RU-OLD: A Comprehensive Analysis of Offensive Language Detection in Roman Urdu Using Hybrid Machine Learning, Deep Learning, and Transformer Models
The detection of abusive language in Roman Urdu is important for secure digital interaction. This work investigates machine learning (ML), deep learning (DL), and transformer-based methods for detecting offensive language in Roman Urdu comments collected from YouTube news channels. Extracted feature...
Uloženo v:
| Vydáno v: | Algorithms Ročník 18; číslo 7; s. 396 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.07.2025
|
| Témata: | |
| ISSN: | 1999-4893, 1999-4893 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The detection of abusive language in Roman Urdu is important for secure digital interaction. This work investigates machine learning (ML), deep learning (DL), and transformer-based methods for detecting offensive language in Roman Urdu comments collected from YouTube news channels. Extracted features use TF-IDF and Count Vectorizer for unigrams, bigrams, and trigrams. Of all the ML models—Random Forest (RF), Logistic Regression (LR), Support Vector Machine (SVM), and Naïve Bayes (NB)—the best performance was achieved by the same SVM. DL models involved evaluating Bi-LSTM and CNN models, where the CNN model outperformed the others. Moreover, transformer variants such as LLaMA 2 and ModernBERT (MBERT) were instantiated and fine-tuned with LoRA (Low-Rank Adaptation) for better efficiency. LoRA has been tuned for large language models (LLMs), a family of advanced machine learning frameworks, based on the principle of making the process efficient with extremely low computational cost with better enhancement. According to the experimental results, LLaMA 2 with LoRA attained the highest F1-score of 96.58%, greatly exceeding the performance of other approaches. To elaborate, LoRA-optimized transformers perform well in capturing detailed subtleties of linguistic nuances, lending themselves well to Roman Urdu offensive language detection. The study compares the performance of conventional and contemporary NLP methods, highlighting the relevance of effective fine-tuning methods. Our findings pave the way for scalable and accurate automated moderation systems for online platforms supporting multiple languages. |
|---|---|
| AbstractList | The detection of abusive language in Roman Urdu is important for secure digital interaction. This work investigates machine learning (ML), deep learning (DL), and transformer-based methods for detecting offensive language in Roman Urdu comments collected from YouTube news channels. Extracted features use TF-IDF and Count Vectorizer for unigrams, bigrams, and trigrams. Of all the ML models—Random Forest (RF), Logistic Regression (LR), Support Vector Machine (SVM), and Naïve Bayes (NB)—the best performance was achieved by the same SVM. DL models involved evaluating Bi-LSTM and CNN models, where the CNN model outperformed the others. Moreover, transformer variants such as LLaMA 2 and ModernBERT (MBERT) were instantiated and fine-tuned with LoRA (Low-Rank Adaptation) for better efficiency. LoRA has been tuned for large language models (LLMs), a family of advanced machine learning frameworks, based on the principle of making the process efficient with extremely low computational cost with better enhancement. According to the experimental results, LLaMA 2 with LoRA attained the highest F1-score of 96.58%, greatly exceeding the performance of other approaches. To elaborate, LoRA-optimized transformers perform well in capturing detailed subtleties of linguistic nuances, lending themselves well to Roman Urdu offensive language detection. The study compares the performance of conventional and contemporary NLP methods, highlighting the relevance of effective fine-tuning methods. Our findings pave the way for scalable and accurate automated moderation systems for online platforms supporting multiple languages. |
| Audience | Academic |
| Author | Hussain, Nisar Qasim, Amna Zain, Muhammad Mehak, Gull Gelbukh, Alexander Ahmad, Fiaz Sidorov, Grigori |
| Author_xml | – sequence: 1 givenname: Muhammad surname: Zain fullname: Zain, Muhammad – sequence: 2 givenname: Nisar orcidid: 0000-0002-2877-8135 surname: Hussain fullname: Hussain, Nisar – sequence: 3 givenname: Amna orcidid: 0000-0002-7536-6969 surname: Qasim fullname: Qasim, Amna – sequence: 4 givenname: Gull surname: Mehak fullname: Mehak, Gull – sequence: 5 givenname: Fiaz surname: Ahmad fullname: Ahmad, Fiaz – sequence: 6 givenname: Grigori orcidid: 0000-0003-3901-3522 surname: Sidorov fullname: Sidorov, Grigori – sequence: 7 givenname: Alexander orcidid: 0000-0001-7845-9039 surname: Gelbukh fullname: Gelbukh, Alexander |
| BookMark | eNptkt9q2zAUxs3oYG23i72BYFeDpZUsy7Z2F9JtLaQESnMtjqUjV8GWMskp5Dn2wlOX0j-j6ELSx-_7xDlHJ8WRDx6L4jOjZ5xLeg6spQ3lsn5XHDMp5axqJT96cf5QnKS0obQWsmbHxZ-b9Wy1vPhO5mQRxm3EO_TJ3SOZexj2ySUSLFlZ-6guwfc76JFc4IR6csET58lNGMGTdTQ7sk7O9-Ry30VnyDXoO-ezCyH6rH_LNty-uII35DaCTzbEESO5DgaH9LF4b2FI-OlxPy3WP3_cLi5ny9Wvq8V8OdNV2UwzY8G0vLO2EkywpusaDpJZwyy3QudSGbWdFlg1vKsbyTvGsc6kNtBiVVJ-Wlwdck2AjdpGN0LcqwBO_RNC7BXEyekBFatMa8umyYllJYSEnJdbWFFZAhihc9aXQ9Y2ht87TJPahF3MPUyKl5xTzkQtn6kecqjzNkwR9OiSVvNWUFZSVpeZOnuDysvg6HSet3VZf2X4ejDoGFKKaJ-KYVQ9fAv19C0ye_4fq90ED5PMj7jhDcdfvu64qQ |
| CitedBy_id | crossref_primary_10_3390_ai6080194 crossref_primary_10_3390_ai6070157 |
| Cites_doi | 10.1007/978-3-031-47765-2_1 10.1007/s10579-023-09642-7 10.3390/info16020114 10.3390/ai6020033 10.1109/ACCESS.2025.3535862 10.3390/electronics12041048 10.3390/s23083909 10.1109/ACCESS.2024.3415350 10.1016/j.procs.2025.03.214 10.1109/ACCESS.2025.3532611 10.1145/3501398 10.1142/S2972335324500030 10.1007/s00521-023-08657-z 10.1007/s13369-023-08100-4 10.3390/a18060331 10.1145/3711710 10.3390/math11245004 10.3390/s24123875 10.1109/ACCESS.2023.3299021 10.1145/3232676 10.1007/s10964-016-0541-z 10.5815/ijmecs.2019.07.04 10.1186/s13677-024-00600-4 10.18653/v1/2021.woah-1.3 10.3390/info16020139 10.1038/s41598-023-38171-0 10.1109/ACCESS.2025.3534662 10.1007/s40747-022-00693-x |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U DOA |
| DOI | 10.3390/a18070396 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1999-4893 |
| ExternalDocumentID | oai_doaj_org_article_14d8f2770fb24559a7930654092aad5c A850120162 10_3390_a18070396 |
| GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS TR2 TUS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c427t-dfad83bff451517bb73a91fd1f3f5c89310fbc5e473b6793b13e6151cda8e4203 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001539557800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1999-4893 |
| IngestDate | Fri Oct 03 12:27:09 EDT 2025 Fri Aug 01 05:20:31 EDT 2025 Tue Nov 11 10:46:25 EST 2025 Tue Nov 04 18:09:46 EST 2025 Sat Nov 29 07:15:57 EST 2025 Tue Nov 18 22:42:23 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c427t-dfad83bff451517bb73a91fd1f3f5c89310fbc5e473b6793b13e6151cda8e4203 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7536-6969 0000-0002-2877-8135 0000-0001-7845-9039 0000-0003-3901-3522 |
| OpenAccessLink | https://doaj.org/article/14d8f2770fb24559a7930654092aad5c |
| PQID | 3233031569 |
| PQPubID | 2032439 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_14d8f2770fb24559a7930654092aad5c proquest_journals_3233031569 gale_infotracmisc_A850120162 gale_infotracacademiconefile_A850120162 crossref_primary_10_3390_a18070396 crossref_citationtrail_10_3390_a18070396 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-01 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Algorithms |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Husain (ref_25) 2022; 21 Moradpoor (ref_11) 2024; 19 ref_13 ref_35 ref_34 Meque (ref_20) 2023; 13 ref_32 ref_31 Sharma (ref_36) 2025; 24 Hussain (ref_10) 2018; 9 Aklouche (ref_14) 2024; 28 ref_17 Altinel (ref_16) 2024; 12 ref_37 Daouadi (ref_22) 2024; 28 Ullah (ref_30) 2025; 13 Aarthi (ref_9) 2023; 35 Saeed (ref_33) 2025; 13 Din (ref_28) 2025; 13 (ref_6) 2023; 9 ref_21 Asif (ref_19) 2024; 13 ref_1 Althobaiti (ref_15) 2022; 13 ref_2 Shaheen (ref_12) 2019; 10 Fisher (ref_23) 2016; 45 Ansari (ref_3) 2024; 49 Keya (ref_26) 2023; 11 Arshad (ref_18) 2023; 57 ref_27 Fortuna (ref_24) 2018; 51 ref_8 ref_5 Rajput (ref_29) 2025; 260 ref_4 ref_7 |
| References_xml | – ident: ref_32 doi: 10.1007/978-3-031-47765-2_1 – volume: 19 start-page: 469 year: 2024 ident: ref_11 article-title: Towards a cyberbullying detection approach: Fine-tuned contrastive self-supervised learning for data augmentation publication-title: Int. J. Data Sci. Anal. – volume: 57 start-page: 713 year: 2023 ident: ref_18 article-title: UHateD: Hate speech detection in Urdu language using transfer learning publication-title: Lang. Resour. Eval. doi: 10.1007/s10579-023-09642-7 – ident: ref_17 doi: 10.3390/info16020114 – ident: ref_8 doi: 10.3390/ai6020033 – volume: 13 start-page: 21635 year: 2025 ident: ref_33 article-title: Urdu Toxic Comment Classification with PURUTT Corpus Development publication-title: IEEE Access doi: 10.1109/ACCESS.2025.3535862 – ident: ref_13 doi: 10.3390/electronics12041048 – ident: ref_21 doi: 10.3390/s23083909 – volume: 12 start-page: 86252 year: 2024 ident: ref_16 article-title: SO-Hatred: A novel hybrid system for Turkish hate speech detection in social media with ensemble deep learning improved by BERT and clustered-graph networks publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3415350 – volume: 260 start-page: 382 year: 2025 ident: ref_29 article-title: Detection of Abusive Language for YouTube Comments in Urdu and Roman Urdu using CLSTM Model publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2025.03.214 – volume: 13 start-page: 21853 year: 2025 ident: ref_30 article-title: UEF-HOCUrdu: Unified Embeddings Ensemble Framework for Hate and Offensive Text Classification in Urdu publication-title: IEEE Access doi: 10.1109/ACCESS.2025.3532611 – volume: 21 start-page: 1 year: 2022 ident: ref_25 article-title: Investigating the effect of preprocessing Arabic text on offensive language and hate speech detection publication-title: Trans. Asian Low-Resour. Lang. Inf. Process. doi: 10.1145/3501398 – ident: ref_2 doi: 10.1142/S2972335324500030 – volume: 35 start-page: 18395 year: 2023 ident: ref_9 article-title: Hatdo: Hybrid Archimedes Tasmanian Devil Optimization CNN for classifying offensive comments and non-offensive comments publication-title: Neural Comput. Appl. doi: 10.1007/s00521-023-08657-z – ident: ref_37 – volume: 49 start-page: 3609 year: 2024 ident: ref_3 article-title: Data augmentation for improving explainability of hate speech detection publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-023-08100-4 – volume: 28 start-page: 1031 year: 2024 ident: ref_14 article-title: Offensive Language and Hate Speech Detection Using Transformers and Ensemble Learning Approaches publication-title: Comput. Sist. – ident: ref_35 – ident: ref_34 doi: 10.3390/a18060331 – volume: 24 start-page: 1 year: 2025 ident: ref_36 article-title: Hate Speech Detection Research in South Asian Languages: A Survey of Tasks, Datasets and Methods publication-title: ACM Trans. Asian Low-Resour. Lang. Inf. Process. doi: 10.1145/3711710 – ident: ref_7 doi: 10.3390/math11245004 – ident: ref_4 doi: 10.3390/s24123875 – volume: 11 start-page: 79697 year: 2023 ident: ref_26 article-title: G-BERT: An efficient method for identifying hate speech in Bengali texts on social media publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3299021 – volume: 51 start-page: 1 year: 2018 ident: ref_24 article-title: A survey on automatic detection of hate speech in text publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/3232676 – volume: 45 start-page: 1727 year: 2016 ident: ref_23 article-title: Peer cybervictimization among adolescents and the associated internalizing and externalizing problems: A meta-analysis publication-title: J. Youth Adolesc. doi: 10.1007/s10964-016-0541-z – volume: 10 start-page: 32 year: 2019 ident: ref_12 article-title: Sentiment analysis on mobile phone reviews using supervised learning techniques publication-title: Int. J. Mod. Educ. Comput. Sci. doi: 10.5815/ijmecs.2019.07.04 – volume: 13 start-page: 33 year: 2024 ident: ref_19 article-title: Graph convolution networks for social media trolls detection using deep feature extraction publication-title: J. Cloud Comput. doi: 10.1186/s13677-024-00600-4 – ident: ref_31 – ident: ref_27 – volume: 13 start-page: 972 year: 2022 ident: ref_15 article-title: BERT-based approach to Arabic hate speech and offensive language detection in Twitter: Exploiting emojis and sentiment analysis publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 9 start-page: 9 year: 2018 ident: ref_10 article-title: Development of a novel approach to search resources in IoT publication-title: Development – ident: ref_1 doi: 10.18653/v1/2021.woah-1.3 – ident: ref_5 doi: 10.3390/info16020139 – volume: 13 start-page: 11441 year: 2023 ident: ref_20 article-title: Machine Learning-Based Guilt Detection in Text publication-title: Sci. Rep. doi: 10.1038/s41598-023-38171-0 – volume: 13 start-page: 19755 year: 2025 ident: ref_28 article-title: An automatic approach for the identification of offensive language in Perso-Arabic Urdu Language: Dataset Creation and Evaluation publication-title: IEEE Access doi: 10.1109/ACCESS.2025.3534662 – volume: 28 start-page: 681 year: 2024 ident: ref_22 article-title: Comparing Pre-Trained Language Model for Arabic Hate Speech Detection publication-title: Comput. Sist. – volume: 9 start-page: 2893 year: 2023 ident: ref_6 article-title: Evaluating feature combination strategies for hate-speech detection in Spanish using linguistic features and transformers publication-title: Complex Intell. Syst. doi: 10.1007/s40747-022-00693-x |
| SSID | ssj0065961 |
| Score | 2.3559558 |
| Snippet | The detection of abusive language in Roman Urdu is important for secure digital interaction. This work investigates machine learning (ML), deep learning (DL),... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 396 |
| SubjectTerms | Artificial neural networks Classification Datasets Deep learning Electric transformers Hate speech large language model Large language models Machine learning Natural language processing Rankings Social networks support vector machine Support vector machines |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYK5cAFaAGxFCoLVWoPRMR2skm4oG0p4rCFCljELfITVoJkm10q9Xfwh5nxOluQSi8c44dkyzPjGeebbwj5JJVNBc9cpJhOMSUHVEoKRFlYhygMZz0257KfnZzkV1fFz_DgNg6wytYmekNtao1v5HuCQ-QtINooDka_IqwahX9XQwmNOfIWWRKYh-6dt5a4mxZdNmUTEhDa70mWo4AjP_-TO8hT9b9kkP0tc7T82vWtkKXgX9LeVCDekTe2ek-W29oNNKjyKnk4G0Sn_cN92qPY2dibKZKdtiwltHb01LnQ2g_PmvTQTjx4q6LDip7Vd7Kig8bcUw89oMd_MAGM_vAITZgV3l12YZodPfmUlaEXrcsMy8KKbLfjNTI4-n7x7TgKBRoinfBsEhknTS6Ucwl4RSxTKhOyYM4wJ1yqwRNisVM6tUkmVBcMgWLCogeljcxtwmOxTuarurIbhMZSMvAGY83BaUiEVi4WWuYFJtYqznSHfGmPrNSBvRyLaNyWEMXg6Zaz0-2QndnQ0ZSy41-DvuK5zwYgy7ZvqJvrMigthEUmdzzLYBc8gdBLwh4wGTcuuJQmhUV9Rqkp0RbAYrQMKQ2wJWTVKnt5irnJrMs7ZOvZSNBh_by7Faoy2JBx-VeiNv_f_YEscqxK7EHEW2R-0tzbbbKgf0-G4-ajV4lHJEUTvQ priority: 102 providerName: ProQuest |
| Title | RU-OLD: A Comprehensive Analysis of Offensive Language Detection in Roman Urdu Using Hybrid Machine Learning, Deep Learning, and Transformer Models |
| URI | https://www.proquest.com/docview/3233031569 https://doaj.org/article/14d8f2770fb24559a7930654092aad5c |
| Volume | 18 |
| WOSCitedRecordID | wos001539557800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: K7- dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: M7S dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: PIMPY dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQ4cAFKA8RaCMLIcGBVdf27nqXW0pTFZGmUWhQOVm211YrlU2VpEhc-BP9w8x4vVEqUXHhYmn9kLzjGXtsffMNIW-1cbng0ieG2RxDcsCktECUhfOIwvAuYHO-jeR4XJ6dVZONVF-ICWvpgVvB7bGsLj2XMvWGZ-D-alAoDIhMK651nVvcfVNZdZepdg8u8qpgLY-QgEv9nmYlqjYy82-cPoGk_66tOJwvh0_Io-gY0kE7oW1yzzVPyeMu6QKNNviM3Exnycno4CMdUGxcuPMWgk47ehE69_TE-1g7iu-R9MCtAuqqoRcNnc5_6IbOFvU1DZgBevQLI7focYBWwqj4YPIBhrmrjU_d1PS083VhWphK7XL5nMwOh6efjpKYWSGxGZerpPa6LoXxPgN3hkljpNAV8zXzwucWXBgG4ra5y6QwBQjcMOHQ9bG1Ll3GU_GCbDXzxr0kNNWagRuXWg6nfSas8amwuqwwItZwZnvkfSdxZSPtOGa_uFRw_cDFUevF6ZE3665XLdfG3zrt47KtOyA9dqgApVFRadS_lKZH3uGiKzRimIzVMRYBfgnpsNSgzDGomBW8R3Zu9QTjs7ebO7VR0fiXSnAhMHlGUb36H5N9TR5yTDocMMI7ZGu1uHa75IH9ubpYLvrk_v5wPJn2g_5D-UUmfQSwfsXy9xDaJ5-PJ9__AE6jCv4 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFLXGQIIXxqcoDLAQCB6IFttJnSAhVChTp2Ydmtppb8F2bJg0kpJ2oP0O_ge_kXudpGwS8LYHHhM7kZ0e3-vrnnsPIU-VtrHg0gWamRhTcmBJKYEsC-uQheGs5-YcZHIySQ4P0w9r5GeXC4O0ys4mekNdVAbPyLcEh8hbQLSRvpl_DVA1Cv9d7SQ0GliM7el3CNkWr3eG8Ps-43z7_fTdKGhVBQITcbkMCqeKRGjnInDlTGothUqZK5gTLjbgvlnotIltJIXuA3o1ExbdvilUYiMeCnjvJXI5EonEdTWWQWf5-3HaZ031IiHScEuxBBcU6gGc8XleGuBvDsB7te2N_-173CDX2_0zHTSAv0nWbHmLbHTaFLQ1VbfJj_1ZsJcNX9EBxcbafm6Y-rSrwkIrR_eca-9m7bEtHdqlJ6eV9Kik-9UXVdJZXZxQT62go1NMcKO7noEKT7XnSi_hMTs_c6nKgk67kACGhYpzx4s7ZHYhn-YuWS-r0t4jNFSKwW43NBw2RZEw2oXCqCTFxGHNmemRFx1EctNWZ0eRkOMcojREU75CU488WXWdNyVJ_tTpLeJs1QGriPsbVf0pb40ShH1F4riUMAseQWipYA6YbBymXKkihkE9R5TmaOtgMEa1KRswJawalg-SGHOvWZ_3yOa5nmCjzPnmDsR5ayMX-W8E3_9382NydTTdzfJsZzJ-QK5xVGD2hOlNsr6sT-xDcsV8Wx4t6kd-OVLy8aLx_gsCDXEp |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFD4aHUK7YfxqhQEWAsEFUWM7aRIkhAqlWrWuq6YVjavgODZMGklpO9Ceg7fh6TgnccomAXe74DKxE9nO5_PjfOccgCcqM6EUkfUyrkMKycEtpSSxLIwlFoY1FTfn_Sgaj-Ojo2SyBj-bWBiiVTYysRLUeanpjLwjBXreEr2NpGMdLWLSH7yeffWoghT9aW3KadQQ2TVn39F9W7wa9vFbPxVi8O7w7Y7nKgx4OhDR0sutymOZWRugWudRlkVSJdzm3EobalTl3LeZDk0QyayLSM64NGQC6FzFJhC-xPdegXU0yQPRgvXJcG_yodED3TDp8jqXkZSJ31E8pu1F1QHOacCqUMDf1EGl4wab__Pq3IDrzrJmvXor3IQ1U9yCzaZqBXNC7Db8OJh6-6P-S9Zj1Dg3n2sOP2vys7DSsn1r3d2RO9BlfbOsaGsFOy7YQflFFWw6z09ZRbpgO2cU-sb2Km4qPuVOnF7gY2Z27lIVOTtsnAUcFtWiO1ncgemlLM1daBVlYbaA-UpxtIN9LdBcCqTOrC-1ihMKKc4E12143sAl1S5vO5UPOUnRfyNkpStkteHxquusTlbyp05vCHOrDpRfvLpRzj-lTlyhQ5jHVkQRzkIE6HQqnAOFIfuJUCoPcVDPCLEpSUEcjFYumAOnRPnE0l4cUlQ274o2bF_oidJLX2xuAJ066blIf6P53r-bH8E1hHk6Go5378OGoNLMFZN6G1rL-al5AFf1t-XxYv7Q7U0GHy8b8L8Acpp7qg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RU-OLD%3A+A+Comprehensive+Analysis+of+Offensive+Language+Detection+in+Roman+Urdu+Using+Hybrid+Machine+Learning%2C+Deep+Learning%2C+and+Transformer+Models&rft.jtitle=Algorithms&rft.au=Zain%2C+Muhammad&rft.au=Hussain%2C+Nisar&rft.au=Qasim%2C+Amna&rft.au=Mehak%2C+Gull&rft.date=2025-07-01&rft.pub=MDPI+AG&rft.issn=1999-4893&rft.eissn=1999-4893&rft.volume=18&rft.issue=7&rft_id=info:doi/10.3390%2Fa18070396&rft.externalDocID=A850120162 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |