RU-OLD: A Comprehensive Analysis of Offensive Language Detection in Roman Urdu Using Hybrid Machine Learning, Deep Learning, and Transformer Models

The detection of abusive language in Roman Urdu is important for secure digital interaction. This work investigates machine learning (ML), deep learning (DL), and transformer-based methods for detecting offensive language in Roman Urdu comments collected from YouTube news channels. Extracted feature...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Algorithms Ročník 18; číslo 7; s. 396
Hlavní autoři: Zain, Muhammad, Hussain, Nisar, Qasim, Amna, Mehak, Gull, Ahmad, Fiaz, Sidorov, Grigori, Gelbukh, Alexander
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.07.2025
Témata:
ISSN:1999-4893, 1999-4893
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The detection of abusive language in Roman Urdu is important for secure digital interaction. This work investigates machine learning (ML), deep learning (DL), and transformer-based methods for detecting offensive language in Roman Urdu comments collected from YouTube news channels. Extracted features use TF-IDF and Count Vectorizer for unigrams, bigrams, and trigrams. Of all the ML models—Random Forest (RF), Logistic Regression (LR), Support Vector Machine (SVM), and Naïve Bayes (NB)—the best performance was achieved by the same SVM. DL models involved evaluating Bi-LSTM and CNN models, where the CNN model outperformed the others. Moreover, transformer variants such as LLaMA 2 and ModernBERT (MBERT) were instantiated and fine-tuned with LoRA (Low-Rank Adaptation) for better efficiency. LoRA has been tuned for large language models (LLMs), a family of advanced machine learning frameworks, based on the principle of making the process efficient with extremely low computational cost with better enhancement. According to the experimental results, LLaMA 2 with LoRA attained the highest F1-score of 96.58%, greatly exceeding the performance of other approaches. To elaborate, LoRA-optimized transformers perform well in capturing detailed subtleties of linguistic nuances, lending themselves well to Roman Urdu offensive language detection. The study compares the performance of conventional and contemporary NLP methods, highlighting the relevance of effective fine-tuning methods. Our findings pave the way for scalable and accurate automated moderation systems for online platforms supporting multiple languages.
AbstractList The detection of abusive language in Roman Urdu is important for secure digital interaction. This work investigates machine learning (ML), deep learning (DL), and transformer-based methods for detecting offensive language in Roman Urdu comments collected from YouTube news channels. Extracted features use TF-IDF and Count Vectorizer for unigrams, bigrams, and trigrams. Of all the ML models—Random Forest (RF), Logistic Regression (LR), Support Vector Machine (SVM), and Naïve Bayes (NB)—the best performance was achieved by the same SVM. DL models involved evaluating Bi-LSTM and CNN models, where the CNN model outperformed the others. Moreover, transformer variants such as LLaMA 2 and ModernBERT (MBERT) were instantiated and fine-tuned with LoRA (Low-Rank Adaptation) for better efficiency. LoRA has been tuned for large language models (LLMs), a family of advanced machine learning frameworks, based on the principle of making the process efficient with extremely low computational cost with better enhancement. According to the experimental results, LLaMA 2 with LoRA attained the highest F1-score of 96.58%, greatly exceeding the performance of other approaches. To elaborate, LoRA-optimized transformers perform well in capturing detailed subtleties of linguistic nuances, lending themselves well to Roman Urdu offensive language detection. The study compares the performance of conventional and contemporary NLP methods, highlighting the relevance of effective fine-tuning methods. Our findings pave the way for scalable and accurate automated moderation systems for online platforms supporting multiple languages.
Audience Academic
Author Hussain, Nisar
Qasim, Amna
Zain, Muhammad
Mehak, Gull
Gelbukh, Alexander
Ahmad, Fiaz
Sidorov, Grigori
Author_xml – sequence: 1
  givenname: Muhammad
  surname: Zain
  fullname: Zain, Muhammad
– sequence: 2
  givenname: Nisar
  orcidid: 0000-0002-2877-8135
  surname: Hussain
  fullname: Hussain, Nisar
– sequence: 3
  givenname: Amna
  orcidid: 0000-0002-7536-6969
  surname: Qasim
  fullname: Qasim, Amna
– sequence: 4
  givenname: Gull
  surname: Mehak
  fullname: Mehak, Gull
– sequence: 5
  givenname: Fiaz
  surname: Ahmad
  fullname: Ahmad, Fiaz
– sequence: 6
  givenname: Grigori
  orcidid: 0000-0003-3901-3522
  surname: Sidorov
  fullname: Sidorov, Grigori
– sequence: 7
  givenname: Alexander
  orcidid: 0000-0001-7845-9039
  surname: Gelbukh
  fullname: Gelbukh, Alexander
BookMark eNptkt9q2zAUxs3oYG23i72BYFeDpZUsy7Z2F9JtLaQESnMtjqUjV8GWMskp5Dn2wlOX0j-j6ELSx-_7xDlHJ8WRDx6L4jOjZ5xLeg6spQ3lsn5XHDMp5axqJT96cf5QnKS0obQWsmbHxZ-b9Wy1vPhO5mQRxm3EO_TJ3SOZexj2ySUSLFlZ-6guwfc76JFc4IR6csET58lNGMGTdTQ7sk7O9-Ry30VnyDXoO-ezCyH6rH_LNty-uII35DaCTzbEESO5DgaH9LF4b2FI-OlxPy3WP3_cLi5ny9Wvq8V8OdNV2UwzY8G0vLO2EkywpusaDpJZwyy3QudSGbWdFlg1vKsbyTvGsc6kNtBiVVJ-Wlwdck2AjdpGN0LcqwBO_RNC7BXEyekBFatMa8umyYllJYSEnJdbWFFZAhihc9aXQ9Y2ht87TJPahF3MPUyKl5xTzkQtn6kecqjzNkwR9OiSVvNWUFZSVpeZOnuDysvg6HSet3VZf2X4ejDoGFKKaJ-KYVQ9fAv19C0ye_4fq90ED5PMj7jhDcdfvu64qQ
CitedBy_id crossref_primary_10_3390_ai6080194
crossref_primary_10_3390_ai6070157
Cites_doi 10.1007/978-3-031-47765-2_1
10.1007/s10579-023-09642-7
10.3390/info16020114
10.3390/ai6020033
10.1109/ACCESS.2025.3535862
10.3390/electronics12041048
10.3390/s23083909
10.1109/ACCESS.2024.3415350
10.1016/j.procs.2025.03.214
10.1109/ACCESS.2025.3532611
10.1145/3501398
10.1142/S2972335324500030
10.1007/s00521-023-08657-z
10.1007/s13369-023-08100-4
10.3390/a18060331
10.1145/3711710
10.3390/math11245004
10.3390/s24123875
10.1109/ACCESS.2023.3299021
10.1145/3232676
10.1007/s10964-016-0541-z
10.5815/ijmecs.2019.07.04
10.1186/s13677-024-00600-4
10.18653/v1/2021.woah-1.3
10.3390/info16020139
10.1038/s41598-023-38171-0
10.1109/ACCESS.2025.3534662
10.1007/s40747-022-00693-x
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOA
DOI 10.3390/a18070396
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_14d8f2770fb24559a7930654092aad5c
A850120162
10_3390_a18070396
GroupedDBID 23M
2WC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
J9A
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
TR2
TUS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c427t-dfad83bff451517bb73a91fd1f3f5c89310fbc5e473b6793b13e6151cda8e4203
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001539557800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1999-4893
IngestDate Fri Oct 03 12:27:09 EDT 2025
Fri Aug 01 05:20:31 EDT 2025
Tue Nov 11 10:46:25 EST 2025
Tue Nov 04 18:09:46 EST 2025
Sat Nov 29 07:15:57 EST 2025
Tue Nov 18 22:42:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-dfad83bff451517bb73a91fd1f3f5c89310fbc5e473b6793b13e6151cda8e4203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7536-6969
0000-0002-2877-8135
0000-0001-7845-9039
0000-0003-3901-3522
OpenAccessLink https://doaj.org/article/14d8f2770fb24559a7930654092aad5c
PQID 3233031569
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_14d8f2770fb24559a7930654092aad5c
proquest_journals_3233031569
gale_infotracmisc_A850120162
gale_infotracacademiconefile_A850120162
crossref_primary_10_3390_a18070396
crossref_citationtrail_10_3390_a18070396
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Algorithms
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Husain (ref_25) 2022; 21
Moradpoor (ref_11) 2024; 19
ref_13
ref_35
ref_34
Meque (ref_20) 2023; 13
ref_32
ref_31
Sharma (ref_36) 2025; 24
Hussain (ref_10) 2018; 9
Aklouche (ref_14) 2024; 28
ref_17
Altinel (ref_16) 2024; 12
ref_37
Daouadi (ref_22) 2024; 28
Ullah (ref_30) 2025; 13
Aarthi (ref_9) 2023; 35
Saeed (ref_33) 2025; 13
Din (ref_28) 2025; 13
(ref_6) 2023; 9
ref_21
Asif (ref_19) 2024; 13
ref_1
Althobaiti (ref_15) 2022; 13
ref_2
Shaheen (ref_12) 2019; 10
Fisher (ref_23) 2016; 45
Ansari (ref_3) 2024; 49
Keya (ref_26) 2023; 11
Arshad (ref_18) 2023; 57
ref_27
Fortuna (ref_24) 2018; 51
ref_8
ref_5
Rajput (ref_29) 2025; 260
ref_4
ref_7
References_xml – ident: ref_32
  doi: 10.1007/978-3-031-47765-2_1
– volume: 19
  start-page: 469
  year: 2024
  ident: ref_11
  article-title: Towards a cyberbullying detection approach: Fine-tuned contrastive self-supervised learning for data augmentation
  publication-title: Int. J. Data Sci. Anal.
– volume: 57
  start-page: 713
  year: 2023
  ident: ref_18
  article-title: UHateD: Hate speech detection in Urdu language using transfer learning
  publication-title: Lang. Resour. Eval.
  doi: 10.1007/s10579-023-09642-7
– ident: ref_17
  doi: 10.3390/info16020114
– ident: ref_8
  doi: 10.3390/ai6020033
– volume: 13
  start-page: 21635
  year: 2025
  ident: ref_33
  article-title: Urdu Toxic Comment Classification with PURUTT Corpus Development
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2025.3535862
– ident: ref_13
  doi: 10.3390/electronics12041048
– ident: ref_21
  doi: 10.3390/s23083909
– volume: 12
  start-page: 86252
  year: 2024
  ident: ref_16
  article-title: SO-Hatred: A novel hybrid system for Turkish hate speech detection in social media with ensemble deep learning improved by BERT and clustered-graph networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3415350
– volume: 260
  start-page: 382
  year: 2025
  ident: ref_29
  article-title: Detection of Abusive Language for YouTube Comments in Urdu and Roman Urdu using CLSTM Model
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2025.03.214
– volume: 13
  start-page: 21853
  year: 2025
  ident: ref_30
  article-title: UEF-HOCUrdu: Unified Embeddings Ensemble Framework for Hate and Offensive Text Classification in Urdu
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2025.3532611
– volume: 21
  start-page: 1
  year: 2022
  ident: ref_25
  article-title: Investigating the effect of preprocessing Arabic text on offensive language and hate speech detection
  publication-title: Trans. Asian Low-Resour. Lang. Inf. Process.
  doi: 10.1145/3501398
– ident: ref_2
  doi: 10.1142/S2972335324500030
– volume: 35
  start-page: 18395
  year: 2023
  ident: ref_9
  article-title: Hatdo: Hybrid Archimedes Tasmanian Devil Optimization CNN for classifying offensive comments and non-offensive comments
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-023-08657-z
– ident: ref_37
– volume: 49
  start-page: 3609
  year: 2024
  ident: ref_3
  article-title: Data augmentation for improving explainability of hate speech detection
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-023-08100-4
– volume: 28
  start-page: 1031
  year: 2024
  ident: ref_14
  article-title: Offensive Language and Hate Speech Detection Using Transformers and Ensemble Learning Approaches
  publication-title: Comput. Sist.
– ident: ref_35
– ident: ref_34
  doi: 10.3390/a18060331
– volume: 24
  start-page: 1
  year: 2025
  ident: ref_36
  article-title: Hate Speech Detection Research in South Asian Languages: A Survey of Tasks, Datasets and Methods
  publication-title: ACM Trans. Asian Low-Resour. Lang. Inf. Process.
  doi: 10.1145/3711710
– ident: ref_7
  doi: 10.3390/math11245004
– ident: ref_4
  doi: 10.3390/s24123875
– volume: 11
  start-page: 79697
  year: 2023
  ident: ref_26
  article-title: G-BERT: An efficient method for identifying hate speech in Bengali texts on social media
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3299021
– volume: 51
  start-page: 1
  year: 2018
  ident: ref_24
  article-title: A survey on automatic detection of hate speech in text
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/3232676
– volume: 45
  start-page: 1727
  year: 2016
  ident: ref_23
  article-title: Peer cybervictimization among adolescents and the associated internalizing and externalizing problems: A meta-analysis
  publication-title: J. Youth Adolesc.
  doi: 10.1007/s10964-016-0541-z
– volume: 10
  start-page: 32
  year: 2019
  ident: ref_12
  article-title: Sentiment analysis on mobile phone reviews using supervised learning techniques
  publication-title: Int. J. Mod. Educ. Comput. Sci.
  doi: 10.5815/ijmecs.2019.07.04
– volume: 13
  start-page: 33
  year: 2024
  ident: ref_19
  article-title: Graph convolution networks for social media trolls detection using deep feature extraction
  publication-title: J. Cloud Comput.
  doi: 10.1186/s13677-024-00600-4
– ident: ref_31
– ident: ref_27
– volume: 13
  start-page: 972
  year: 2022
  ident: ref_15
  article-title: BERT-based approach to Arabic hate speech and offensive language detection in Twitter: Exploiting emojis and sentiment analysis
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 9
  start-page: 9
  year: 2018
  ident: ref_10
  article-title: Development of a novel approach to search resources in IoT
  publication-title: Development
– ident: ref_1
  doi: 10.18653/v1/2021.woah-1.3
– ident: ref_5
  doi: 10.3390/info16020139
– volume: 13
  start-page: 11441
  year: 2023
  ident: ref_20
  article-title: Machine Learning-Based Guilt Detection in Text
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-38171-0
– volume: 13
  start-page: 19755
  year: 2025
  ident: ref_28
  article-title: An automatic approach for the identification of offensive language in Perso-Arabic Urdu Language: Dataset Creation and Evaluation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2025.3534662
– volume: 28
  start-page: 681
  year: 2024
  ident: ref_22
  article-title: Comparing Pre-Trained Language Model for Arabic Hate Speech Detection
  publication-title: Comput. Sist.
– volume: 9
  start-page: 2893
  year: 2023
  ident: ref_6
  article-title: Evaluating feature combination strategies for hate-speech detection in Spanish using linguistic features and transformers
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-022-00693-x
SSID ssj0065961
Score 2.3559558
Snippet The detection of abusive language in Roman Urdu is important for secure digital interaction. This work investigates machine learning (ML), deep learning (DL),...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 396
SubjectTerms Artificial neural networks
Classification
Datasets
Deep learning
Electric transformers
Hate speech
large language model
Large language models
Machine learning
Natural language processing
Rankings
Social networks
support vector machine
Support vector machines
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcOBCeYqFgiyEBAesxnYSO1zQQql6KC0qXam3yM9SqSRLdovE7-APM-N1llYCLhxjjyVb8_CMM_MNIS-qytW2iIFpMJGs5JEzLWxktmisj6aQxpvUbEIdHOiTk-ZTfnBb5LTK0SYmQ-17h2_k21JA5C0h2mjezr8x7BqFf1dzC43r5AaiJPCUuvd5tMR11dR8hSYkIbTfNlyjgCM-_6U7KEH1_80gp1tmd_N_93eH3M7-JZ2uBOIuuRa6e2Rz7N1AsyrfJz-PZuxwf-cNnVKcHMKXVSY7HVFKaB_pYYx5dD8_a9KdsEzJWx096-hR_9V0dDb4C5pSD-jeDywAox9Thiasyu8ur2FZmF_6NJ2nx6PLDNvCjmzniwdktvvh-P0eyw0amCuFWjJgptfSxliCV8SVtUqahkfPo4yVA0-IF9G6KpRK2hoMgeUyoAflvNGhFIV8SDa6vguPCFVKxWhlLMGjKoPXOsAacA-dKF3tTJyQVyPLWpfRy7GJxnkLUQxyt11zd0Ker0nnK8iOPxG9Q76vCRBlOw30w2mblRbCIq-jUApOIUoIvQycAYtxi0YY4ys3IS9Ralq0BbAZZ3JJAxwJUbXaqa6wNpnXYkK2rlCCDrur06NQtdmGLNrfEvX439NPyC2BXYlTEvEW2VgOF-Epuem-L88Ww7OkEr8APYwVIA
  priority: 102
  providerName: ProQuest
Title RU-OLD: A Comprehensive Analysis of Offensive Language Detection in Roman Urdu Using Hybrid Machine Learning, Deep Learning, and Transformer Models
URI https://www.proquest.com/docview/3233031569
https://doaj.org/article/14d8f2770fb24559a7930654092aad5c
Volume 18
WOSCitedRecordID wos001539557800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: K7-
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: M7S
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEG4kevDiW1yNSyOCHhwy_ZjpHm8bsyFislnWLMTT0E8MxNmwuxG8-Cf8w1bN9CwbULx4aZh-QE1XdfXXTfVXhLwuClfaPIZMg4vMJIss09zGzOaV9dHkwnjTJptQk4k-P6-mW6m-MCasowfuJm6PSa8jVyqPlkuAvwYMCh9E5hU3xhcOvW-uqv4w1fngsqhK1vEICTjU7xmm0bSRmX9r92lJ-v_mitv95fABuZeAIR11Aj0kt0LziNzvky7QtAYfk1-zeXZ6fPCejig2LsPXLgSd9vQidBHpaYyp9jjdR9KDsG6jrhp60dDZ4ptp6Hzpr2kbM0CPfuDLLXrShlbCqHRh8g6GhautT9N4etZjXRALU6ldrp6Q-eH47MNRljIrZE5ytc5AC14LG6MEOMOUtUqYikXPooiFAwjDYLpdEaQStoQJt0wEhD7OGx0kz8VTstMsmvCMUKVUjFZECVBIBq91gDGA6xyXrnQmDsjbfsZrl2jHMfvFZQ3HD1ROvVHOgLzadL3quDb-1Gkf1bbpgPTYbQUYTZ2Mpv6X0QzIG1R6jYsYhHEmvUWAX0I6rHqkC3xUzEo-ILs3esLiczebe7Op0-Jf1YILgckzyur5_xD2BbnLMelwGyO8S3bWy-vwktxx39cXq-WQ3N4fT6azYWv_UH5S2RADWD9j-XMM7dOPJ9MvvwGgfgxh
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGhgQvjKsoDLAQCB6IlthJ7CAh1FGmTu06NLXS3oKvMGkkJe1A-x38D34j5-RSNgl42wOPje3KTj9_x8c953yEPEsSk-rQu0ACRQZx5KNAMu0DHWbaehVyZVUtNiEmE3l0lH1YIz-7XBgMq-w4sSZqWxq8I9_mDDxvDt5G9nb-NUDVKPx3tZPQaGAxcmffwWVbvNkbwO_7nLHd99N3w6BVFQhMzMQygBlYybX3MZjySGgtuMoibyPPfWLAfEeh1yZxseA6BfTqiDs0-8Yq6WIWcvjeK2Qj5lLgvhqJoGP-NMnSqKlexHkWbqtI4oZCPYBzNq-WBvibAait2u7m__Y-bpIb7fmZ9hvA3yJrrrhNNjttCtpS1R3y43AWHIwHr2mfYmPlPjeR-rSrwkJLTw-8b5-O22tbOnDLOjitoMcFPSy_qILOKntK69AKOjzDBDe6X0egwqj2XukVDHPzcx9VYem0cwlgWqg4d7K4S2aX8mrukfWiLNx9QoUQ3mvuYzgxxs5K6WAMHH8Ni01qlO-Rlx1EctNWZ0eRkJMcvDREU75CU488XXWdNyVJ_tRpB3G26oBVxOsHZfUpb0kJ3D4rPRMCVsFicC0VrAGTjcOMKWUT0yMvEKU5ch1Mxqg2ZQOWhFXD8r5MMPc6SlmPbF3oCRxlLjZ3IM5bjlzkvxH84N_NT8i14XR_nI_3JqOH5DpDBeY6YHqLrC-rU_eIXDXflseL6nG9HSn5eNl4_wU90HKM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHUK8MK6iMMBCIHggamLnioRQoVSr1nXVtErbU_B1mzSSknag_Q7-Db-O48QpmwS87YHHxHZkJ5_PxTnnfAAvokjGwjfaS1FEemFgAi-lwnjCz4Qy3Gdc8ZpsIplM0oODbLoGP9tcGBtW2crEWlCrUtoz8h6j6Hkz9DaynnFhEdPB8P38q2cZpOyf1pZOo4HItj7_ju7b4t1ogN_6JaXDT_sftzzHMODJkCZLD2ejUiaMCVGtB4kQCeNZYFRgmIkkqvLAN0JGOkyYiBHJImDamgBS8VSH1Gf43GuwjiZ5SDuwPh3tTA9bPRBHWRw0tYwYy_weD1K7vSw7wAUNWBMF_E0d1DpuuPE_v53bcMtZ1qTfbIU7sKaLu7DRslYQJ8TuwY-9mbc7HrwlfWIbK33cxPCTtj4LKQ3ZNcbdHbsDXTLQyzpsrSAnBdkrv_CCzCp1RuqgC7J1blPfyE4dm4qj3InTGxym5xcueaHIfuss4LQsF93p4j7MruTVPIBOURb6IZAkSYwRzIRoS4ZapanGMWgYSxrKWHLThdctXHLp6rZb-pDTHP03i6x8hawuPF91nTfFSv7U6YPF3KqDrS9e3yiro9yJK3QIVWpokuAqaIhOJ8c12DRkP6Ocq0h24ZVFbG6lIE5GcpfMgUuy9cTyfhrZrOwgpl3YvNQTpZe83NwCOnfSc5H_RvOjfzc_gxsI83w8mmw_hpvUUjPXkdSb0FlWZ_oJXJfflieL6qnbmwQ-XzXgfwG_mH0N
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RU-OLD%3A+A+Comprehensive+Analysis+of+Offensive+Language+Detection+in+Roman+Urdu+Using+Hybrid+Machine+Learning%2C+Deep+Learning%2C+and+Transformer+Models&rft.jtitle=Algorithms&rft.au=Zain%2C+Muhammad&rft.au=Hussain%2C+Nisar&rft.au=Qasim%2C+Amna&rft.au=Mehak%2C+Gull&rft.date=2025-07-01&rft.issn=1999-4893&rft.eissn=1999-4893&rft.volume=18&rft.issue=7&rft.spage=396&rft_id=info:doi/10.3390%2Fa18070396&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_a18070396
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon