Solving and Numerical Simulations of Fractional-Order Governing Equation for Micro-Beams

This paper applies a recently proposed numerical algorithm to discuss the deflection of viscoelastic micro-beams in the time domain with direct access. A nonlinear-fractional order model for viscoelastic micro-beams is constructed. Before solving the governing equations, the operator matrices of shi...

Full description

Saved in:
Bibliographic Details
Published in:Fractal and fractional Vol. 7; no. 2; p. 204
Main Authors: Yang, Aimin, Zhang, Qunwei, Qu, Jingguo, Cui, Yuhuan, Chen, Yiming
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.02.2023
Subjects:
ISSN:2504-3110, 2504-3110
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper applies a recently proposed numerical algorithm to discuss the deflection of viscoelastic micro-beams in the time domain with direct access. A nonlinear-fractional order model for viscoelastic micro-beams is constructed. Before solving the governing equations, the operator matrices of shifted Chebyshev polynomials are derived first. Shifted Chebyshev polynomials are used to approximate the deflection function, and the nonlinear fractional order governing equation is expressed in the form of operator matrices. Next, the collocation method is used to discretize the equations into the form of algebraic equations for solution. It simplifies the calculation. MATLAB software was used to program this algorithm to simulate the numerical solution of the deflection. The effectiveness and accuracy of the algorithm are verified by the numerical example. Finally, numerical simulations are carried out on the viscoelastic micro-beams. It is found that the viscous damping coefficient is inversely proportional to the deflection, and the length scale parameter of the micro-beam is also inversely proportional to the deflection. In addition, the stress and strain of micro-beam, the change of deflection under different simple harmonic loads, and potential energy of micro-beam are discussed. The results of the study fully demonstrated that the shifted Chebyshev polynomial algorithm is effective for the numerical simulations of viscoelastic micro-beams.
AbstractList This paper applies a recently proposed numerical algorithm to discuss the deflection of viscoelastic micro-beams in the time domain with direct access. A nonlinear-fractional order model for viscoelastic micro-beams is constructed. Before solving the governing equations, the operator matrices of shifted Chebyshev polynomials are derived first. Shifted Chebyshev polynomials are used to approximate the deflection function, and the nonlinear fractional order governing equation is expressed in the form of operator matrices. Next, the collocation method is used to discretize the equations into the form of algebraic equations for solution. It simplifies the calculation. MATLAB software was used to program this algorithm to simulate the numerical solution of the deflection. The effectiveness and accuracy of the algorithm are verified by the numerical example. Finally, numerical simulations are carried out on the viscoelastic micro-beams. It is found that the viscous damping coefficient is inversely proportional to the deflection, and the length scale parameter of the micro-beam is also inversely proportional to the deflection. In addition, the stress and strain of micro-beam, the change of deflection under different simple harmonic loads, and potential energy of micro-beam are discussed. The results of the study fully demonstrated that the shifted Chebyshev polynomial algorithm is effective for the numerical simulations of viscoelastic micro-beams.
Audience Academic
Author Cui, Yuhuan
Chen, Yiming
Zhang, Qunwei
Yang, Aimin
Qu, Jingguo
Author_xml – sequence: 1
  givenname: Aimin
  surname: Yang
  fullname: Yang, Aimin
– sequence: 2
  givenname: Qunwei
  surname: Zhang
  fullname: Zhang, Qunwei
– sequence: 3
  givenname: Jingguo
  orcidid: 0000-0003-4780-4316
  surname: Qu
  fullname: Qu, Jingguo
– sequence: 4
  givenname: Yuhuan
  surname: Cui
  fullname: Cui, Yuhuan
– sequence: 5
  givenname: Yiming
  orcidid: 0000-0001-7040-8050
  surname: Chen
  fullname: Chen, Yiming
BookMark eNp9kV1rFTEQhoNUsNb-Am8WvN6a74_LWtpaaO1FFbwLk2xyyGF30ya7hf57c86RIiIyF5MM87yTvPMeHc15Dgh9JPiMMYM_xwJ-gXGfFKYt-Bt0TAXmPSMEH_1xfodOa91ijKkyTGB1jH4-5PE5zZsO5qH7tk6hJA9j95CmdYQl5bl2OXZXO-12gbG_L0Mo3XV-DmXecZdP676vi7l0d8mX3H8JMNUP6G2EsYbT3_kE_bi6_H7xtb-9v765OL_tPadq6QehQHMOnElHJYCUwJjTLlJmdKQSa6-9C4HQQQoZjPZUgNODIs5hrxk7QTcH3SHD1j6WNEF5sRmS3Rdy2VgoS_JjsEopIB4o0wPnzhmnJZGKGh9BGGpi0_p00Hos-WkNdbHbvJb262qpUoZzI9Ru4tmhawNNNM0xL82eFkOYkm-7ianVz5WghAgmVQPYAWjm1FpCfH0mwXa3QvuPFTbK_EX5tOytbuPS-F_2F9JUpyY
CitedBy_id crossref_primary_10_1080_15397734_2024_2353321
crossref_primary_10_1007_s00707_024_03954_7
crossref_primary_10_3390_math11163492
crossref_primary_10_3390_fractalfract9020118
crossref_primary_10_3390_fractalfract7100739
Cites_doi 10.1145/3127404
10.1016/bs.hna.2021.12.003
10.1016/j.cnsns.2018.04.019
10.1016/j.apm.2020.11.011
10.1016/j.tws.2019.01.004
10.3390/fractalfract6100599
10.1016/j.compstruct.2014.12.070
10.1016/j.apnum.2021.07.008
10.1016/j.jsv.2011.09.015
10.1016/j.jsv.2017.03.032
10.1016/j.apm.2013.04.019
10.1016/j.ijmecsci.2019.03.015
10.3390/sym12061037
10.1016/j.ijengsci.2013.03.001
10.3390/app10144906
10.3390/buildings12122238
10.1016/B978-0-12-819781-3.00008-2
10.1016/j.amc.2017.05.057
10.1016/j.ijsolstr.2019.10.025
10.1016/j.camwa.2011.03.054
10.1016/j.aml.2015.02.010
10.3390/fractalfract5020036
10.1016/j.ijmecsci.2019.105204
10.1007/s42452-019-0292-z
10.3390/sym14122545
10.3182/20060719-3-PT-4902.00052
10.1016/j.camwa.2013.01.019
10.1016/j.chaos.2020.110255
10.1016/S0032-3861(98)00168-2
10.3390/fractalfract6110690
10.1016/S0020-7683(98)00194-2
10.1016/j.aej.2014.09.004
10.3390/fractalfract6090475
10.3390/fractalfract2040023
10.3390/math10244797
10.1016/j.apm.2021.03.028
10.1016/j.euromechsol.2020.104174
10.3390/fractalfract6090528
10.3390/fractalfract6100552
10.1016/j.matcom.2020.12.013
10.1016/j.mechrescom.2012.07.001
10.1016/j.ijnonlinmec.2021.103811
10.1039/D0SM00354A
10.3390/fractalfract6100617
10.1080/01495739.2019.1623734
10.3390/fractalfract6030150
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/fractalfract7020204
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2504-3110
ExternalDocumentID oai_doaj_org_article_777a1ca238d44bb9b8616729cfa5929f
A752115367
10_3390_fractalfract7020204
GroupedDBID 8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c427t-d57a844a436b26aa66a33b8bf2398f2608c8cbee12d656e98c25ab8d71bb0c833
IEDL.DBID M7S
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000938588800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2504-3110
IngestDate Fri Oct 03 12:44:24 EDT 2025
Fri Jul 25 12:01:26 EDT 2025
Tue Nov 04 17:52:26 EST 2025
Tue Nov 18 20:51:25 EST 2025
Sat Nov 29 07:20:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-d57a844a436b26aa66a33b8bf2398f2608c8cbee12d656e98c25ab8d71bb0c833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7040-8050
0000-0003-4780-4316
OpenAccessLink https://www.proquest.com/docview/2779449573?pq-origsite=%requestingapplication%
PQID 2779449573
PQPubID 2055410
ParticipantIDs doaj_primary_oai_doaj_org_article_777a1ca238d44bb9b8616729cfa5929f
proquest_journals_2779449573
gale_infotracacademiconefile_A752115367
crossref_primary_10_3390_fractalfract7020204
crossref_citationtrail_10_3390_fractalfract7020204
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Fractal and fractional
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Usuki (ref_18) 2012; 331
Shen (ref_34) 2021; 86
Tp (ref_41) 2021; 61
ref_12
Sheng (ref_50) 2019; 155
ref_52
Sun (ref_4) 2018; 64
Nikan (ref_13) 2021; 169
Karunakar (ref_45) 2019; 1
ref_17
ref_15
Wang (ref_51) 2020; 140
Hendy (ref_14) 2019; 42
Akrami (ref_46) 2013; 37
Birol (ref_27) 2014; 53
ref_25
Catania (ref_19) 2006; 39
Zhang (ref_37) 2019; 137
ref_23
Alcoutlabi (ref_3) 1998; 39
ref_21
Duan (ref_28) 2013; 66
Farokhi (ref_42) 2013; 68
ref_29
ref_26
Shen (ref_11) 2019; 190
Loghman (ref_24) 2021; 92
Chen (ref_32) 2014; 97
Atabakzadeh (ref_47) 2013; 37
ref_33
ref_31
Tounsi (ref_35) 2015; 125
Loghman (ref_22) 2021; 137
ref_38
Lewandowski (ref_16) 2017; 399
Scherer (ref_40) 2011; 62
Zguaid (ref_9) 2021; 185
Zhao (ref_48) 2017; 313
Chen (ref_30) 2015; 46
ref_44
ref_43
ref_1
Enelund (ref_7) 1999; 36
Ysla (ref_36) 2021; 96
ref_2
Cb (ref_10) 2021; 25
ref_49
ref_8
ref_5
Xu (ref_20) 2019; 167
Rossikhin (ref_39) 2012; 45
ref_6
References_xml – ident: ref_44
  doi: 10.1145/3127404
– ident: ref_1
  doi: 10.1016/bs.hna.2021.12.003
– volume: 64
  start-page: 213
  year: 2018
  ident: ref_4
  article-title: A new collection of real world applications of fractional calculus in science and engineering
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2018.04.019
– volume: 92
  start-page: 297
  year: 2021
  ident: ref_24
  article-title: Nonlinear free and forced vibrations of fractional modeled viscoelastic FGM micro-beam
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2020.11.011
– volume: 137
  start-page: 185
  year: 2019
  ident: ref_37
  article-title: Modal characteristics of micro-perforated sandwich beams with square honeycomb-corrugation hybrid cores: A mixed experimental-numerical study
  publication-title: THin-Walled Struct.
  doi: 10.1016/j.tws.2019.01.004
– ident: ref_5
  doi: 10.3390/fractalfract6100599
– volume: 125
  start-page: 621
  year: 2015
  ident: ref_35
  article-title: Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2014.12.070
– volume: 169
  start-page: 303
  year: 2021
  ident: ref_13
  article-title: Numerical simulation of fractional evolution model arising in viscoelastic mechanics
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2021.07.008
– volume: 331
  start-page: 605
  year: 2012
  ident: ref_18
  article-title: Dispersion curves for a viscoelastic Timoshenko beam with fractional derivatives
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2011.09.015
– volume: 399
  start-page: 228
  year: 2017
  ident: ref_16
  article-title: Nonlinear vibration of viscoelastic beams described using fractional order derivatives
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2017.03.032
– volume: 37
  start-page: 8903
  year: 2013
  ident: ref_47
  article-title: Chebyshev operational matrix method for solving multi-order fractional ordinary differential equations
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2013.04.019
– volume: 155
  start-page: 405
  year: 2019
  ident: ref_50
  article-title: Nonlinear forced vibration of functionally graded Timoshenko microbeams with thermal effect and parametric excitation
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2019.03.015
– ident: ref_2
  doi: 10.3390/sym12061037
– volume: 68
  start-page: 11
  year: 2013
  ident: ref_42
  article-title: Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2013.03.001
– ident: ref_49
  doi: 10.3390/app10144906
– ident: ref_33
  doi: 10.3390/buildings12122238
– ident: ref_38
  doi: 10.1016/B978-0-12-819781-3.00008-2
– volume: 313
  start-page: 321
  year: 2017
  ident: ref_48
  article-title: Chebyshev polynomials approach for numerically solving system of two-dimensional fractional PDEs and convergence analysis
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2017.05.057
– volume: 190
  start-page: 226
  year: 2019
  ident: ref_11
  article-title: Fractional derivative models for viscoelastic materials at finite deformations
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2019.10.025
– volume: 62
  start-page: 902
  year: 2011
  ident: ref_40
  article-title: The Grünwald–Letnikov method for fractional differential equations
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.03.054
– volume: 46
  start-page: 83
  year: 2015
  ident: ref_30
  article-title: Numerical solution for a class of nonlinear variable order fractional differential equations with Legendre wavelets
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2015.02.010
– ident: ref_17
  doi: 10.3390/fractalfract5020036
– volume: 167
  start-page: 105204
  year: 2019
  ident: ref_20
  article-title: Vibration analysis of complex fractional viscoelastic beam structures by the wave method
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2019.105204
– volume: 1
  start-page: 285
  year: 2019
  ident: ref_45
  article-title: Shifted Chebyshev polynomials based solution of partial differential equations
  publication-title: Sn Appl. Sci.
  doi: 10.1007/s42452-019-0292-z
– ident: ref_6
  doi: 10.3390/sym14122545
– volume: 39
  start-page: 280
  year: 2006
  ident: ref_19
  article-title: Finite element analysis of vibrating non-homogeneous beams with fractional derivative viscoelastic models
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20060719-3-PT-4902.00052
– volume: 66
  start-page: 728
  year: 2013
  ident: ref_28
  article-title: The Adomian decomposition method with convergence acceleration techniques for nonlinear fractional differential equations
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2013.01.019
– volume: 97
  start-page: 391
  year: 2014
  ident: ref_32
  article-title: Numerical Solution for a Class of Linear System of Fractional Differential Equations by the HaarWavelet Method and the Convergence Analysis
  publication-title: Comput. Model. Eng. Sci.
– volume: 140
  start-page: 110255
  year: 2020
  ident: ref_51
  article-title: Numerical analysis of fractional partial differential equations applied to polymeric visco-elastic Euler–Bernoulli beam under quasi-static loads
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110255
– volume: 39
  start-page: 6269
  year: 1998
  ident: ref_3
  article-title: Application of fractional calculus to viscoelastic behavior modelling and to the physical ageing phenomenon in glassy amorphous polymers
  publication-title: Polymer
  doi: 10.1016/S0032-3861(98)00168-2
– ident: ref_26
  doi: 10.3390/fractalfract6110690
– volume: 36
  start-page: 4447
  year: 1999
  ident: ref_7
  article-title: Time domain modeling of damping using anelastic displacement fields and fractional calculus
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/S0020-7683(98)00194-2
– volume: 53
  start-page: 911
  year: 2014
  ident: ref_27
  article-title: Analytical approximate solution of time-fractional Fornberg—Whitham equation by the fractional variational iteration method
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2014.09.004
– ident: ref_23
  doi: 10.3390/fractalfract6090475
– ident: ref_8
  doi: 10.3390/fractalfract2040023
– ident: ref_25
  doi: 10.3390/math10244797
– volume: 96
  start-page: 733
  year: 2021
  ident: ref_36
  article-title: Free vibration of the one-dimensional piezoelectric quasicrystal microbeams based on modified couple stress theory
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2021.03.028
– volume: 25
  start-page: 104196
  year: 2021
  ident: ref_10
  article-title: Analytical solutions of fractional wave equation with memory effect using the fractional derivative with exponential kernel
  publication-title: Results Phys.
– ident: ref_21
– volume: 86
  start-page: 104174
  year: 2021
  ident: ref_34
  article-title: Construction of peridynamic beam and shell models on the basis of the micro-beam bond obtained via interpolation method
  publication-title: Eur. J. Mech. A Solids
  doi: 10.1016/j.euromechsol.2020.104174
– ident: ref_29
  doi: 10.3390/fractalfract6090528
– volume: 37
  start-page: 439
  year: 2013
  ident: ref_46
  article-title: The operational matrix of fractional integration for shifted Legendre polynomials
  publication-title: Iran. J. Sci. Technol. Trans. Sci.
– ident: ref_52
  doi: 10.3390/fractalfract6100552
– volume: 185
  start-page: 77
  year: 2021
  ident: ref_9
  article-title: Regional observability for linear time fractional systems
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2020.12.013
– volume: 45
  start-page: 22
  year: 2012
  ident: ref_39
  article-title: On fallacies in the decision between the Caputo and Riemann–Liouville fractional derivatives for the analysis of the dynamic response of a nonlinear viscoelastic oscillator
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2012.07.001
– volume: 137
  start-page: 103811
  year: 2021
  ident: ref_22
  article-title: Nonlinear vibration of fractional viscoelastic micro-beams
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2021.103811
– ident: ref_15
  doi: 10.1039/D0SM00354A
– ident: ref_12
  doi: 10.3390/fractalfract6100617
– volume: 42
  start-page: 1298
  year: 2019
  ident: ref_14
  article-title: Two-dimensional problem for thermoviscoelastic materials with fractional order heat transfer
  publication-title: J. Therm. Stress
  doi: 10.1080/01495739.2019.1623734
– volume: 61
  start-page: 5145
  year: 2021
  ident: ref_41
  article-title: Numerical solution method for multi-term variable order fractional differential equations by shifted Chebyshev polynomials of the third kind
  publication-title: Alex. Eng. J.
– ident: ref_31
  doi: 10.3390/fractalfract6030150
– ident: ref_43
SSID ssj0002793507
Score 2.243767
Snippet This paper applies a recently proposed numerical algorithm to discuss the deflection of viscoelastic micro-beams in the time domain with direct access. A...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 204
SubjectTerms Algorithms
Analysis
Approximation
Calculus
Chebyshev approximation
Collocation methods
Computer simulation
Deflection
Deformation
Finite element analysis
Force and energy
Iterative methods
Mathematical functions
Mathematical models
Mechanical properties
Microbeams
nonlinear-fractional order differential equations
Numerical analysis
numerical simulation
operator matrix
Operators (mathematics)
Polynomials
Potential energy
Rheology
shifted Chebyshev polynomial algorithm
Simulation methods
viscoelastic micro-beams
Viscoelasticity
Viscous damping
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUh9JAeStq0dJs06FDIpSaxJOvjmJQsvWQbSAp7EyNZghRnN11v-vs7Y3mXHPpxyclgJJA1o5k3lvQeY5_AiVbbLKqIybJSLdYpkLFq1Zro0WqVchMGsQkzm9n53F0_kfqiM2GFHrhM3KkxBuoImFlapUJwwepaIyKMGRpM7Zmi75lxT4qpH8N2mpOIdArNkMS6_jTTpSPohodBjCRGabZNKhoY-_8Wl4dkM91nr0aUyM_L6F6znbR4w15ebSlW-wM2v1l29DOAw6Lls8ey8dLxm7v7UZCr58vMp6tycQG66huRbPKirUv9Ln8Wlm-OsJVf0bm86iLBff-WfZ9e3n75Wo0yCVVUwqyrtjFglQIldRAaQGuQMtiQidovY71io40hpRqt0ujkbBQNBNuaOoSzaKV8x3YXy0V6zzgkGdFcqiWoF51yIQTEO1hCY4KTwk2Y2MyYjyOHOElZdB5rCZpm_4dpnrDP204PhULj380vyBTbpsR_PbxAr_CjV_j_ecWEnZAhPa1SHGCE8bIBfibxXflzg7AFg702E3a0sbUfl2_vhcEwhaWjkR-eYzSHbI9U6sth7yO2u149po_sRfy1vutXx4Pn_gYk5fQF
  priority: 102
  providerName: Directory of Open Access Journals
Title Solving and Numerical Simulations of Fractional-Order Governing Equation for Micro-Beams
URI https://www.proquest.com/docview/2779449573
https://doaj.org/article/777a1ca238d44bb9b8616729cfa5929f
Volume 7
WOSCitedRecordID wos000938588800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2504-3110
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793507
  issn: 2504-3110
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2504-3110
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793507
  issn: 2504-3110
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2504-3110
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793507
  issn: 2504-3110
  databaseCode: M7S
  dateStart: 20171201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2504-3110
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793507
  issn: 2504-3110
  databaseCode: BENPR
  dateStart: 20171201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2504-3110
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793507
  issn: 2504-3110
  databaseCode: PIMPY
  dateStart: 20171201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELVglwMc-EYUlsoHJC5ES2zHdk5oi1rBoaWiIJWTZTv2aqVss9t0-f3MOG65wF44RUocKclMPG_G4_cIeWtr1kgdWeEhWBaigTzFRshapUR6tFKEWLkkNqEWC71e18tccOtzW-V-TkwTddN5rJGfMgWeA2he8Y9X1wWqRuHqapbQuEuOkSWhTK17q0ONhYHzAd4ZyIY4ZPenEbce2TYdFCAllgXa9gEp8fb_a3ZOIWf26H8f9jF5mMEmPRu84wm5EzZPyYP5gam1f0bWq67FmgK1m4Yubob1m5auLi6zrldPu0hn22H_g22Lr8jVSQeJXrxvej2QhVNAv3SO7X3FJNjL_jn5MZt-__S5yGoLhRdM7YqmUlYLYQWXjklrpbScO-0iMgRGSHu0196FUIJxKxlq7VllnW5U6dwHrzl_QY423Sa8JNQG7sHqokHE6GtRO-cANkEmDnGSs3pE2P6TG5-pyFERozWQkqCdzF_sNCLvDzddDUwctw-foC0PQ5FGO53otucm_5VGKWVLbwG2NEI4VzstSwnpho-2AtwYR-QdeoLBnx0e0Nu8ZwFeE2mzzJkC9AMxQ6oROdl7gsmzQG_-uMGr2y-_JvdRxn7oBj8hR7vtTXhD7vlfu4t-OybHk-li-W2c6gXj5OJwbvllvvz5G4B3Br0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VBQk48F2xUMAHEBeiNo7XHwdUtdBVq3YXpC3S3oztOKhSumk3WxB_it_YmXwsF-itB06RkliK45eZN479HsAbZ3gudcGTgMkyETnWKa7AqlVKkkdLRSyGvjGbUJOJns3MlzX43e-FoWWVfUxsAnVeBZoj3-IKkYNsXmU75xcJuUbR39XeQqOFxVH89RNLtvrD4Scc37ecj_ZPPh4knatAEgRXyyQfKqeFcCKTnkvnpHRZ5rUvSAmvQHqvgw4-xhQ7MZTR6MCHzutcpd5vB00ToBjybyGN4KZZKjhdzelwBDvyq1bcKMvM9lZBW51c2RwUMjPeGcL1CbDxCfhXNmhS3OjB__ZyHsL9jkyz3Rb9j2Atzh_DvfFKibZ-ArNpVdKcCXPznE0u2_9TJZuennW-ZTWrCjZatPs7XJl8Ji1S1loQU7v9i1YMnSG7Z2NavpjsRXdWP4WvN9K1DVifV_P4DJiLWUBUi5wYcTDCeO-RFgppkAdk3AyA90NsQye1To4fpcWSi3Bh_4KLAbxfNTpvlUauv32PsLO6lWTCmxPV4rvtoo5VSrk0OKRluRDeG69lKrGcCoUbIi8uBvCOkGcpmOEDBtftycBukiyY3VXI7jAnSjWAzR55totytf0Du-fXX34Ndw5Oxsf2-HBy9ALuYgeyduX7JqwvF5fxJdwOP5an9eJV80Ex-HbTIL0CeJNfuA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELWqLUJw4BuxUMAHEBeibRzHdg4ItbQrVmWXlQrScjK2Y6NK6abdbEH8NX4dM4mzXKC3HjhFyocUx88zbxz7PUJemIKVQgWWOEiWCS-hTjEBqlYhUB4t5T7ktjWbkLOZWiyK-Rb51e-FwWWVfUxsA3VZO5wjHzEJyAE2L7NRiMsi5gfjt2fnCTpI4Z_W3k6jg8iR__kDyrfmzeQA-volY-PDT-_eJ9FhIHGcyXVS5tIozg3PhGXCGCFMllllA6riBaD6yilnvU-hQbnwhXIsN1aVMrV21ymcDIXwvw2UnLMB2Z5PpvMvmxkeBtAHttVJHWVZsTsKuPHJVO1BAk9j0R6uT4eta8C_ckOb8Ma3_-dPdYfcijSb7nXj4i7Z8st75OZ0o1Hb3CeL47rC2RRqliWdXXR_rip6fHIaHc0aWgc6XnU7P0yVfESVUtqZE-Nzh-edTDoF3k-nuLAx2ffmtHlAPl9J0x6SwbJe-keEGp85wDsvkSu7ghfWWiCMXBTAEDJWDAnru1u7KMKOXiCVhmIMMaL_gpEheb156KzTILn89n3E0eZWFBBvT9SrbzrGIy2lNKkzQNhKzq0trBKpgELLBZMDYw5D8gpRqDHMwQs6E3drQDNRMEzvSeB9kC2FHJKdHoU6xr9G_4Hg48svPyfXAZv6w2R29ITcgPfPuiXxO2SwXl34p-Sa-74-aVbP4uii5OtVo_Q31l9p7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+and+Numerical+Simulations+of+Fractional-Order+Governing+Equation+for+Micro-Beams&rft.jtitle=Fractal+and+fractional&rft.au=Yang%2C+Aimin&rft.au=Zhang%2C+Qunwei&rft.au=Qu%2C+Jingguo&rft.au=Cui%2C+Yuhuan&rft.date=2023-02-01&rft.pub=MDPI+AG&rft.eissn=2504-3110&rft.volume=7&rft.issue=2&rft.spage=204&rft_id=info:doi/10.3390%2Ffractalfract7020204&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-3110&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-3110&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-3110&client=summon