complex variables
  publication-title: AIAA J
  doi: 10.2514/2.1270
– start-page: 457
  year: 1991
  ident: 10.1016/j.engfracmech.2021.107638_b43
  article-title: Dislocation nucleation versus cleavage decohesion at crack tips
  publication-title: Model Deformation Cryst Solids
– volume: 53
  start-page: 1188
  issue: 5
  year: 2015
  ident: 10.1016/j.engfracmech.2021.107638_b52
  article-title: Multicomplex newmark-beta time integration method for sensitivity analysis in structural dynamics
  publication-title: AIAA J
  doi: 10.2514/1.J053282
– volume: 21
  start-page: 21
  issue: 1
  year: 1988
  ident: 10.1016/j.engfracmech.2021.107638_b17
  article-title: Fracture energy and strain softening of concrete as determined by means of compact tension specimens
  publication-title: Mater Struct
  doi: 10.1007/BF02472525
– volume: 218
  year: 2019
  ident: 10.1016/j.engfracmech.2021.107638_b30
  article-title: A stiffness derivative local hypercomplex-variable finite element method for computing the energy release rate
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2019.106581
– volume: 126
  start-page: 190
  year: 2014
  ident: 10.1016/j.engfracmech.2021.107638_b25
  article-title: A growing library of three-dimensional cohesive elements for use in ABAQUS
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2014.04.004
– volume: 57
  start-page: 891
  issue: 6
  year: 2009
  ident: 10.1016/j.engfracmech.2021.107638_b15
  article-title: A unified potential-based cohesive model of mixed-mode fracture
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2008.10.003
– year: 1995
  ident: 10.1016/j.engfracmech.2021.107638_b2
– volume: 42
  start-page: 1397
  issue: 9
  year: 1994
  ident: 10.1016/j.engfracmech.2021.107638_b37
  article-title: Numerical simulations of fast crack growth in brittle solids
  publication-title: J Mech Phys Solids
  doi: 10.1016/0022-5096(94)90003-5
– volume: 38
  start-page: 289
  issue: 3
  year: 1990
  ident: 10.1016/j.engfracmech.2021.107638_b42
  article-title: An analysis of tensile decohesion along an interface
  publication-title: J Mech Phys Solids
  doi: 10.1016/0022-5096(90)90001-K
– volume: 110
  start-page: 871
  issue: 4
  year: 1984
  ident: 10.1016/j.engfracmech.2021.107638_b36
  article-title: Fracture mechanics of bond in reinforced concrete
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(1984)110:4(871)
– volume: 192
  start-page: 328
  year: 2018
  ident: 10.1016/j.engfracmech.2021.107638_b32
  article-title: A virtual crack extension method for thermoelastic fracture using a complex-variable finite element method
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2017.12.013
– volume: 23
  start-page: 9
  issue: 1
  year: 2003
  ident: 10.1016/j.engfracmech.2021.107638_b20
  article-title: Rate-dependent crack growth in adhesives: I. Modeling approach
  publication-title: Int J Adhes Adhes
  doi: 10.1016/S0143-7496(02)00062-3
– volume: 40
  start-page: 110
  issue: 1
  year: 1998
  ident: 10.1016/j.engfracmech.2021.107638_b28
  article-title: Using complex variables to estimate derivatives of real functions
  publication-title: SIAM Rev
  doi: 10.1137/S003614459631241X
– volume: 8
  start-page: 100
  issue: 2
  year: 1960
  ident: 10.1016/j.engfracmech.2021.107638_b34
  article-title: Yielding of steel sheets containing slits
  publication-title: J Mech Phys Solids
  doi: 10.1016/0022-5096(60)90013-2
– volume: 75
  start-page: 4583
  issue: 15
  year: 2008
  ident: 10.1016/j.engfracmech.2021.107638_b44
  article-title: A new cohesive zone model for mixed mode interface fracture in bimaterials
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2008.04.013
– volume: 38
  start-page: 16:1
  issue: 3
  year: 2012
  ident: 10.1016/j.engfracmech.2021.107638_b53
  article-title: Using multicomplex variables for automatic computation of high-order derivatives
  publication-title: ACM Trans Math Software
  doi: 10.1145/2168773.2168774
– volume: 23
  start-page: 622
  issue: 3
  year: 1959
  ident: 10.1016/j.engfracmech.2021.107638_b7
  article-title: The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks
  publication-title: J Appl Math Mech
  doi: 10.1016/0021-8928(59)90157-1
– volume: 93
  start-page: 239
  year: 2012
  ident: 10.1016/j.engfracmech.2021.107638_b26
  article-title: Computational implementation of the PPR potential-based cohesive model in ABAQUS: educational perspective
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2012.02.007
– volume: 162
  start-page: 95
  year: 2016
  ident: 10.1016/j.engfracmech.2021.107638_b29
  article-title: A virtual crack extension method to compute energy release rates using a complex variable finite element method
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2016.04.002
– volume: 202
  start-page: 242
  year: 2018
  ident: 10.1016/j.engfracmech.2021.107638_b31
  article-title: A complex-variable virtual crack extension finite element method for elastic-plastic fracture mechanics
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2018.09.023
– volume: 51
  start-page: 143
  issue: 2
  year: 2011
  ident: 10.1016/j.engfracmech.2021.107638_b4
  article-title: Direct extraction of cohesive fracture properties from digital image correlation: a hybrid inverse technique
  publication-title: Exp Mech
  doi: 10.1007/s11340-010-9342-6
– volume: 141
  issue: 2
  year: 2015
  ident: 10.1016/j.engfracmech.2021.107638_b50
  article-title: Finite-element sensitivity for plasticity using complex variable methods
  publication-title: J Eng Mech
– volume: 44
  start-page: 2958
  issue: 12
  year: 2006
  ident: 10.1016/j.engfracmech.2021.107638_b51
  article-title: Complex variable method for eigensolution sensitivity analysis
  publication-title: AIAA J
  doi: 10.2514/1.19225
– year: 2006
  ident: 10.1016/j.engfracmech.2021.107638_b57
– volume: 33
  start-page: 1192
  issue: 4–6
  year: 2018
  ident: 10.1016/j.engfracmech.2021.107638_b13
  article-title: Mixed-language automatic differentiation
  publication-title: Optim Methods Softw
  doi: 10.1080/10556788.2018.1435650
– volume: 6
  start-page: 773
  issue: 6
  year: 1976
  ident: 10.1016/j.engfracmech.2021.107638_b16
  article-title: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements
  publication-title: Cem Concr Res
  doi: 10.1016/0008-8846(76)90007-7
– volume: 3
  start-page: 18
  issue: 3
  year: 1996
  ident: 10.1016/j.engfracmech.2021.107638_b8
  article-title: Adifor 2.0: Automatic differentiation of fortran 77 programs
  publication-title: IEEE Comput Sci Eng
  doi: 10.1109/99.537089
SSID ssj0007680
Score 2.3822887
Snippet A new complex-variable version of a cohesive element is presented that provides highly accurate first order derivatives of the nodal displacements with respect...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107638
SubjectTerms Automatic differentiation
Cohesion
Complex Taylor series expansion
Complex variables
Complex-variable finite element method
Finite element method
Inverse determination of material parameters
Parameter sensitivity
Series expansion
Source code
Taylor series
UEL
User elements
Title A complex-variable cohesive finite element subroutine to enable efficient determination of interfacial cohesive material parameters
URI https://dx.doi.org/10.1016/j.engfracmech.2021.107638
https://www.proquest.com/docview/2523163899
https://www.osti.gov/biblio/1768671
Volume 247
WOSCitedRecordID wos000640448800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7315
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007680
  issn: 0013-7944
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqLkJwQDy1ZRdkJG5VVomTbGyJS7RaBAitOFSotyh2HNjVNqnSpupy5ffwH5mJnUeBReXAJapijet0vo5nJt-MCXkNThsLpRs6ysVsVca0k_JIOlkgVai8LMvyps_sx-jigs_n4tNo9KOthdlcR0XBt1ux_K-qhnugbCyd_Qd1d5PCDfgMSocrqB2ueyk-NjRxvXU2EAc3lVGq_Kobmnp-iS7mVBvO-HRVy6qEpRTN-RnalFHppqkEDmctVab1KrG3RJWnTZa9mxNc3uaxpthFfIEiq510f9_wcJpjSRa-sVhoLDgeEu3TBdjeb84sXaQ3ZV_73iWAyhqg2zAP4puylh1tqF4a9_dzWtV9UZvGEphluUvat7kN5uFrGlPdaRJu1jsYGnDPd8CEmByENjabR3DPt3LWqDPTx9Oi9-yPm4XJW1yd6OILPj8--gmuAkbA6vJ-h-x4ix4EZ6fYseCARaGAfeAgfn8-_9Bt_TDstkdm4Crvklc9ofCWr7nNIRqXYON_8xAat2f2kDyw8QqNDc4ekZEuHpP7A6U-Id9j-iviaIsOahBHLeJojzi6LqlBHO0QR3cQR8ucDhDXz9kijvaIe0pmb89nZ-8ce7aHowIWrR0tUsFFhpwsLVUEXrnIIPgPdJSd-q7mTLm-4IoFImJSCXxZHPq5AGOSSy61_4yMi7LQh4RKEYBXCnFFmgcB7F8iFzrQSng8DX03lRPC2983UbbvPR6_cp20BMerZKCaBFWTGNVMCOtEl6b5yz5Cb1olJtaLNd5pArjbR_wIFY-i2MVZId0NZC3yJuS4xUNibc4qYSEEaRh5iOd_FT4i9_o_2TEZr6tavyB31GZ9uapeWiz_BH3-2pQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+complex-variable+cohesive+finite+element+subroutine+to+enable+efficient+determination+of+interfacial+cohesive+material+parameters&rft.jtitle=Engineering+fracture+mechanics&rft.au=Ramirez-Tamayo%2C+Daniel&rft.au=Soulami%2C+Ayoub&rft.au=Gupta%2C+Varun&rft.au=Restrepo%2C+David&rft.date=2021-04-15&rft.pub=Elsevier&rft.issn=0013-7944&rft.eissn=1873-7315&rft.volume=247&rft.issue=C&rft_id=info:doi/10.1016%2Fj.engfracmech.2021.107638&rft.externalDocID=1768671
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7944&client=summon