Improved Field Obstacle Detection Algorithm Based on YOLOv8

To satisfy the obstacle avoidance requirements of unmanned agricultural machinery during autonomous operation and address the challenge of rapid obstacle detection in complex field environments, an improved field obstacle detection model based on YOLOv8 was proposed. This model enabled the fast dete...

Full description

Saved in:
Bibliographic Details
Published in:Agriculture (Basel) Vol. 14; no. 12; p. 2263
Main Authors: Zhou, Xinying, Chen, Wenming, Wei, Xinhua
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.12.2024
Subjects:
ISSN:2077-0472, 2077-0472
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract To satisfy the obstacle avoidance requirements of unmanned agricultural machinery during autonomous operation and address the challenge of rapid obstacle detection in complex field environments, an improved field obstacle detection model based on YOLOv8 was proposed. This model enabled the fast detection and recognition of obstacles such as people, tractors, and electric power pylons in the field. This detection model was built upon the YOLOv8 architecture with three main improvements. First, to adapt to different tasks and complex environments in the field, improve the sensitivity of the detector to various target sizes and positions, and enhance detection accuracy, the CBAM (Convolutional Block Attention Module) was integrated into the backbone layer of the benchmark model. Secondly, a BiFPN (Bi-directional Feature Pyramid Network) architecture took the place of the original PANet to enhance the fusion of features across multiple scales, thereby increasing the model’s capacity to distinguish between the background and obstacles. Third, WIoU v3 (Wise Intersection over Union v3) optimized the target boundary loss function, assigning greater focus to medium-quality anchor boxes and enhancing the detector’s overall performance. A dataset comprising 5963 images of people, electric power pylons, telegraph poles, tractors, and harvesters in a farmland environment was constructed. The training set comprised 4771 images, while the validation and test sets each consisted of 596 images. The results from the experiments indicated that the enhanced model attained precision, recall, and average precision scores of 85.5%, 75.1%, and 82.5%, respectively, on the custom dataset. This reflected increases of 1.3, 1.2, and 1.9 percentage points when compared to the baseline YOLOv8 model. Furthermore, the model reached 52 detection frames per second, thereby significantly enhancing the detection performance for common obstacles in the field. The model enhanced by the previously mentioned techniques guarantees a high level of detection accuracy while meeting the criteria for real-time obstacle identification in unmanned agricultural equipment during fieldwork.
AbstractList To satisfy the obstacle avoidance requirements of unmanned agricultural machinery during autonomous operation and address the challenge of rapid obstacle detection in complex field environments, an improved field obstacle detection model based on YOLOv8 was proposed. This model enabled the fast detection and recognition of obstacles such as people, tractors, and electric power pylons in the field. This detection model was built upon the YOLOv8 architecture with three main improvements. First, to adapt to different tasks and complex environments in the field, improve the sensitivity of the detector to various target sizes and positions, and enhance detection accuracy, the CBAM (Convolutional Block Attention Module) was integrated into the backbone layer of the benchmark model. Secondly, a BiFPN (Bi-directional Feature Pyramid Network) architecture took the place of the original PANet to enhance the fusion of features across multiple scales, thereby increasing the model’s capacity to distinguish between the background and obstacles. Third, WIoU v3 (Wise Intersection over Union v3) optimized the target boundary loss function, assigning greater focus to medium-quality anchor boxes and enhancing the detector’s overall performance. A dataset comprising 5963 images of people, electric power pylons, telegraph poles, tractors, and harvesters in a farmland environment was constructed. The training set comprised 4771 images, while the validation and test sets each consisted of 596 images. The results from the experiments indicated that the enhanced model attained precision, recall, and average precision scores of 85.5%, 75.1%, and 82.5%, respectively, on the custom dataset. This reflected increases of 1.3, 1.2, and 1.9 percentage points when compared to the baseline YOLOv8 model. Furthermore, the model reached 52 detection frames per second, thereby significantly enhancing the detection performance for common obstacles in the field. The model enhanced by the previously mentioned techniques guarantees a high level of detection accuracy while meeting the criteria for real-time obstacle identification in unmanned agricultural equipment during fieldwork.
Audience Academic
Author Zhou, Xinying
Wei, Xinhua
Chen, Wenming
Author_xml – sequence: 1
  givenname: Xinying
  surname: Zhou
  fullname: Zhou, Xinying
– sequence: 2
  givenname: Wenming
  orcidid: 0000-0002-1068-5029
  surname: Chen
  fullname: Chen, Wenming
– sequence: 3
  givenname: Xinhua
  surname: Wei
  fullname: Wei, Xinhua
BookMark eNp9kU9LAzEQxYNUsNZ-Ai8LnlvzbzdZPNVqtVDoRQ-eQjaZrSnbTc2mBb-9qVUQEXOZMLzf483MOeq1vgWELgkeM1bia70KzuyauAtAOKGUFuwE9SkWYoS5oL0f_zM07Lo1Tq8kTOKij27mm23we7DZzEFjs2XVRW0ayO4ggonOt9mkWfng4usmu9VdEqbWy3Kx3MsLdFrrpoPhVx2g59n90_RxtFg-zKeTxchwKuLIisIKoLIyUOQkt5QVwEQlwRqjjay4Ac1kTYjUTBuLCccgTZJZVucSCjZA86Ov9XqttsFtdHhXXjv12fBhpXSILqVWRFDIK8Kq0pS8zEmVcwrUCkZtyTGF5HV19EpTv-2gi2rtd6FN8RUj_MDkJU2q8VG10snUtbWPQaew2sLGmbT-2qX-RFJSYEowT0B5BEzwXRegVsZFfVhfAl2jCFaHW6k_bpVY9ov9HvE_6gMq8JvD
CitedBy_id crossref_primary_10_3390_horticulturae11060668
crossref_primary_10_3390_s25175302
crossref_primary_10_1109_ACCESS_2025_3591279
crossref_primary_10_3390_app15147663
crossref_primary_10_37391_ijeer_130305
crossref_primary_10_3390_agriculture15141529
crossref_primary_10_3390_agronomy15061318
crossref_primary_10_3390_agriculture15121297
crossref_primary_10_3390_horticulturae11050551
crossref_primary_10_3390_s25185884
crossref_primary_10_3390_agriculture15131361
Cites_doi 10.3390/agriculture14101807
10.1109/CVPR.2016.91
10.1016/j.ijleo.2021.167754
10.1109/ICCV.2015.169
10.1109/JPROC.2023.3238524
10.1007/978-3-030-01234-2_1
10.3390/rs13061064
10.1109/ITSC.2018.8569311
10.1109/SMC53992.2023.10394415
10.3390/make5040083
10.3390/rs16203810
10.1109/CVPR.2018.00913
10.1016/j.patcog.2017.10.013
10.3390/agriculture14081420
10.1109/CVPR.2017.106
10.1371/journal.pone.0259283
10.3390/plants13172388
10.1007/978-3-319-46448-0_2
10.1109/CVPR.2014.81
10.1109/CVPR42600.2020.01079
10.1007/978-3-031-26409-2_27
10.1109/CVPR.2017.690
10.1016/j.neucom.2021.03.091
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SS
7ST
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
HCIFZ
M0K
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
SOI
DOA
DOI 10.3390/agriculture14122263
DatabaseName CrossRef
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Agricultural Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

CrossRef
Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2077-0472
ExternalDocumentID oai_doaj_org_article_172e5b13b9c94951b542e2d732d9402e
A821602104
10_3390_agriculture14122263
GroupedDBID 2XV
5VS
7X2
8FE
8FH
AAFWJ
AAHBH
AAYXX
ADBBV
AEUYN
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAG
IAO
ITC
KQ8
M0K
MODMG
M~E
OK1
OZF
PHGZM
PHGZT
PIMPY
PROAC
3V.
7SS
7ST
7T7
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
P64
PKEHL
PQEST
PQQKQ
PQUKI
SOI
ID FETCH-LOGICAL-c427t-d76d7e28bce6515d236e37b8edccac8b4cea38f118a3acd0140e8cd23d3f58e63
IEDL.DBID BENPR
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001384120700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2077-0472
IngestDate Tue Oct 14 18:51:50 EDT 2025
Mon Jun 30 13:24:00 EDT 2025
Tue Nov 04 18:14:04 EST 2025
Tue Nov 18 20:58:33 EST 2025
Sat Nov 29 07:15:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-d76d7e28bce6515d236e37b8edccac8b4cea38f118a3acd0140e8cd23d3f58e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1068-5029
OpenAccessLink https://www.proquest.com/docview/3149495592?pq-origsite=%requestingapplication%
PQID 3149495592
PQPubID 2032441
ParticipantIDs doaj_primary_oai_doaj_org_article_172e5b13b9c94951b542e2d732d9402e
proquest_journals_3149495592
gale_infotracacademiconefile_A821602104
crossref_citationtrail_10_3390_agriculture14122263
crossref_primary_10_3390_agriculture14122263
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agriculture (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Terven (ref_23) 2023; 5
Niu (ref_24) 2021; 452
Zou (ref_3) 2023; 111
ref_14
ref_13
ref_12
ref_11
ref_10
ref_30
ref_19
ref_18
ref_17
ref_16
ref_15
ref_25
ref_22
ref_21
ref_1
Pathak (ref_20) 2021; 246
ref_2
ref_29
ref_28
ref_27
ref_26
ref_9
ref_8
Gu (ref_5) 2018; 77
ref_4
ref_7
ref_6
References_xml – ident: ref_7
– ident: ref_10
  doi: 10.3390/agriculture14101807
– ident: ref_9
– ident: ref_17
  doi: 10.1109/CVPR.2016.91
– ident: ref_30
– volume: 246
  start-page: 167754
  year: 2021
  ident: ref_20
  article-title: Content-based image retrieval using feature-fusion of GroupNormalized-Inception-Darknet-53 features and handcraft features
  publication-title: Optik
  doi: 10.1016/j.ijleo.2021.167754
– ident: ref_6
  doi: 10.1109/ICCV.2015.169
– volume: 111
  start-page: 257
  year: 2023
  ident: ref_3
  article-title: Object detection in 20 years: A survey
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2023.3238524
– ident: ref_28
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref_1
  doi: 10.3390/rs13061064
– ident: ref_2
  doi: 10.1109/ITSC.2018.8569311
– ident: ref_12
  doi: 10.1109/SMC53992.2023.10394415
– volume: 5
  start-page: 1680
  year: 2023
  ident: ref_23
  article-title: A comprehensive review of yolo architectures in computer vision: From yolov1 to yolov8 and yolo-nas
  publication-title: Mach. Learn. Knowl. Extr.
  doi: 10.3390/make5040083
– ident: ref_21
– ident: ref_13
  doi: 10.3390/rs16203810
– ident: ref_27
  doi: 10.1109/CVPR.2018.00913
– volume: 77
  start-page: 354
  year: 2018
  ident: ref_5
  article-title: Recent advances in convolutional neural networks
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.10.013
– ident: ref_16
  doi: 10.3390/agriculture14081420
– ident: ref_25
– ident: ref_26
  doi: 10.1109/CVPR.2017.106
– ident: ref_22
  doi: 10.1371/journal.pone.0259283
– ident: ref_14
  doi: 10.3390/plants13172388
– ident: ref_15
– ident: ref_8
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref_4
  doi: 10.1109/CVPR.2014.81
– ident: ref_19
– ident: ref_29
  doi: 10.1109/CVPR42600.2020.01079
– ident: ref_11
  doi: 10.1007/978-3-031-26409-2_27
– ident: ref_18
  doi: 10.1109/CVPR.2017.690
– volume: 452
  start-page: 48
  year: 2021
  ident: ref_24
  article-title: A review on the attention mechanism of deep learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.091
SSID ssj0000913806
Score 2.379098
Snippet To satisfy the obstacle avoidance requirements of unmanned agricultural machinery during autonomous operation and address the challenge of rapid obstacle...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2263
SubjectTerms Accuracy
Agricultural equipment
Agricultural land
Agricultural technology
Agricultural vehicles
Agriculture
Algorithms
BiFPN
Boxes
CBAM
Computer vision
Datasets
Deep learning
Detectors
Electric power
Farm machinery
Farmers
field obstacle detection
Fieldwork
Frames per second
Harvesters
Image quality
Lighting
Obstacle avoidance
Pylons
Real time
Sensors
Target detection
Task complexity
Tractors
Vision systems
WIoU v3
YOLOv8
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QxAEOiKcYDNQDEheqLUnXJuK0ARMHtHEAaZyiJPYG0hhojP1-nLYbQ-Jx4Rq5rWM3tr_K_czYSYqc0ozDGDggARQ3iLVrDGLb9GkCWdrIfJIPm8i6XdXv69ulUV-hJ6ygBy4MV6cEi03HpdNeUzHPXTMRKCCTAjRhHwzRt5HpJTCVx2DNpWqkBc2QJFxft8NJSWaBPOGUFVP5JRXljP0_xeU82XQ22UZZJUatQrsttoLjbbbe-rz5DjsvPgcgRJ3QhBb1HNV5JBxd4jRvrxpHrdHwhbD_43PUplwFES099G56M7XL7jtXdxfXcTkJIfaJyKYxGQ0yFMp5DKPLQcgUZeYUAjnAK5d4tFINCCxYaT0E1ITKkxjIQVNhKvdYZfwyxn0WUaYCB2A5KJtY7bSEMHPaKQpdlh5RZWJuFONLmvAwrWJkCC4ES5pvLFllZ4uLXguWjN_F28HaC9FAcZ0vkONN6Xjzl-Or7DT4yoSDSAqSHYr_CWibgdLKtGhHaUC0SZXV5u405Ql9M5IHXh7CU-LgP7Q5ZGuCyp2i0aXGKtPJOx6xVT-bPr1NjvOX8wOF9-kj
  priority: 102
  providerName: Directory of Open Access Journals
Title Improved Field Obstacle Detection Algorithm Based on YOLOv8
URI https://www.proquest.com/docview/3149495592
https://doaj.org/article/172e5b13b9c94951b542e2d732d9402e
Volume 14
WOSCitedRecordID wos001384120700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2077-0472
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913806
  issn: 2077-0472
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2077-0472
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913806
  issn: 2077-0472
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 2077-0472
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913806
  issn: 2077-0472
  databaseCode: M0K
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2077-0472
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913806
  issn: 2077-0472
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2077-0472
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913806
  issn: 2077-0472
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BywEOlFdFaKl8QOKC1XjXsdfigJK2EQiaRAik9rTa3ZkEpDZpE9Pfz4y9SYUEvXDxYT221_vt7jw8_gbgTUEZqxlPKWZI7KD4aVr57jR1vVDkWBbdMuRNsYlyNDJnZ9UkBtxWMa1yvSc2GzUugsTID3UmPCps_6oPV9epVI2Sr6uxhMZ92BamMp7n24OT0eTrJsoirJemW7R0Q5r9-0M3W0ZSC8ryjLVjof9QSQ1z_7_250bpDHf-t7tP4HE0N5N-Oz-ewj2aP4NH_dvePYf3bVyBMBlKNlsy9mwwsnByTHWTpzVP-hczvnf94zIZsNLDhJvOx1_GN-YFfB-efDv6mMaSCmnIVVmnPPpYkjI-kNRAR6UL0qU3hIxkMD4P5LSZstfhtAso7heZwGKopz1Dhd6FrfliTi8hYZWHHtFlaFzuKl9plOLV3vAe6PgRHVDrUbUh8o1L2YsLy36HQGH_AkUH3m0uumrpNu4WHwhcG1Hhym4aFsuZjUvPsolGPZ9pXwWBJPO9XJHCUius2HumDrwVsK2saO4gj0P7YwK_pnBj2T6_USGucd6B_TXYNi71lb1F-tXdp_fgoWKLqM2F2YetevmLXsODcFP_XC0P4sw9aIICfDztfua2yafTyflv5rD9OQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAl64I0IFPABxAWr9u7GXqtCKKVEjZomORSpPW29u5OA1CYlMUX9U_xGZvxIhQS99cB1PbZ3dj7PYz07A_AmwZjMjMXQxx4pQLGTMLPRJMw7LlE-TaLUqbLZRDoc6qOjbLwGv5qzMJxW2ejEUlH7ueM98i0Zcx0V8n_Fx_PvIXeN4r-rTQuNChb7ePmTQrblh_4uyfetEL3Ph5_2wrqrQOiUSIuQJuBTFNo65DbgXsgEZWo1emLGaasc5lJPyPHOZe48RyCoHZF5OeloTCQ99xasKwZ7C9bH_YPx8WpXh6ts6iipyhtJmUVb-XRRF9HAWMVkjRP5hwksOwX8yx6URq53_39bngdwr3ang26F_4ewhrNHsNG9Wo3HsF3tm6APepytF4wsOcREHOxiUeahzYLu6ZR4Kb6eBTtk1H1AQ8ejwehCP4EvNzL7p9CazWf4DAIy6d56n8de5yrPbCY9N-e2mnR8Tq9og2ikaFxdT53bepwaiqtY9OYvom_D-9VN51U5kevJdxgeK1KuBV4OzBdTU6sWQy4odmwsbeYYArHtKIHCp1L4TEUC2_COwWVYY9EEaR2qgxfEJtf-Ml3iKOHQX7VhswGXqVXZ0lwh6_n1l1_Dnb3Dg4EZ9If7L-CuIO-vyvvZhFax-IEv4ba7KL4tF6_qryaAk5tG4m-iT1nh
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE48EYECvgA4oIVe3djr4UQSgkRUUuSA0jtafHujtNKJSmJKeKv8euY8SMVEvTWA1d7bO_sfjsvz84APE8wJjVjMfSxR3JQbBFmNirCvO8S5dMkSp2qmk2kk4k-OMhmW_CrPQvDaZWtTKwEtV86jpH3ZMx1VMj-Fb2iSYuYDUdvT7-F3EGK_7S27TRqiOzhzx_kvq3fjIe01i-EGL3_9O5D2HQYCJ0SaRnSYHyKQluH3BLcC5mgTK1GT4w5bZXDXOqCjPBc5s6zN4LaEZmXRV9jIum9V2CbTHIlOrA9G3-cHW4iPFxxU0dJXepIyizq5fNVU1ADYxWTZk7kH-qw6hrwL91QKbzRrf95qm7DzcbMDgb1vrgDW7i4CzcG5zNzD17X8RT0wYiz-IKpJUOZiIMhllV-2iIYnMyJl_Loa7BLyt4HdOlwuj890_fh86WM_gF0FssFPoSAVL233uex17nKM5tJz027rSbZn9MnuiDaFTWuqbPO7T5ODPlbDAPzFxh04dXmodO6zMjF5LsMlQ0p1wivLixXc9OIHEOmKfZtLG3mGA6x7SuBwqdS-ExFArvwkoFmWJLRAGke6gMZxCbXBDMD4ijhkIDqwk4LNNOIuLU5R9mji28_g2sEP7M_nuw9huuCjMI6HWgHOuXqOz6Bq-6sPF6vnjYbKIAvlw3E3wByYqE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Field+Obstacle+Detection+Algorithm+Based+on+YOLOv8&rft.jtitle=Agriculture+%28Basel%29&rft.au=Zhou%2C+Xinying&rft.au=Chen%2C+Wenming&rft.au=Wei%2C+Xinhua&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.eissn=2077-0472&rft.volume=14&rft.issue=12&rft.spage=2263&rft_id=info:doi/10.3390%2Fagriculture14122263&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon