Improved Field Obstacle Detection Algorithm Based on YOLOv8
To satisfy the obstacle avoidance requirements of unmanned agricultural machinery during autonomous operation and address the challenge of rapid obstacle detection in complex field environments, an improved field obstacle detection model based on YOLOv8 was proposed. This model enabled the fast dete...
Gespeichert in:
| Veröffentlicht in: | Agriculture (Basel) Jg. 14; H. 12; S. 2263 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.12.2024
|
| Schlagworte: | |
| ISSN: | 2077-0472, 2077-0472 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | To satisfy the obstacle avoidance requirements of unmanned agricultural machinery during autonomous operation and address the challenge of rapid obstacle detection in complex field environments, an improved field obstacle detection model based on YOLOv8 was proposed. This model enabled the fast detection and recognition of obstacles such as people, tractors, and electric power pylons in the field. This detection model was built upon the YOLOv8 architecture with three main improvements. First, to adapt to different tasks and complex environments in the field, improve the sensitivity of the detector to various target sizes and positions, and enhance detection accuracy, the CBAM (Convolutional Block Attention Module) was integrated into the backbone layer of the benchmark model. Secondly, a BiFPN (Bi-directional Feature Pyramid Network) architecture took the place of the original PANet to enhance the fusion of features across multiple scales, thereby increasing the model’s capacity to distinguish between the background and obstacles. Third, WIoU v3 (Wise Intersection over Union v3) optimized the target boundary loss function, assigning greater focus to medium-quality anchor boxes and enhancing the detector’s overall performance. A dataset comprising 5963 images of people, electric power pylons, telegraph poles, tractors, and harvesters in a farmland environment was constructed. The training set comprised 4771 images, while the validation and test sets each consisted of 596 images. The results from the experiments indicated that the enhanced model attained precision, recall, and average precision scores of 85.5%, 75.1%, and 82.5%, respectively, on the custom dataset. This reflected increases of 1.3, 1.2, and 1.9 percentage points when compared to the baseline YOLOv8 model. Furthermore, the model reached 52 detection frames per second, thereby significantly enhancing the detection performance for common obstacles in the field. The model enhanced by the previously mentioned techniques guarantees a high level of detection accuracy while meeting the criteria for real-time obstacle identification in unmanned agricultural equipment during fieldwork. |
|---|---|
| AbstractList | To satisfy the obstacle avoidance requirements of unmanned agricultural machinery during autonomous operation and address the challenge of rapid obstacle detection in complex field environments, an improved field obstacle detection model based on YOLOv8 was proposed. This model enabled the fast detection and recognition of obstacles such as people, tractors, and electric power pylons in the field. This detection model was built upon the YOLOv8 architecture with three main improvements. First, to adapt to different tasks and complex environments in the field, improve the sensitivity of the detector to various target sizes and positions, and enhance detection accuracy, the CBAM (Convolutional Block Attention Module) was integrated into the backbone layer of the benchmark model. Secondly, a BiFPN (Bi-directional Feature Pyramid Network) architecture took the place of the original PANet to enhance the fusion of features across multiple scales, thereby increasing the model’s capacity to distinguish between the background and obstacles. Third, WIoU v3 (Wise Intersection over Union v3) optimized the target boundary loss function, assigning greater focus to medium-quality anchor boxes and enhancing the detector’s overall performance. A dataset comprising 5963 images of people, electric power pylons, telegraph poles, tractors, and harvesters in a farmland environment was constructed. The training set comprised 4771 images, while the validation and test sets each consisted of 596 images. The results from the experiments indicated that the enhanced model attained precision, recall, and average precision scores of 85.5%, 75.1%, and 82.5%, respectively, on the custom dataset. This reflected increases of 1.3, 1.2, and 1.9 percentage points when compared to the baseline YOLOv8 model. Furthermore, the model reached 52 detection frames per second, thereby significantly enhancing the detection performance for common obstacles in the field. The model enhanced by the previously mentioned techniques guarantees a high level of detection accuracy while meeting the criteria for real-time obstacle identification in unmanned agricultural equipment during fieldwork. |
| Audience | Academic |
| Author | Zhou, Xinying Wei, Xinhua Chen, Wenming |
| Author_xml | – sequence: 1 givenname: Xinying surname: Zhou fullname: Zhou, Xinying – sequence: 2 givenname: Wenming orcidid: 0000-0002-1068-5029 surname: Chen fullname: Chen, Wenming – sequence: 3 givenname: Xinhua surname: Wei fullname: Wei, Xinhua |
| BookMark | eNp9kU9LAzEQxYNUsNZ-Ai8LnlvzbzdZPNVqtVDoRQ-eQjaZrSnbTc2mBb-9qVUQEXOZMLzf483MOeq1vgWELgkeM1bia70KzuyauAtAOKGUFuwE9SkWYoS5oL0f_zM07Lo1Tq8kTOKij27mm23we7DZzEFjs2XVRW0ayO4ggonOt9mkWfng4usmu9VdEqbWy3Kx3MsLdFrrpoPhVx2g59n90_RxtFg-zKeTxchwKuLIisIKoLIyUOQkt5QVwEQlwRqjjay4Ac1kTYjUTBuLCccgTZJZVucSCjZA86Ov9XqttsFtdHhXXjv12fBhpXSILqVWRFDIK8Kq0pS8zEmVcwrUCkZtyTGF5HV19EpTv-2gi2rtd6FN8RUj_MDkJU2q8VG10snUtbWPQaew2sLGmbT-2qX-RFJSYEowT0B5BEzwXRegVsZFfVhfAl2jCFaHW6k_bpVY9ov9HvE_6gMq8JvD |
| CitedBy_id | crossref_primary_10_3390_horticulturae11060668 crossref_primary_10_3390_s25175302 crossref_primary_10_1109_ACCESS_2025_3591279 crossref_primary_10_3390_app15147663 crossref_primary_10_37391_ijeer_130305 crossref_primary_10_3390_agriculture15141529 crossref_primary_10_3390_agronomy15061318 crossref_primary_10_3390_agriculture15121297 crossref_primary_10_3390_horticulturae11050551 crossref_primary_10_3390_s25185884 crossref_primary_10_3390_agriculture15131361 |
| Cites_doi | 10.3390/agriculture14101807 10.1109/CVPR.2016.91 10.1016/j.ijleo.2021.167754 10.1109/ICCV.2015.169 10.1109/JPROC.2023.3238524 10.1007/978-3-030-01234-2_1 10.3390/rs13061064 10.1109/ITSC.2018.8569311 10.1109/SMC53992.2023.10394415 10.3390/make5040083 10.3390/rs16203810 10.1109/CVPR.2018.00913 10.1016/j.patcog.2017.10.013 10.3390/agriculture14081420 10.1109/CVPR.2017.106 10.1371/journal.pone.0259283 10.3390/plants13172388 10.1007/978-3-319-46448-0_2 10.1109/CVPR.2014.81 10.1109/CVPR42600.2020.01079 10.1007/978-3-031-26409-2_27 10.1109/CVPR.2017.690 10.1016/j.neucom.2021.03.091 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SS 7ST 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 HCIFZ M0K P64 PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI SOI DOA |
| DOI | 10.3390/agriculture14122263 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest : Agricultural & Environmental Science Collection [unlimited simultaneous users] ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database SciTech Premium Collection Agricultural Science Database Biotechnology and BioEngineering Abstracts ProQuest Databases ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition Environment Abstracts DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 2077-0472 |
| ExternalDocumentID | oai_doaj_org_article_172e5b13b9c94951b542e2d732d9402e A821602104 10_3390_agriculture14122263 |
| GroupedDBID | 2XV 5VS 7X2 8FE 8FH AAFWJ AAHBH AAYXX ADBBV AEUYN AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAG IAO ITC KQ8 M0K MODMG M~E OK1 OZF PHGZM PHGZT PIMPY PROAC 3V. 7SS 7ST 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 P64 PKEHL PQEST PQQKQ PQUKI SOI |
| ID | FETCH-LOGICAL-c427t-d76d7e28bce6515d236e37b8edccac8b4cea38f118a3acd0140e8cd23d3f58e63 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001384120700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2077-0472 |
| IngestDate | Tue Oct 14 18:51:50 EDT 2025 Mon Jun 30 13:24:00 EDT 2025 Tue Nov 04 18:14:04 EST 2025 Tue Nov 18 20:58:33 EST 2025 Sat Nov 29 07:15:25 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c427t-d76d7e28bce6515d236e37b8edccac8b4cea38f118a3acd0140e8cd23d3f58e63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1068-5029 |
| OpenAccessLink | https://www.proquest.com/docview/3149495592?pq-origsite=%requestingapplication% |
| PQID | 3149495592 |
| PQPubID | 2032441 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_172e5b13b9c94951b542e2d732d9402e proquest_journals_3149495592 gale_infotracacademiconefile_A821602104 crossref_citationtrail_10_3390_agriculture14122263 crossref_primary_10_3390_agriculture14122263 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Agriculture (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Terven (ref_23) 2023; 5 Niu (ref_24) 2021; 452 Zou (ref_3) 2023; 111 ref_14 ref_13 ref_12 ref_11 ref_10 ref_30 ref_19 ref_18 ref_17 ref_16 ref_15 ref_25 ref_22 ref_21 ref_1 Pathak (ref_20) 2021; 246 ref_2 ref_29 ref_28 ref_27 ref_26 ref_9 ref_8 Gu (ref_5) 2018; 77 ref_4 ref_7 ref_6 |
| References_xml | – ident: ref_7 – ident: ref_10 doi: 10.3390/agriculture14101807 – ident: ref_9 – ident: ref_17 doi: 10.1109/CVPR.2016.91 – ident: ref_30 – volume: 246 start-page: 167754 year: 2021 ident: ref_20 article-title: Content-based image retrieval using feature-fusion of GroupNormalized-Inception-Darknet-53 features and handcraft features publication-title: Optik doi: 10.1016/j.ijleo.2021.167754 – ident: ref_6 doi: 10.1109/ICCV.2015.169 – volume: 111 start-page: 257 year: 2023 ident: ref_3 article-title: Object detection in 20 years: A survey publication-title: Proc. IEEE doi: 10.1109/JPROC.2023.3238524 – ident: ref_28 doi: 10.1007/978-3-030-01234-2_1 – ident: ref_1 doi: 10.3390/rs13061064 – ident: ref_2 doi: 10.1109/ITSC.2018.8569311 – ident: ref_12 doi: 10.1109/SMC53992.2023.10394415 – volume: 5 start-page: 1680 year: 2023 ident: ref_23 article-title: A comprehensive review of yolo architectures in computer vision: From yolov1 to yolov8 and yolo-nas publication-title: Mach. Learn. Knowl. Extr. doi: 10.3390/make5040083 – ident: ref_21 – ident: ref_13 doi: 10.3390/rs16203810 – ident: ref_27 doi: 10.1109/CVPR.2018.00913 – volume: 77 start-page: 354 year: 2018 ident: ref_5 article-title: Recent advances in convolutional neural networks publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.10.013 – ident: ref_16 doi: 10.3390/agriculture14081420 – ident: ref_25 – ident: ref_26 doi: 10.1109/CVPR.2017.106 – ident: ref_22 doi: 10.1371/journal.pone.0259283 – ident: ref_14 doi: 10.3390/plants13172388 – ident: ref_15 – ident: ref_8 doi: 10.1007/978-3-319-46448-0_2 – ident: ref_4 doi: 10.1109/CVPR.2014.81 – ident: ref_19 – ident: ref_29 doi: 10.1109/CVPR42600.2020.01079 – ident: ref_11 doi: 10.1007/978-3-031-26409-2_27 – ident: ref_18 doi: 10.1109/CVPR.2017.690 – volume: 452 start-page: 48 year: 2021 ident: ref_24 article-title: A review on the attention mechanism of deep learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.091 |
| SSID | ssj0000913806 |
| Score | 2.379098 |
| Snippet | To satisfy the obstacle avoidance requirements of unmanned agricultural machinery during autonomous operation and address the challenge of rapid obstacle... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 2263 |
| SubjectTerms | Accuracy Agricultural equipment Agricultural land Agricultural technology Agricultural vehicles Agriculture Algorithms BiFPN Boxes CBAM Computer vision Datasets Deep learning Detectors Electric power Farm machinery Farmers field obstacle detection Fieldwork Frames per second Harvesters Image quality Lighting Obstacle avoidance Pylons Real time Sensors Target detection Task complexity Tractors Vision systems WIoU v3 YOLOv8 |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SPOhBfGK1yh4ELy7dJPtI8NSqxUNpPSjUU9gks1XQVtra3-9ks60VfFy8htmQndl5fMvkG0LOLDM0EYUJUws8jC1Dl9JUh1SaSOqMM-OnlnSzXk8MBvJuZdSX6wnz9MBecU1MsJBoyrU0Eot5qpOYAbO4i5WIfcBF3yiTK2CqjMGSchGlnmaII65v5sNJRWYBNKaYFVP-JRWVjP0_xeUy2XS2yVZVJQYtf7odsgajXbLZ-tx8j1z63wFgg45rQgv6Gus8FA6uYVa2V42C1stwjNj_6TVoY66yAS499rv9udgnD52b-6vbsJqEEJqYZbPQZqnNgAltwI0ut4ynwDMtwKIBjNCxgZyLAsFCznNjHWoCYVDM8iIRkPIDUhuNR3BIgiLSEn2QSisgTgqRCwmRNLGMuIEi1XXCFkpRpqIJd9MqXhTCBadJ9Y0m6-Ri-dCbZ8n4XbzttL0UdRTX5QIaXlWGV38Zvk7Ona2Uc0Q8IOrB3yfA13SUVqolGE0doo3rpLEwp6o8dKo4dbw8iKfY0X-c5phsMCx3fKNLg9Rmk3c4IetmPnueTk7Lj_MDajboww priority: 102 providerName: Directory of Open Access Journals |
| Title | Improved Field Obstacle Detection Algorithm Based on YOLOv8 |
| URI | https://www.proquest.com/docview/3149495592 https://doaj.org/article/172e5b13b9c94951b542e2d732d9402e |
| Volume | 14 |
| WOSCitedRecordID | wos001384120700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2077-0472 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913806 issn: 2077-0472 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2077-0472 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913806 issn: 2077-0472 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 2077-0472 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913806 issn: 2077-0472 databaseCode: M0K dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2077-0472 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913806 issn: 2077-0472 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2077-0472 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913806 issn: 2077-0472 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5By4EeeCMWSpUDEheixnYetjigXegKRLu7QiC1Jyu2JwtSu1t2Q38_M4l3KyTohUsOziRy8s3YM5PJNwCvgvSi0I1Py4AqzYMkk3LCpcL4zLhKSd93LTmuJhN9empmMeG2jmWVmzWxW6jD0nOO_FAJ5lEh_1e-u_yZctco_roaW2jchl1mKiM93x0dTWZftlkWZr3UWdnTDSmK7w_r-SqSWqDIBe2OpfpjS-qY-_-1Pnebzvj-_073AdyL7mYy7PXjIdzCxSPYG17P7jG87fMKGJIxV7MlU0cOIwknH7Dt6rQWyfB8Tvduv18kI9r0QkJDZ9Pj6ZV-At_GR1_ff0xjS4XU57Jq01CVoUKpnUfugR6kKlFVTmMgJL12ucda6YaijlrVPnD4hdqTWFBNobFUT2FnsVzgM0iazBkyZmGCxrxodK0NZsbnJlMem9INQG7eqvWRb5zbXpxbijsYCvsXKAbwZnvRZU-3cbP4iOHaijJXdjewXM1tND1LLhoWTihnPEMiXJFLlIH0MBiKnnEArxlsyxZNE6T30P-YQI_J3Fh2qKUoOTTOB7C_AdtGU1_ba6Sf33z6BdyV5BH1tTD7sNOufuFLuOOv2h_r1UHU3IMuKUDHk-wzjc0-nczOfgO3jvzZ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aHRJw4BtRGJADiAvR4o8kthBCHaNata7tYUjbyYvtl4I02tGGIf4p_kaek7QTEuy2A1fnJbL9fn4fjv17AC89dyxVpYszjyKWntOSsszGTLtE21xw11QtGeajkTo60pMN-LW6CxOOVa5sYm2o_dyFPfJtwQKPCsW__P3ZtzhUjQp_V1clNBpY7OPPH5SyLd8Ndkm_rzjvfzz8sBe3VQViJ3lexT7PfI5cWYehDLjnIkORW4WeBuOUlQ4LoUoKvAtROB8yEFSOxLwoU4WZoO9eg00ZwN6BzcngYHK83tUJLJsqyRp6IyF0sl1MFy2JBjLJyBtn4g8XWFcK-Jc_qJ1c_87_Nj134XYbTke9Bv_3YANn9-FW72I2HsDbZt8EfdQPp_WisaWAmISjXazqc2izqHc6pbFUn79GO-TUfURNx-Ph-Fw9hE9X0vtH0JnNZ_gYojKxmowV016hTEtVKI2JdlInwmGZ2S7wlRaNa_nUQ1mPU0N5VVC9-Yvqu_Bm_dJZQydyufhOgMdaNHCB1w3zxdS0psVQCIqpZcJqFyDAbCo5ck_rzGuZcOzC6wAuEywWdZDmobl4QcMM3F-mpzjLQuovu7C1ApdpTdnSXCDryeWPX8CNvcODoRkORvtP4San6K8597MFnWrxHZ_BdXdefVkunrerJoKTq0bibwMtWYE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXYTgwBtRWCAHEBeixo8kthBCXUpFtaXtAaTdk4ntSUFa2qUNi_hr_DrGTdIVEuxtD1wdJ_Ljm4cn428AnnruWKpKF2ceRSw9J5GyzMZMu0TbXHBXVy0Z55OJOjzUsx341d6FCWmVrU7cKGq_dCFG3hMs8KiQ_8t7ZZMWMRsMX598i0MFqfCntS2nUUPkAH_-oOPb-tVoQHv9jPPh2w9v3sVNhYHYSZ5Xsc8znyNX1mEoCe65yFDkVqGniTllpcNCqJKc8EIUzofTCCpH3bwoU4WZoO9egl1yySXvwO5s9H52tI3wBMZNlWQ11ZEQOukV81VDqIFMMrLMmfjDHG6qBvzLNmwM3vDG_7xUN-F642ZH_VoubsEOLm7Dtf7ZytyBl3U8BX00DFl80dSSo0ydowFWm_y0RdQ_ntNcqs9fo30y9j6ipqPpeHqq7sLHCxn9Pegslgu8D1GZWE1KjGmvUKalKpTGRDupE-GwzGwXeLujxjU866Hcx7Gh81aAgfkLDLrwYvvSSU0zcn73_QCVbdfAEb5pWK7mplE5hlxTTC0TVrsAB2ZTyZF7kj-vZcKxC88D0EzQZDRAWof6QgZNM3CCmb7iLAshAdmFvRZoplFxa3OGsgfnP34CVwh-ZjyaHDyEq5ycwjodaA861eo7PoLL7rT6sl49bgQogk8XDcTfWUliQQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Field+Obstacle+Detection+Algorithm+Based+on+YOLOv8&rft.jtitle=Agriculture+%28Basel%29&rft.au=Zhou%2C+Xinying&rft.au=Chen%2C+Wenming&rft.au=Wei%2C+Xinhua&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.issn=2077-0472&rft.eissn=2077-0472&rft.volume=14&rft.issue=12&rft_id=info:doi/10.3390%2Fagriculture14122263&rft.externalDocID=A821602104 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon |