Solving and Numerical Simulations of Fractional-Order Governing Equation for Micro-Beams
This paper applies a recently proposed numerical algorithm to discuss the deflection of viscoelastic micro-beams in the time domain with direct access. A nonlinear-fractional order model for viscoelastic micro-beams is constructed. Before solving the governing equations, the operator matrices of shi...
Gespeichert in:
| Veröffentlicht in: | Fractal and fractional Jg. 7; H. 2; S. 204 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.02.2023
|
| Schlagworte: | |
| ISSN: | 2504-3110, 2504-3110 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper applies a recently proposed numerical algorithm to discuss the deflection of viscoelastic micro-beams in the time domain with direct access. A nonlinear-fractional order model for viscoelastic micro-beams is constructed. Before solving the governing equations, the operator matrices of shifted Chebyshev polynomials are derived first. Shifted Chebyshev polynomials are used to approximate the deflection function, and the nonlinear fractional order governing equation is expressed in the form of operator matrices. Next, the collocation method is used to discretize the equations into the form of algebraic equations for solution. It simplifies the calculation. MATLAB software was used to program this algorithm to simulate the numerical solution of the deflection. The effectiveness and accuracy of the algorithm are verified by the numerical example. Finally, numerical simulations are carried out on the viscoelastic micro-beams. It is found that the viscous damping coefficient is inversely proportional to the deflection, and the length scale parameter of the micro-beam is also inversely proportional to the deflection. In addition, the stress and strain of micro-beam, the change of deflection under different simple harmonic loads, and potential energy of micro-beam are discussed. The results of the study fully demonstrated that the shifted Chebyshev polynomial algorithm is effective for the numerical simulations of viscoelastic micro-beams. |
|---|---|
| AbstractList | This paper applies a recently proposed numerical algorithm to discuss the deflection of viscoelastic micro-beams in the time domain with direct access. A nonlinear-fractional order model for viscoelastic micro-beams is constructed. Before solving the governing equations, the operator matrices of shifted Chebyshev polynomials are derived first. Shifted Chebyshev polynomials are used to approximate the deflection function, and the nonlinear fractional order governing equation is expressed in the form of operator matrices. Next, the collocation method is used to discretize the equations into the form of algebraic equations for solution. It simplifies the calculation. MATLAB software was used to program this algorithm to simulate the numerical solution of the deflection. The effectiveness and accuracy of the algorithm are verified by the numerical example. Finally, numerical simulations are carried out on the viscoelastic micro-beams. It is found that the viscous damping coefficient is inversely proportional to the deflection, and the length scale parameter of the micro-beam is also inversely proportional to the deflection. In addition, the stress and strain of micro-beam, the change of deflection under different simple harmonic loads, and potential energy of micro-beam are discussed. The results of the study fully demonstrated that the shifted Chebyshev polynomial algorithm is effective for the numerical simulations of viscoelastic micro-beams. |
| Audience | Academic |
| Author | Cui, Yuhuan Chen, Yiming Zhang, Qunwei Yang, Aimin Qu, Jingguo |
| Author_xml | – sequence: 1 givenname: Aimin surname: Yang fullname: Yang, Aimin – sequence: 2 givenname: Qunwei surname: Zhang fullname: Zhang, Qunwei – sequence: 3 givenname: Jingguo orcidid: 0000-0003-4780-4316 surname: Qu fullname: Qu, Jingguo – sequence: 4 givenname: Yuhuan surname: Cui fullname: Cui, Yuhuan – sequence: 5 givenname: Yiming orcidid: 0000-0001-7040-8050 surname: Chen fullname: Chen, Yiming |
| BookMark | eNp9kV1rFTEQhoNUsNb-Am8WvN6a74_LWtpaaO1FFbwLk2xyyGF30ya7hf57c86RIiIyF5MM87yTvPMeHc15Dgh9JPiMMYM_xwJ-gXGfFKYt-Bt0TAXmPSMEH_1xfodOa91ijKkyTGB1jH4-5PE5zZsO5qH7tk6hJA9j95CmdYQl5bl2OXZXO-12gbG_L0Mo3XV-DmXecZdP676vi7l0d8mX3H8JMNUP6G2EsYbT3_kE_bi6_H7xtb-9v765OL_tPadq6QehQHMOnElHJYCUwJjTLlJmdKQSa6-9C4HQQQoZjPZUgNODIs5hrxk7QTcH3SHD1j6WNEF5sRmS3Rdy2VgoS_JjsEopIB4o0wPnzhmnJZGKGh9BGGpi0_p00Hos-WkNdbHbvJb262qpUoZzI9Ru4tmhawNNNM0xL82eFkOYkm-7ianVz5WghAgmVQPYAWjm1FpCfH0mwXa3QvuPFTbK_EX5tOytbuPS-F_2F9JUpyY |
| CitedBy_id | crossref_primary_10_1080_15397734_2024_2353321 crossref_primary_10_1007_s00707_024_03954_7 crossref_primary_10_3390_math11163492 crossref_primary_10_3390_fractalfract9020118 crossref_primary_10_3390_fractalfract7100739 |
| Cites_doi | 10.1145/3127404 10.1016/bs.hna.2021.12.003 10.1016/j.cnsns.2018.04.019 10.1016/j.apm.2020.11.011 10.1016/j.tws.2019.01.004 10.3390/fractalfract6100599 10.1016/j.compstruct.2014.12.070 10.1016/j.apnum.2021.07.008 10.1016/j.jsv.2011.09.015 10.1016/j.jsv.2017.03.032 10.1016/j.apm.2013.04.019 10.1016/j.ijmecsci.2019.03.015 10.3390/sym12061037 10.1016/j.ijengsci.2013.03.001 10.3390/app10144906 10.3390/buildings12122238 10.1016/B978-0-12-819781-3.00008-2 10.1016/j.amc.2017.05.057 10.1016/j.ijsolstr.2019.10.025 10.1016/j.camwa.2011.03.054 10.1016/j.aml.2015.02.010 10.3390/fractalfract5020036 10.1016/j.ijmecsci.2019.105204 10.1007/s42452-019-0292-z 10.3390/sym14122545 10.3182/20060719-3-PT-4902.00052 10.1016/j.camwa.2013.01.019 10.1016/j.chaos.2020.110255 10.1016/S0032-3861(98)00168-2 10.3390/fractalfract6110690 10.1016/S0020-7683(98)00194-2 10.1016/j.aej.2014.09.004 10.3390/fractalfract6090475 10.3390/fractalfract2040023 10.3390/math10244797 10.1016/j.apm.2021.03.028 10.1016/j.euromechsol.2020.104174 10.3390/fractalfract6090528 10.3390/fractalfract6100552 10.1016/j.matcom.2020.12.013 10.1016/j.mechrescom.2012.07.001 10.1016/j.ijnonlinmec.2021.103811 10.1039/D0SM00354A 10.3390/fractalfract6100617 10.1080/01495739.2019.1623734 10.3390/fractalfract6030150 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
| DOI | 10.3390/fractalfract7020204 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest One Academic ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2504-3110 |
| ExternalDocumentID | oai_doaj_org_article_777a1ca238d44bb9b8616729cfa5929f A752115367 10_3390_fractalfract7020204 |
| GroupedDBID | 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO IGS ITC L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PROAC PTHSS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c427t-d57a844a436b26aa66a33b8bf2398f2608c8cbee12d656e98c25ab8d71bb0c833 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000938588800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2504-3110 |
| IngestDate | Fri Oct 03 12:44:24 EDT 2025 Fri Jul 25 12:01:26 EDT 2025 Tue Nov 04 17:52:26 EST 2025 Tue Nov 18 20:51:25 EST 2025 Sat Nov 29 07:20:10 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c427t-d57a844a436b26aa66a33b8bf2398f2608c8cbee12d656e98c25ab8d71bb0c833 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7040-8050 0000-0003-4780-4316 |
| OpenAccessLink | https://www.proquest.com/docview/2779449573?pq-origsite=%requestingapplication% |
| PQID | 2779449573 |
| PQPubID | 2055410 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_777a1ca238d44bb9b8616729cfa5929f proquest_journals_2779449573 gale_infotracacademiconefile_A752115367 crossref_primary_10_3390_fractalfract7020204 crossref_citationtrail_10_3390_fractalfract7020204 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-01 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Fractal and fractional |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Usuki (ref_18) 2012; 331 Shen (ref_34) 2021; 86 Tp (ref_41) 2021; 61 ref_12 Sheng (ref_50) 2019; 155 ref_52 Sun (ref_4) 2018; 64 Nikan (ref_13) 2021; 169 Karunakar (ref_45) 2019; 1 ref_17 ref_15 Wang (ref_51) 2020; 140 Hendy (ref_14) 2019; 42 Akrami (ref_46) 2013; 37 Birol (ref_27) 2014; 53 ref_25 Catania (ref_19) 2006; 39 Zhang (ref_37) 2019; 137 ref_23 Alcoutlabi (ref_3) 1998; 39 ref_21 Duan (ref_28) 2013; 66 Farokhi (ref_42) 2013; 68 ref_29 ref_26 Shen (ref_11) 2019; 190 Loghman (ref_24) 2021; 92 Chen (ref_32) 2014; 97 Atabakzadeh (ref_47) 2013; 37 ref_33 ref_31 Tounsi (ref_35) 2015; 125 Loghman (ref_22) 2021; 137 ref_38 Lewandowski (ref_16) 2017; 399 Scherer (ref_40) 2011; 62 Zguaid (ref_9) 2021; 185 Zhao (ref_48) 2017; 313 Chen (ref_30) 2015; 46 ref_44 ref_43 ref_1 Enelund (ref_7) 1999; 36 Ysla (ref_36) 2021; 96 ref_2 Cb (ref_10) 2021; 25 ref_49 ref_8 ref_5 Xu (ref_20) 2019; 167 Rossikhin (ref_39) 2012; 45 ref_6 |
| References_xml | – ident: ref_44 doi: 10.1145/3127404 – ident: ref_1 doi: 10.1016/bs.hna.2021.12.003 – volume: 64 start-page: 213 year: 2018 ident: ref_4 article-title: A new collection of real world applications of fractional calculus in science and engineering publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2018.04.019 – volume: 92 start-page: 297 year: 2021 ident: ref_24 article-title: Nonlinear free and forced vibrations of fractional modeled viscoelastic FGM micro-beam publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2020.11.011 – volume: 137 start-page: 185 year: 2019 ident: ref_37 article-title: Modal characteristics of micro-perforated sandwich beams with square honeycomb-corrugation hybrid cores: A mixed experimental-numerical study publication-title: THin-Walled Struct. doi: 10.1016/j.tws.2019.01.004 – ident: ref_5 doi: 10.3390/fractalfract6100599 – volume: 125 start-page: 621 year: 2015 ident: ref_35 article-title: Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2014.12.070 – volume: 169 start-page: 303 year: 2021 ident: ref_13 article-title: Numerical simulation of fractional evolution model arising in viscoelastic mechanics publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2021.07.008 – volume: 331 start-page: 605 year: 2012 ident: ref_18 article-title: Dispersion curves for a viscoelastic Timoshenko beam with fractional derivatives publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2011.09.015 – volume: 399 start-page: 228 year: 2017 ident: ref_16 article-title: Nonlinear vibration of viscoelastic beams described using fractional order derivatives publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2017.03.032 – volume: 37 start-page: 8903 year: 2013 ident: ref_47 article-title: Chebyshev operational matrix method for solving multi-order fractional ordinary differential equations publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2013.04.019 – volume: 155 start-page: 405 year: 2019 ident: ref_50 article-title: Nonlinear forced vibration of functionally graded Timoshenko microbeams with thermal effect and parametric excitation publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2019.03.015 – ident: ref_2 doi: 10.3390/sym12061037 – volume: 68 start-page: 11 year: 2013 ident: ref_42 article-title: Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2013.03.001 – ident: ref_49 doi: 10.3390/app10144906 – ident: ref_33 doi: 10.3390/buildings12122238 – ident: ref_38 doi: 10.1016/B978-0-12-819781-3.00008-2 – volume: 313 start-page: 321 year: 2017 ident: ref_48 article-title: Chebyshev polynomials approach for numerically solving system of two-dimensional fractional PDEs and convergence analysis publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2017.05.057 – volume: 190 start-page: 226 year: 2019 ident: ref_11 article-title: Fractional derivative models for viscoelastic materials at finite deformations publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2019.10.025 – volume: 62 start-page: 902 year: 2011 ident: ref_40 article-title: The Grünwald–Letnikov method for fractional differential equations publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2011.03.054 – volume: 46 start-page: 83 year: 2015 ident: ref_30 article-title: Numerical solution for a class of nonlinear variable order fractional differential equations with Legendre wavelets publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2015.02.010 – ident: ref_17 doi: 10.3390/fractalfract5020036 – volume: 167 start-page: 105204 year: 2019 ident: ref_20 article-title: Vibration analysis of complex fractional viscoelastic beam structures by the wave method publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2019.105204 – volume: 1 start-page: 285 year: 2019 ident: ref_45 article-title: Shifted Chebyshev polynomials based solution of partial differential equations publication-title: Sn Appl. Sci. doi: 10.1007/s42452-019-0292-z – ident: ref_6 doi: 10.3390/sym14122545 – volume: 39 start-page: 280 year: 2006 ident: ref_19 article-title: Finite element analysis of vibrating non-homogeneous beams with fractional derivative viscoelastic models publication-title: IFAC Proc. Vol. doi: 10.3182/20060719-3-PT-4902.00052 – volume: 66 start-page: 728 year: 2013 ident: ref_28 article-title: The Adomian decomposition method with convergence acceleration techniques for nonlinear fractional differential equations publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2013.01.019 – volume: 97 start-page: 391 year: 2014 ident: ref_32 article-title: Numerical Solution for a Class of Linear System of Fractional Differential Equations by the HaarWavelet Method and the Convergence Analysis publication-title: Comput. Model. Eng. Sci. – volume: 140 start-page: 110255 year: 2020 ident: ref_51 article-title: Numerical analysis of fractional partial differential equations applied to polymeric visco-elastic Euler–Bernoulli beam under quasi-static loads publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110255 – volume: 39 start-page: 6269 year: 1998 ident: ref_3 article-title: Application of fractional calculus to viscoelastic behavior modelling and to the physical ageing phenomenon in glassy amorphous polymers publication-title: Polymer doi: 10.1016/S0032-3861(98)00168-2 – ident: ref_26 doi: 10.3390/fractalfract6110690 – volume: 36 start-page: 4447 year: 1999 ident: ref_7 article-title: Time domain modeling of damping using anelastic displacement fields and fractional calculus publication-title: Int. J. Solids Struct. doi: 10.1016/S0020-7683(98)00194-2 – volume: 53 start-page: 911 year: 2014 ident: ref_27 article-title: Analytical approximate solution of time-fractional Fornberg—Whitham equation by the fractional variational iteration method publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2014.09.004 – ident: ref_23 doi: 10.3390/fractalfract6090475 – ident: ref_8 doi: 10.3390/fractalfract2040023 – ident: ref_25 doi: 10.3390/math10244797 – volume: 96 start-page: 733 year: 2021 ident: ref_36 article-title: Free vibration of the one-dimensional piezoelectric quasicrystal microbeams based on modified couple stress theory publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2021.03.028 – volume: 25 start-page: 104196 year: 2021 ident: ref_10 article-title: Analytical solutions of fractional wave equation with memory effect using the fractional derivative with exponential kernel publication-title: Results Phys. – ident: ref_21 – volume: 86 start-page: 104174 year: 2021 ident: ref_34 article-title: Construction of peridynamic beam and shell models on the basis of the micro-beam bond obtained via interpolation method publication-title: Eur. J. Mech. A Solids doi: 10.1016/j.euromechsol.2020.104174 – ident: ref_29 doi: 10.3390/fractalfract6090528 – volume: 37 start-page: 439 year: 2013 ident: ref_46 article-title: The operational matrix of fractional integration for shifted Legendre polynomials publication-title: Iran. J. Sci. Technol. Trans. Sci. – ident: ref_52 doi: 10.3390/fractalfract6100552 – volume: 185 start-page: 77 year: 2021 ident: ref_9 article-title: Regional observability for linear time fractional systems publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2020.12.013 – volume: 45 start-page: 22 year: 2012 ident: ref_39 article-title: On fallacies in the decision between the Caputo and Riemann–Liouville fractional derivatives for the analysis of the dynamic response of a nonlinear viscoelastic oscillator publication-title: Mech. Res. Commun. doi: 10.1016/j.mechrescom.2012.07.001 – volume: 137 start-page: 103811 year: 2021 ident: ref_22 article-title: Nonlinear vibration of fractional viscoelastic micro-beams publication-title: Int. J. Non-Linear Mech. doi: 10.1016/j.ijnonlinmec.2021.103811 – ident: ref_15 doi: 10.1039/D0SM00354A – ident: ref_12 doi: 10.3390/fractalfract6100617 – volume: 42 start-page: 1298 year: 2019 ident: ref_14 article-title: Two-dimensional problem for thermoviscoelastic materials with fractional order heat transfer publication-title: J. Therm. Stress doi: 10.1080/01495739.2019.1623734 – volume: 61 start-page: 5145 year: 2021 ident: ref_41 article-title: Numerical solution method for multi-term variable order fractional differential equations by shifted Chebyshev polynomials of the third kind publication-title: Alex. Eng. J. – ident: ref_31 doi: 10.3390/fractalfract6030150 – ident: ref_43 |
| SSID | ssj0002793507 |
| Score | 2.243767 |
| Snippet | This paper applies a recently proposed numerical algorithm to discuss the deflection of viscoelastic micro-beams in the time domain with direct access. A... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 204 |
| SubjectTerms | Algorithms Analysis Approximation Calculus Chebyshev approximation Collocation methods Computer simulation Deflection Deformation Finite element analysis Force and energy Iterative methods Mathematical functions Mathematical models Mechanical properties Microbeams nonlinear-fractional order differential equations Numerical analysis numerical simulation operator matrix Operators (mathematics) Polynomials Potential energy Rheology shifted Chebyshev polynomial algorithm Simulation methods viscoelastic micro-beams Viscoelasticity Viscous damping |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUq1EN7qCgFdQtUPlTi0oiN7cTOERArDrBFoq32Zo2_JKqwSzcLv5-ZOLvi0I8Lp0iRLTnj8cyb2H6PsS-hhOhV5bEsUVAorEGKRkZRJB1FKp3xVS_J8vNST6dmNmuun0l90ZmwTA-cDXestYbSA2aWoJRzjTN1WSMi9AkqTO2Jou9YN8-KqV_9dlojEelkmiGJdf1xoktH0PYPjRhJDNJs61TUM_b_LS73yWayzd4NKJGf5NG9Z6_ifIe9vdpQrHYf2Oxm0dLPAA7zwKcPeeOl5Te3d4MgV8cXiU-W-eICtMU3ItnkWVuX-p3_zizfHGErv6JzecVphLtul_2YnH8_uygGmYTCK6FXRag0GKVAydqJGqCuQUpnXCJqv4T1ivHGuxhLERC8xcZ4UYEzQZfOjb2Rco9tzRfz-JFxIpN3IakmSVBBI1yocMqojvWl0mE8YmJtMesHDnGSsmgt1hJkZvsHM4_Y102n-0yh8e_mpzQVm6bEf92_QK-wg1fY_3nFiB3RRFpapThAD8NlA_xM4ruyJxphCwb7Wo_YwXqu7bB8Oys0hiksHbX89BKj2WdvSKU-H_Y-YFur5UM8ZK_94-q2W37uPfcJhu_0kw priority: 102 providerName: Directory of Open Access Journals |
| Title | Solving and Numerical Simulations of Fractional-Order Governing Equation for Micro-Beams |
| URI | https://www.proquest.com/docview/2779449573 https://doaj.org/article/777a1ca238d44bb9b8616729cfa5929f |
| Volume | 7 |
| WOSCitedRecordID | wos000938588800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2504-3110 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793507 issn: 2504-3110 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2504-3110 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793507 issn: 2504-3110 databaseCode: M~E dateStart: 20170101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2504-3110 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793507 issn: 2504-3110 databaseCode: M7S dateStart: 20171201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2504-3110 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793507 issn: 2504-3110 databaseCode: BENPR dateStart: 20171201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2504-3110 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793507 issn: 2504-3110 databaseCode: PIMPY dateStart: 20171201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLZg4wAHfiO6jcoHJC5YWxwndk5onVqBREtFAZVT5J9oUtZsTbe_f-85brmwXThFcmzJiZ_t7z0_fx8h712mvRWFBbdEaCbAB2FV7jkL0vOQGWWLKMny66uczdRyWc1TwK1LaZXbNTEu1K61GCM_5hIsB9C8zD9dXjFUjcLT1SSh8ZDsI0tCFlP3FrsYCwfjA7zTkw3l4N0fB7x6pJv4kICUeBJo225Ikbf_rtU5bjmTZ__b2efkaQKb9LS3jhfkgV-9JE-mO6bW7hVZLtoGYwpUrxydXffnNw1dnF8kXa-OtoFO1v39B92wb8jVSXuJXmw3vurJwimgXzrF9D428vqie01-TsY_zj6zpLbArOByw1whtRJCi7w0vNS6LHWeG2UCMgQGcHuUVdZ4n3EHGNBXyvJCG-VkZsyJVXn-huyt2pV_Syhy0hsXRBVyLZwE1FHAyKM7bDMh3cmA8O0vr22iIkdFjKYGlwTHqf7HOA3Ix12jy56J4_7qIxzLXVWk0Y4F7fpPnWZlLaXUmdUAW5wQxlRGlVkJ7oYNugDcGAbkA1pCjZMdOmh1urMAn4m0WfWpBPQDe0YpB-Roawl1WgW6-q8ZHNz_-pA8Rhn7Phv8iOxt1tf-HXlkbzbn3XpI9kfj2fz7MMYLhtHEoWz-ZTr_fQvzJQdL |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqggRd8EZMKeAFiA1WJ44TOwuEWuioVWcGpClodsZPVCmdtJMpiJ_iG7k3j2ED3XXBKlJiS3F8cn2uH-cQ8tInJjiROUhLhGECchBWpIGzKAOPiVUuayxZvozldKrm8-LTBvnVn4XBbZV9TGwCta8czpHvcgnIATYv03fnFwxdo3B1tbfQaGFxHH7-gJStfnv0Afr3Feejg5P3h6xzFWBOcLliPpNGCWFEmlueG5PnJk2tshGV8CLQe-WUsyEk3APXCYVyPDNWeZlYO3QKJ0Ah5N8AGsGLZqvgbD2nwwHswK9acaM0LYa7EY86mbK5SGBmvDOE6wfAxifgX6NBM8SN7v5vH-ceudORabrXov8-2QiLB2RrslairR-S-awqcc6EmoWn08t2faqks9OzzresplWko2V7vsOU7CNqkdLWghjrHVy0YugU2D2d4PZFth_MWf2IfL6Wpj0mm4tqEZ4Qipr71kdRxNQIL4FVZYBsTPddIqQfDgjvu1i7TmodHT9KDSkX4kL_BRcD8mZd6bxVGrm6-D5iZ10UZcKbG9Xym-6ijpZSmsQZoGVeCGsLq_Ikh3TKRZMBL44D8hqRpzGYwQs6053JgGaiLJjek8DuYEzM5YDs9MjTXZSr9R_YbV_9-AW5dXgyGevx0fT4KbkNDUjbne87ZHO1vAzPyE33fXVaL583PxQlX68bpL8BbS5gRg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFLamDiE48BtRGOADiAtRG8eJnQNCG1tFtbVUGqByMv6JJmXt1nQg_jX-Ot5LnHKB3XbgFClxpCT-8vy9Z_v7CHnhUu0tzy2kJVwnHHKQpMw8S4LwLKRG2ryxZPl8JKZTOZ-Xsy3yq9sLg8squ5jYBGq3tFgjHzAByAE2L7JBiMsiZvujt2fnCTpI4UxrZ6fRQuTQ__wB6Vv9ZrwPff2SsdHBx3fvk-gwkFjOxDpxudCSc82zwrBC66LQWWakCaiKF4DqSyut8T5lDniPL6VluTbSidSYoZVYDIXwvw2UnLMe2Z6NJ7MvmwoPA-gD22qljrKsHA4CbnzSVXMQwNNYtIfrhsPGNeBfY0Mz4I1u_8-f6g65FWk23W3_i7tkyy_ukZuTjUZtfZ_Mj5cVVlOoXjg6vWhnrip6fHIaHc1qugx0tGp3fugq-YAqpbQ1J8b7Ds5bmXQKvJ9OcGFjsuf1af2AfLqSV3tIeovlwj8iFNX4jQu8DJnmTgDfygHzWAiwKRdu2Ces625lowg7eoFUCpIxxIj6C0b65PXmprNWg-Ty5nuIo01TFBBvTixX31SMR0oIoVOrgbA5zo0pjSzSAhItG3QOjDn0yStEocIwBw9oddytAa-JgmFqVwDvg9GyEH2y06FQxfhXqz8QfHz55efkOmBTHY2nh0_IDXj-rF0Sv0N669WFf0qu2e_rk3r1LP5dlHy9apT-BtTganw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+and+Numerical+Simulations+of+Fractional-Order+Governing+Equation+for+Micro-Beams&rft.jtitle=Fractal+and+fractional&rft.au=Yang%2C+Aimin&rft.au=Zhang%2C+Qunwei&rft.au=Qu%2C+Jingguo&rft.au=Cui%2C+Yuhuan&rft.date=2023-02-01&rft.pub=MDPI+AG&rft.issn=2504-3110&rft.eissn=2504-3110&rft.volume=7&rft.issue=2&rft_id=info:doi/10.3390%2Ffractalfract7020204&rft.externalDocID=A752115367 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-3110&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-3110&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-3110&client=summon |