Flexible statistical methods for estimating and testing effects in genomic studies with multiple conditions
We introduce new statistical methods for analyzing genomic data sets that measure many effects in many conditions (for example, gene expression changes under many treatments). These new methods improve on existing methods by allowing for arbitrary correlations in effect sizes among conditions. This...
Uložené v:
| Vydané v: | Nature genetics Ročník 51; číslo 1; s. 187 - 195 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Nature Publishing Group US
01.01.2019
Nature Publishing Group |
| Predmet: | |
| ISSN: | 1061-4036, 1546-1718, 1546-1718 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We introduce new statistical methods for analyzing genomic data sets that measure many effects in many conditions (for example, gene expression changes under many treatments). These new methods improve on existing methods by allowing for arbitrary correlations in effect sizes among conditions. This flexible approach increases power, improves effect estimates and allows for more quantitative assessments of effect-size heterogeneity compared to simple shared or condition-specific assessments. We illustrate these features through an analysis of locally acting variants associated with gene expression (cis expression quantitative trait loci (eQTLs)) in 44 human tissues. Our analysis identifies more eQTLs than existing approaches, consistent with improved power. We show that although genetic effects on expression are extensively shared among tissues, effect sizes can still vary greatly among tissues. Some shared eQTLs show stronger effects in subsets of biologically related tissues (for example, brain-related tissues), or in only one tissue (for example, testis). Our methods are widely applicable, computationally tractable for many conditions and available online.
Multivariate adaptive shrinkage (mash) is a method for estimating and testing multiple effects in multiple conditions. When applied to GTEx data, mash can be used to analyze sharing of eQTL effects by examining variation in effect sizes. |
|---|---|
| AbstractList | We introduce new statistical methods for analyzing genomic data sets that measure many effects in many conditions (for example, gene expression changes under many treatments). These new methods improve on existing methods by allowing for arbitrary correlations in effect sizes among conditions. This flexible approach increases power, improves effect estimates and allows for more quantitative assessments of effect-size heterogeneity compared to simple shared or condition-specific assessments. We illustrate these features through an analysis of locally acting variants associated with gene expression (cis expression quantitative trait loci (eQTLs)) in 44 human tissues. Our analysis identifies more eQTLs than existing approaches, consistent with improved power. We show that although genetic effects on expression are extensively shared among tissues, effect sizes can still vary greatly among tissues. Some shared eQTLs show stronger effects in subsets of biologically related tissues (for example, brain-related tissues), or in only one tissue (for example, testis). Our methods are widely applicable, computationally tractable for many conditions and available online.We introduce new statistical methods for analyzing genomic data sets that measure many effects in many conditions (for example, gene expression changes under many treatments). These new methods improve on existing methods by allowing for arbitrary correlations in effect sizes among conditions. This flexible approach increases power, improves effect estimates and allows for more quantitative assessments of effect-size heterogeneity compared to simple shared or condition-specific assessments. We illustrate these features through an analysis of locally acting variants associated with gene expression (cis expression quantitative trait loci (eQTLs)) in 44 human tissues. Our analysis identifies more eQTLs than existing approaches, consistent with improved power. We show that although genetic effects on expression are extensively shared among tissues, effect sizes can still vary greatly among tissues. Some shared eQTLs show stronger effects in subsets of biologically related tissues (for example, brain-related tissues), or in only one tissue (for example, testis). Our methods are widely applicable, computationally tractable for many conditions and available online. We introduce new statistical methods for analyzing genomic data sets that measure many effects in many conditions (for example, gene expression changes under many treatments). These new methods improve on existing methods by allowing for arbitrary correlations in effect sizes among conditions. This flexible approach increases power, improves effect estimates and allows for more quantitative assessments of effect-size heterogeneity compared to simple shared or condition-specific assessments. We illustrate these features through an analysis of locally acting variants associated with gene expression (cis expression quantitative trait loci (eQTLs)) in 44 human tissues. Our analysis identifies more eQTLs than existing approaches, consistent with improved power. We show that although genetic effects on expression are extensively shared among tissues, effect sizes can still vary greatly among tissues. Some shared eQTLs show stronger effects in subsets of biologically related tissues (for example, brain-related tissues), or in only one tissue (for example, testis). Our methods are widely applicable, computationally tractable for many conditions and available online. We introduce new statistical methods for analyzing genomic data sets that measure many effects in many conditions (for example, gene expression changes under many treatments). These new methods improve on existing methods by allowing for arbitrary correlations in effect sizes among conditions. This flexible approach increases power, improves effect estimates and allows for more quantitative assessments of effect-size heterogeneity compared to simple shared or condition-specific assessments. We illustrate these features through an analysis of locally acting variants associated with gene expression (cis expression quantitative trait loci (eQTLs)) in 44 human tissues. Our analysis identifies more eQTLs than existing approaches, consistent with improved power. We show that although genetic effects on expression are extensively shared among tissues, effect sizes can still vary greatly among tissues. Some shared eQTLs show stronger effects in subsets of biologically related tissues (for example, brain-related tissues), or in only one tissue (for example, testis). Our methods are widely applicable, computationally tractable for many conditions and available online. Multivariate adaptive shrinkage (mash) is a method for estimating and testing multiple effects in multiple conditions. When applied to GTEx data, mash can be used to analyze sharing of eQTL effects by examining variation in effect sizes. We introduce new statistical methods for analyzing genomic datasets that measure many effects in many conditions (e.g., gene expression changes under many treatments). These new methods improve on existing methods by allowing for arbitrary correlations in effect sizes among conditions. This flexible approach increases power, improves effect estimates, and allows for more quantitative assessments of effect-size heterogeneity compared to simple “shared/condition-specific” assessments. We illustrate these features through an analysis of locally-acting variants associated with gene expression (“cis eQTLs”) in 44 human tissues. Our analysis identifies more eQTLs than existing approaches, consistent with improved power. We show that while genetic effects on expression are extensively shared among tissues, effect sizes can still vary greatly among tissues. Some shared eQTLs show stronger effects in subsets of biologically related tissues (e.g., brain-related tissues), or in only one tissue (e.g., testis). Our methods are widely applicable, computationally tractable for many conditions, and available online. |
| Author | Stephens, Matthew Urbut, Sarah M. Wang, Gao Carbonetto, Peter |
| AuthorAffiliation | 2 Department of Human Genetics, University of Chicago, Chicago, IL, USA 1 Pritzker School of Medicine, Growth & Development Training Program, University of Chicago, Chicago, IL, USA 4 Research Computing Center, University of Chicago, Chicago, IL, USA 3 Department of Statistics, University of Chicago, Chicago, IL, USA |
| AuthorAffiliation_xml | – name: 3 Department of Statistics, University of Chicago, Chicago, IL, USA – name: 1 Pritzker School of Medicine, Growth & Development Training Program, University of Chicago, Chicago, IL, USA – name: 2 Department of Human Genetics, University of Chicago, Chicago, IL, USA – name: 4 Research Computing Center, University of Chicago, Chicago, IL, USA |
| Author_xml | – sequence: 1 givenname: Sarah M. orcidid: 0000-0002-1135-9647 surname: Urbut fullname: Urbut, Sarah M. organization: Pritzker School of Medicine, Growth & Development Training Program, University of Chicago, Department of Human Genetics, University of Chicago – sequence: 2 givenname: Gao orcidid: 0000-0001-9336-402X surname: Wang fullname: Wang, Gao organization: Department of Human Genetics, University of Chicago – sequence: 3 givenname: Peter orcidid: 0000-0003-1144-6780 surname: Carbonetto fullname: Carbonetto, Peter organization: Department of Human Genetics, University of Chicago, Research Computing Center, University of Chicago – sequence: 4 givenname: Matthew orcidid: 0000-0001-5397-9257 surname: Stephens fullname: Stephens, Matthew email: mstephens@uchicago.edu organization: Department of Human Genetics, University of Chicago, Department of Statistics, University of Chicago |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30478440$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UU1v1TAQtFAR_YAfwAVZ4tJLwBs7jnNBQhUFpEpc4Gw5zuY9l8R-xE6Bf999eqVAJThY3vXOjHc0p-wopoiMPQfxCoQ0r7OCxphKAJ1am8o8YifQKF1BC-aIaqGhUkLqY3aa87UQoJQwT9ixFKo1VJ-wr5cT_gj9hDwXV0IuwbuJz1i2ach8TAtHeptpFDfcxYGXfU81jiP6knmIfIMxzcGTwjoEzPx7KFs-r1MJO9L1KQ6hhBTzU_Z4dFPGZ3f3Gfty-e7zxYfq6tP7jxdvryqv6rZUvgOoOzk6I5XXshaNUy046QYnO617J0D7foQOawQhRG98K_qma4g3oPLyjL056O7WfsbBYyyLm-xuIR_LT5tcsH9PYtjaTbqxWopOi44Ezu8ElvRtJcN2DtnjNLmIac22Bmm06kBLgr58AL1O6xLJHqE01Fp3jSLUiz83ul_lVw4EgAPALynnBcd7CAi7z9oesraUtd1nbQ1x2gccH_YZpr2pMP2XWR-YmX6JG1x-L_1v0i3ryr9G |
| CitedBy_id | crossref_primary_10_1093_nar_gkaa767 crossref_primary_10_1016_j_ebiom_2025_105821 crossref_primary_10_1126_science_aaw7317 crossref_primary_10_1038_s41588_020_0706_2 crossref_primary_10_1534_genetics_120_303038 crossref_primary_10_1038_s41431_019_0468_4 crossref_primary_10_1038_s41598_022_21003_y crossref_primary_10_1038_s41467_025_60275_6 crossref_primary_10_1016_j_ajhg_2024_01_006 crossref_primary_10_1016_j_jpsychires_2024_11_033 crossref_primary_10_1038_s41588_021_00800_7 crossref_primary_10_1038_s41588_023_01585_7 crossref_primary_10_1371_journal_pgen_1010557 crossref_primary_10_1038_s42003_022_03408_7 crossref_primary_10_1016_j_jgg_2023_05_003 crossref_primary_10_1038_s41467_024_53602_w crossref_primary_10_1038_s43586_022_00188_6 crossref_primary_10_1093_plcell_koac279 crossref_primary_10_1038_s41598_020_80145_z crossref_primary_10_1002_wcms_70042 crossref_primary_10_1371_journal_pgen_1011519 crossref_primary_10_1038_s41593_024_01636_0 crossref_primary_10_1016_j_ajhg_2025_07_003 crossref_primary_10_1126_science_abg0928 crossref_primary_10_1007_s00122_022_04096_x crossref_primary_10_3389_fpls_2024_1356619 crossref_primary_10_1126_science_abm4917 crossref_primary_10_1038_s41467_022_33212_0 crossref_primary_10_15252_msb_202110663 crossref_primary_10_3389_fgene_2025_1597005 crossref_primary_10_1126_science_aaz1776 crossref_primary_10_3389_fgene_2023_1143395 crossref_primary_10_1371_journal_pgen_1010539 crossref_primary_10_1158_0008_5472_CAN_24_0521 crossref_primary_10_1371_journal_pgen_1009666 crossref_primary_10_1016_j_ajhg_2021_11_017 crossref_primary_10_1158_0008_5472_CAN_21_1207 crossref_primary_10_1097_CORR_0000000000003679 crossref_primary_10_3390_ijms26188806 crossref_primary_10_3389_fpls_2022_790005 crossref_primary_10_12688_f1000research_20843_1 crossref_primary_10_1186_s13059_021_02334_x crossref_primary_10_1186_s13073_020_00790_x crossref_primary_10_1016_j_ajhg_2023_04_005 crossref_primary_10_1016_j_ajhg_2024_06_012 crossref_primary_10_1038_s41588_021_00924_w crossref_primary_10_1038_s41588_024_01973_7 crossref_primary_10_3389_fimmu_2023_1129577 crossref_primary_10_1515_sagmb_2023_0041 crossref_primary_10_1146_annurev_biodatasci_122120_010010 crossref_primary_10_1186_s13058_024_01809_6 crossref_primary_10_1016_j_compbiomed_2024_108108 crossref_primary_10_1186_s13073_024_01397_2 crossref_primary_10_1214_21_AOS2139 crossref_primary_10_1007_s10238_023_01215_w crossref_primary_10_1038_s41586_022_05052_x crossref_primary_10_1080_00401706_2023_2257760 crossref_primary_10_1016_j_jpsychires_2020_02_012 crossref_primary_10_1038_s41593_021_00886_6 crossref_primary_10_1038_s41467_024_53131_6 crossref_primary_10_1038_s43588_021_00087_y crossref_primary_10_1371_journal_pone_0236209 crossref_primary_10_1038_s41588_025_02155_9 crossref_primary_10_1016_j_molp_2021_03_010 crossref_primary_10_1177_11779322241281188 crossref_primary_10_1038_s41598_022_19106_7 crossref_primary_10_1038_s41467_020_17477_x crossref_primary_10_1038_s41467_023_35888_4 crossref_primary_10_1111_tpj_15853 crossref_primary_10_1101_gr_280219_124 crossref_primary_10_1016_j_immuni_2024_07_021 crossref_primary_10_1038_s41588_024_01668_z crossref_primary_10_1038_s41593_022_01182_7 crossref_primary_10_1016_j_xgen_2025_100812 crossref_primary_10_1371_journal_pgen_1011553 crossref_primary_10_1126_science_aaz8528 crossref_primary_10_1038_s41588_022_01066_3 crossref_primary_10_1038_s41588_022_01237_2 crossref_primary_10_1002_gepi_22425 crossref_primary_10_1038_s41467_022_34360_z crossref_primary_10_1186_s13293_024_00682_4 crossref_primary_10_1038_s41588_022_01153_5 crossref_primary_10_1038_s41586_020_03127_1 crossref_primary_10_1038_s41588_021_00801_6 crossref_primary_10_1371_journal_pcbi_1008315 crossref_primary_10_1016_j_xgen_2025_100820 crossref_primary_10_1016_j_ebiom_2025_105675 crossref_primary_10_1186_s13073_021_00967_y crossref_primary_10_1016_j_ajo_2021_06_014 crossref_primary_10_1038_s41467_025_61670_9 crossref_primary_10_1038_s41467_025_62463_w crossref_primary_10_7554_eLife_99210 crossref_primary_10_1371_journal_pone_0292089 crossref_primary_10_1016_j_ajhg_2022_03_005 crossref_primary_10_1016_j_ajhg_2022_03_007 crossref_primary_10_1080_00218839_2025_2455852 crossref_primary_10_7555_JBR_39_20250066 crossref_primary_10_1007_s00439_023_02568_8 crossref_primary_10_1038_s41588_024_02070_5 crossref_primary_10_1080_01621459_2024_2422124 crossref_primary_10_1016_j_jaci_2019_12_910 crossref_primary_10_1111_rssb_12323 crossref_primary_10_1002_pld3_416 crossref_primary_10_1038_s41591_023_02509_y crossref_primary_10_1093_pcp_pcae079 crossref_primary_10_1038_s41588_021_00976_y crossref_primary_10_1101_gr_279957_124 crossref_primary_10_1186_s13148_021_01188_1 crossref_primary_10_1016_j_gde_2025_102374 crossref_primary_10_1002_advs_202411974 crossref_primary_10_1038_s41588_024_01776_w crossref_primary_10_1038_s41467_024_45652_x crossref_primary_10_1126_science_adh4265 crossref_primary_10_7554_eLife_74970 crossref_primary_10_1038_s41588_024_01702_0 crossref_primary_10_1038_s41588_023_01530_8 crossref_primary_10_1038_s41593_022_01031_7 crossref_primary_10_1038_s41588_022_01248_z crossref_primary_10_1038_s41467_021_22206_z crossref_primary_10_1002_cac2_70042 crossref_primary_10_1038_s41467_024_44935_7 crossref_primary_10_1016_j_biopsych_2021_03_020 crossref_primary_10_1038_s41467_025_61669_2 crossref_primary_10_1126_science_abn2253 crossref_primary_10_1038_s41588_021_00909_9 crossref_primary_10_1093_plcell_koac322 crossref_primary_10_1038_s41588_024_02057_2 crossref_primary_10_1038_s41588_025_02266_3 crossref_primary_10_1002_gepi_22346 crossref_primary_10_1038_s41467_022_33628_8 crossref_primary_10_1016_j_cell_2021_08_025 crossref_primary_10_1080_13506129_2021_2018678 crossref_primary_10_1038_s41588_024_02019_8 crossref_primary_10_1038_s41467_025_61192_4 crossref_primary_10_1038_s41588_023_01648_9 crossref_primary_10_17586_2226_1494_2025_25_3_487_497 crossref_primary_10_1038_s41467_024_48048_z crossref_primary_10_1371_journal_pgen_1008977 crossref_primary_10_1073_pnas_2400413121 crossref_primary_10_1038_s41593_024_01742_z crossref_primary_10_1038_s41588_021_00864_5 crossref_primary_10_1016_j_ajhg_2022_04_003 crossref_primary_10_1093_genetics_iyab087 crossref_primary_10_1038_s41588_024_01701_1 crossref_primary_10_1101_gr_276765_122 crossref_primary_10_1016_j_ajhg_2022_12_005 crossref_primary_10_1038_s41588_023_01390_2 crossref_primary_10_3390_genes16010084 crossref_primary_10_1016_j_ajhg_2024_04_010 crossref_primary_10_1038_s41467_023_36638_2 crossref_primary_10_1161_ATVBAHA_122_318213 crossref_primary_10_1038_s41467_023_44191_1 crossref_primary_10_1038_s41593_024_01773_6 crossref_primary_10_1007_s00439_021_02305_z crossref_primary_10_1016_j_ajhg_2025_06_006 crossref_primary_10_1093_g3journal_jkad229 crossref_primary_10_1038_s41467_020_20578_2 crossref_primary_10_1016_j_isci_2023_107854 crossref_primary_10_1093_molbev_msac239 crossref_primary_10_1371_journal_pbio_3001723 crossref_primary_10_1038_s41588_023_01545_1 crossref_primary_10_1186_s13293_024_00659_3 crossref_primary_10_1016_j_jspi_2023_06_003 crossref_primary_10_1126_science_ads6601 crossref_primary_10_1371_journal_pgen_1008431 crossref_primary_10_1093_jnci_djae041 crossref_primary_10_1016_j_ajhg_2024_09_004 crossref_primary_10_1093_nar_gkae1022 crossref_primary_10_1038_s41467_022_35742_z crossref_primary_10_7554_eLife_99210_3 crossref_primary_10_1007_s00439_019_02044_2 crossref_primary_10_1186_s13059_020_02125_w crossref_primary_10_1016_j_biopsych_2023_01_023 crossref_primary_10_1038_s41588_019_0521_9 crossref_primary_10_1186_s12967_025_06570_8 crossref_primary_10_1016_j_bbi_2023_03_004 crossref_primary_10_1016_j_cell_2021_03_056 crossref_primary_10_1038_s41467_024_46675_0 crossref_primary_10_1016_j_ajhg_2024_10_010 crossref_primary_10_1038_s41598_025_12342_7 crossref_primary_10_1038_s41588_025_02169_3 crossref_primary_10_1038_s41588_021_00879_y crossref_primary_10_1111_acel_14266 crossref_primary_10_1016_j_xgen_2025_100775 crossref_primary_10_1038_s41467_024_49924_4 crossref_primary_10_1016_j_cell_2021_03_050 crossref_primary_10_1016_j_csbj_2024_05_050 crossref_primary_10_1007_s40300_025_00293_y crossref_primary_10_1038_s41576_024_00709_x crossref_primary_10_1111_nph_20241 crossref_primary_10_1126_science_aba3066 crossref_primary_10_1136_gutjnl_2024_332121 crossref_primary_10_3389_fgene_2023_1221148 crossref_primary_10_1038_s41593_022_01197_0 crossref_primary_10_1002_gepi_22380 crossref_primary_10_1038_s41591_024_02858_2 crossref_primary_10_1111_nph_19937 crossref_primary_10_1016_j_envexpbot_2021_104740 |
| Cites_doi | 10.1371/journal.pgen.0030114 10.1038/ng.3330 10.1371/journal.pgen.1000888 10.1038/ng.3570 10.1111/j.1467-9469.2007.00585.x 10.1214/10-AOAS338 10.1534/genetics.115.176107 10.1214/13-AOAS695 10.1126/science.1174148 10.1126/science.1262110 10.1038/nmeth.2848 10.1371/journal.pgen.1000895 10.1214/10-AOAS439 10.1038/srep16882 10.1371/journal.pcbi.1000737 10.1371/journal.pgen.1000214 10.1371/journal.pgen.1004383 10.1371/journal.pgen.1003491 10.1371/journal.pgen.1001117 10.1371/journal.pgen.1005875 10.1038/ng1847 10.1371/journal.pgen.1003486 10.1534/genetics.114.167908 10.1016/j.ajhg.2011.04.014 10.1093/bioinformatics/bts163 10.1093/biostatistics/kxx048 10.1371/journal.pone.0065245 10.1214/aos/1074290335 10.1093/biostatistics/kxu038 10.1371/journal.pgen.1002555 10.1126/science.185.4157.1124 10.1214/07-STS236 10.1371/journal.pgen.1004722 10.1111/j.2517-6161.1995.tb02031.x 10.1515/1544-6115.1660 10.1111/j.2517-6161.1977.tb01600.x 10.2202/1544-6115.1503 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2018 Copyright Nature Publishing Group Jan 2019 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2018 – notice: Copyright Nature Publishing Group Jan 2019 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SS 7T7 7TK 7TM 7U9 7X7 7XB 88A 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM |
| DOI | 10.1038/s41588-018-0268-8 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Research Library Prep |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture Biology Statistics |
| EISSN | 1546-1718 |
| EndPage | 195 |
| ExternalDocumentID | PMC6309609 30478440 10_1038_s41588_018_0268_8 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH101822 – fundername: NIMH NIH HHS grantid: R01 MH101810 – fundername: NHGRI NIH HHS grantid: R56 HG002585 – fundername: NIDA NIH HHS grantid: R01 DA006227 – fundername: CCR NIH HHS grantid: HHSN261200800001C – fundername: NIMH NIH HHS grantid: R01 MH101819 – fundername: NIMH NIH HHS grantid: R01 MH090936 – fundername: NIDA NIH HHS grantid: R01 DA033684 – fundername: NHGRI NIH HHS grantid: R01 HG002585 – fundername: NIMH NIH HHS grantid: R01 MH101820 |
| GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29M 2FS 36B 39C 3O- 3V. 4.4 53G 5BI 5M7 5RE 5S5 70F 7X7 85S 88A 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAEEF AAHBH AARCD AAYOK AAYZH AAZLF ABAWZ ABCQX ABDBF ABDPE ABEFU ABJNI ABLJU ABOCM ABTAH ABUWG ACBWK ACGFO ACGFS ACIWK ACMJI ACNCT ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFFNX AFKRA AFRAH AFSHS AGAYW AGCDD AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 DWQXO EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH GX1 HCIFZ HMCUK HVGLF HZ~ IAO IH2 IHR INH INR IOV ISR ITC L7B LGEZI LK8 LOTEE M0L M1P M2O M7P MVM N9A NADUK NNMJJ NXXTH ODYON P2P PKN PQQKQ PROAC PSQYO Q2X RIG RNS RNT RNTTT RVV SHXYY SIXXV SJN SNYQT SOJ SV3 TAOOD TBHMF TDRGL TN5 TSG TUS UKHRP VQA X7M XJT XOL Y6R YHZ ZGI ZXP ZY4 ~8M ~KM AAYXX AETEA AFANA AFFHD AGSTI AIEIU ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NFIDA NPM 7QL 7QP 7QR 7SS 7T7 7TK 7TM 7U9 7XB 8FD 8FK ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c427t-c911293fa834c63205a471a3ada3966ba016cbf19e2e1000b8c70b595911de4c3 |
| IEDL.DBID | 8C1 |
| ISICitedReferencesCount | 231 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454108800026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1061-4036 1546-1718 |
| IngestDate | Tue Nov 04 01:55:30 EST 2025 Sun Nov 09 12:19:40 EST 2025 Fri Oct 03 09:41:55 EDT 2025 Thu Apr 03 07:07:53 EDT 2025 Sat Nov 29 03:07:09 EST 2025 Tue Nov 18 22:37:50 EST 2025 Fri Feb 21 02:39:07 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c427t-c911293fa834c63205a471a3ada3966ba016cbf19e2e1000b8c70b595911de4c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions S.M.U. and M.S. conceived of the project and developed the statistical methods. S.M.U. implemented the comparisons with simulated data. S.M.U. and G.W. performed the analyses of the GTEx data, and additional analyses. S.M.U., G.W. and M.S. implemented the software, with contributions from P.C. S.M.U. and M.S. wrote the manuscript, with input from G.W. and P.C. P.C. and G.W. prepared the online code and data resources. |
| ORCID | 0000-0003-1144-6780 0000-0002-1135-9647 0000-0001-9336-402X 0000-0001-5397-9257 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6309609 |
| PMID | 30478440 |
| PQID | 2161266954 |
| PQPubID | 33429 |
| PageCount | 9 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6309609 proquest_miscellaneous_2138649163 proquest_journals_2161266954 pubmed_primary_30478440 crossref_primary_10_1038_s41588_018_0268_8 crossref_citationtrail_10_1038_s41588_018_0268_8 springer_journals_10_1038_s41588_018_0268_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-01-01 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Nature genetics |
| PublicationTitleAbbrev | Nat Genet |
| PublicationTitleAlternate | Nat Genet |
| PublicationYear | 2019 |
| Publisher | Nature Publishing Group US Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
| References | Varadhan, Roland (CR38) 2008; 35 Engelhardt, Stephens (CR21) 2010; 6 Moyerbrailean (CR29) 2016; 12 Veyrieras (CR25) 2008; 4 Nica (CR32) 2010; 6 Shabalin (CR19) 2012; 28 Efron (CR39) 2008; 23 CR15 Stephens (CR10) 2013; 8 Benjamini, Hochberg (CR33) 1995; 57 Larribe, Fearnhead (CR36) 2011; 21 Storey (CR34) 2003; 31 Blischak, Tailleux, Mitrano, Barreiro, Gilad (CR1) 2015; 5 Pickrell, Berisa, Ségurel, Tung, Hinds (CR3) 2016; 48 Wen, Stephens (CR8) 2010; 4 Price (CR20) 2006; 38 Wen, Stephens (CR23) 2014; 8 Dempster, Laird, Rubin (CR37) 1977; 39 Bovy, Hogg, Roweis (CR35) 2011; 5 CR2 Petretto (CR7) 2010; 6 Li, Shabalin, Rusyn, Wright, Nobel (CR6) 2017; 19 Han, Eskin (CR9) 2011; 88 Hormozdiari, Kostem, Kang, Pasaniuc, Eskin (CR26) 2014; 198 Servin, Stephens (CR24) 2007; 3 Tversky, Kahneman (CR22) 1974; 185 Giambartolomei (CR30) 2014; 10 Stephens (CR16) 2017; 18 (CR17) 2015; 348 Fortune (CR31) 2015; 47 Sul, Han, Ye, Choi, Eskin (CR11) 2013; 9 Dimas (CR4) 2009; 325 Zhou, Stephens (CR13) 2014; 11 Flutre, Wen, Pritchard, Stephens (CR5) 2013; 9 Wei, Tenzen, Ji (CR12) 2015; 16 Han, Eskin (CR14) 2012; 8 Kichaev (CR27) 2014; 10 Nicolae (CR18) 2010; 6 Chen (CR28) 2015; 200 GA Moyerbrailean (268_CR29) 2016; 12 AA Shabalin (268_CR19) 2012; 28 B Servin (268_CR24) 2007; 3 268_CR2 G Kichaev (268_CR27) 2014; 10 268_CR15 M Stephens (268_CR10) 2013; 8 X Wen (268_CR23) 2014; 8 AC Nica (268_CR32) 2010; 6 J Bovy (268_CR35) 2011; 5 AP Dempster (268_CR37) 1977; 39 JB Veyrieras (268_CR25) 2008; 4 AL Price (268_CR20) 2006; 38 B Han (268_CR9) 2011; 88 G Li (268_CR6) 2017; 19 F Larribe (268_CR36) 2011; 21 T Flutre (268_CR5) 2013; 9 E Petretto (268_CR7) 2010; 6 BMicroarrays Efron (268_CR39) 2008; 23 A Tversky (268_CR22) 1974; 185 C Giambartolomei (268_CR30) 2014; 10 GTEx Consortium. (268_CR17) 2015; 348 J Pickrell (268_CR3) 2016; 48 M Stephens (268_CR16) 2017; 18 X Wen (268_CR8) 2010; 4 X Zhou (268_CR13) 2014; 11 DL Nicolae (268_CR18) 2010; 6 JD Blischak (268_CR1) 2015; 5 Y Benjamini (268_CR33) 1995; 57 JD Storey (268_CR34) 2003; 31 AS Dimas (268_CR4) 2009; 325 W Chen (268_CR28) 2015; 200 MD Fortune (268_CR31) 2015; 47 R Varadhan (268_CR38) 2008; 35 JH Sul (268_CR11) 2013; 9 BE Engelhardt (268_CR21) 2010; 6 B Han (268_CR14) 2012; 8 F Hormozdiari (268_CR26) 2014; 198 Y Wei (268_CR12) 2015; 16 |
| References_xml | – volume: 3 start-page: e114 year: 2007 ident: CR24 article-title: Imputation-based analysis of association studies: candidate regions and quantitative traits publication-title: PLoS Genet. doi: 10.1371/journal.pgen.0030114 – volume: 47 start-page: 839 year: 2015 end-page: 846 ident: CR31 article-title: Statistical colocalization of genetic risk variants for related autoimmune diseases in the context of common controls publication-title: Nat. Genet. doi: 10.1038/ng.3330 – volume: 6 start-page: e1000888 year: 2010 ident: CR18 article-title: Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000888 – volume: 48 start-page: 709 year: 2016 end-page: 717 ident: CR3 article-title: Detection and interpretation of shared genetic influences on 40 human traits publication-title: Nat. Genet. doi: 10.1038/ng.3570 – volume: 35 start-page: 335 year: 2008 end-page: 353 ident: CR38 article-title: Simple and globally convergent methods for accelerating the convergence of any EM algorithm publication-title: Scand. J. Stat. doi: 10.1111/j.1467-9469.2007.00585.x – volume: 4 start-page: 1158 year: 2010 end-page: 1182 ident: CR8 article-title: Using linear predictors to impute allele frequencies from summary of pooled genotype data publication-title: Ann. Appl. Stat. doi: 10.1214/10-AOAS338 – volume: 57 start-page: 289 year: 1995 end-page: 300 ident: CR33 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc. Series B Stat. Methodol. – volume: 200 start-page: 719 year: 2015 end-page: 736 ident: CR28 article-title: Fine mapping causal variants with an approximate Bayesian method using marginal test statistics publication-title: Genetics doi: 10.1534/genetics.115.176107 – ident: CR2 – volume: 18 start-page: 275 year: 2017 end-page: 294 ident: CR16 article-title: False discovery rates: a new deal publication-title: Biostatistics – volume: 8 start-page: 176 year: 2014 end-page: 203 ident: CR23 article-title: Bayesian methods for genetic association analysis with heterogeneous subgroups: from meta-analyses to gene-environment interactions publication-title: Ann. Appl. Stat. doi: 10.1214/13-AOAS695 – volume: 325 start-page: 1246 year: 2009 end-page: 1250 ident: CR4 article-title: Common regulatory variation impacts gene expression in a cell type-dependent manner publication-title: Science doi: 10.1126/science.1174148 – volume: 348 start-page: 648 year: 2015 end-page: 660 ident: CR17 article-title: The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans publication-title: Science doi: 10.1126/science.1262110 – volume: 11 start-page: 407 year: 2014 end-page: 409 ident: CR13 article-title: Efficient multivariate linear mixed model algorithms for genome-wide association studies publication-title: Nat. Methods doi: 10.1038/nmeth.2848 – volume: 6 start-page: e1000895 year: 2010 ident: CR32 article-title: Candidate causal regulatory effects by integration of expression QTLs with complex trait genetic associations publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000895 – volume: 5 start-page: 1657 year: 2011 end-page: 1677 ident: CR35 article-title: Extreme Deconvolution: inferring complete distribution functions from noisy, heterogeneous and incomplete observations publication-title: Ann. Appl. Stat. doi: 10.1214/10-AOAS439 – volume: 5 year: 2015 ident: CR1 article-title: Mycobacterial infection induces a specific human innate immune response publication-title: Sci. Rep. doi: 10.1038/srep16882 – volume: 6 start-page: e1000737 year: 2010 ident: CR7 article-title: New insights into the genetic control of gene expression using a Bayesian multi-tissue approach publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000737 – volume: 4 start-page: e1000214 year: 2008 ident: CR25 article-title: High-resolution mapping of expression-QTLs yields insight into human gene regulation publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000214 – volume: 10 start-page: e1004383 year: 2014 ident: CR30 article-title: Bayesian test for colocalisation between pairs of genetic association studies using summary statistics publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004383 – volume: 9 start-page: e1003491 year: 2013 ident: CR11 article-title: Effectively identifying eQTLs from multiple tissues by combining mixed model and meta-analytic approaches publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003491 – volume: 6 start-page: e1001117 year: 2010 ident: CR21 article-title: Analysis of population structure: a unifying framework and novel methods based on sparse factor analysis publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1001117 – volume: 12 start-page: e1005875 year: 2016 ident: CR29 article-title: Which genetic variants in DNase-seq footprints are more likely to alter binding? publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1005875 – volume: 38 start-page: 904 year: 2006 end-page: 909 ident: CR20 article-title: Principal components analysis corrects for stratification in genome-wide association studies publication-title: Nat. Genet. doi: 10.1038/ng1847 – volume: 9 start-page: e1003486 year: 2013 ident: CR5 article-title: A statistical framework for joint eQTL analysis in multiple tissues publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003486 – volume: 198 start-page: 497 year: 2014 end-page: 508 ident: CR26 article-title: Identifying causal variants at loci with multiple signals of association publication-title: Genetics doi: 10.1534/genetics.114.167908 – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: CR37 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. Series B Stat. Methodol. – volume: 88 start-page: 586 year: 2011 end-page: 598 ident: CR9 article-title: Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2011.04.014 – ident: CR15 – volume: 28 start-page: 1353 year: 2012 end-page: 1358 ident: CR19 article-title: Matrix eQTL: ultra fast eQTL analysis via large matrix operations publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts163 – volume: 19 start-page: 391 year: 2017 end-page: 406 ident: CR6 article-title: An Empirical Bayes approach for multiple tissue eQTL Analysis publication-title: Biostatistics doi: 10.1093/biostatistics/kxx048 – volume: 21 start-page: 43 year: 2011 end-page: 69 ident: CR36 article-title: Composite likelihood methods in statistical genetics publication-title: Stat. Sin. – volume: 8 start-page: e65245 year: 2013 ident: CR10 article-title: Unified framework for association analysis with multiple related phenotypes publication-title: PLoS One doi: 10.1371/journal.pone.0065245 – volume: 31 start-page: 2013 year: 2003 end-page: 2035 ident: CR34 article-title: The positive false discovery rate: a Bayesian interpretation and the -value publication-title: Ann. Stat. doi: 10.1214/aos/1074290335 – volume: 16 start-page: 31 year: 2015 end-page: 46 ident: CR12 article-title: Joint analysis of differential gene expression in multiple studies using correlation motifs publication-title: Biostatistics doi: 10.1093/biostatistics/kxu038 – volume: 8 start-page: e1002555 year: 2012 ident: CR14 article-title: Interpreting meta-analyses of genome-wide association studies publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002555 – volume: 185 start-page: 1124 year: 1974 end-page: 1131 ident: CR22 article-title: Judgment under uncertainty: heuristics and biases publication-title: Science doi: 10.1126/science.185.4157.1124 – volume: 23 start-page: 1 year: 2008 end-page: 22 ident: CR39 article-title: empirical Bayes and the two-groups model publication-title: Stat. Sci. doi: 10.1214/07-STS236 – volume: 10 start-page: e1004722 year: 2014 ident: CR27 article-title: Integrating functional data to prioritize causal variants in statistical fine-mapping studies publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004722 – volume: 48 start-page: 709 year: 2016 ident: 268_CR3 publication-title: Nat. Genet. doi: 10.1038/ng.3570 – volume: 12 start-page: e1005875 year: 2016 ident: 268_CR29 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1005875 – volume: 57 start-page: 289 year: 1995 ident: 268_CR33 publication-title: J. R. Stat. Soc. Series B Stat. Methodol. doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 88 start-page: 586 year: 2011 ident: 268_CR9 publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2011.04.014 – ident: 268_CR2 doi: 10.1515/1544-6115.1660 – volume: 31 start-page: 2013 year: 2003 ident: 268_CR34 publication-title: Ann. Stat. doi: 10.1214/aos/1074290335 – volume: 23 start-page: 1 year: 2008 ident: 268_CR39 publication-title: Stat. Sci. doi: 10.1214/07-STS236 – volume: 8 start-page: e65245 year: 2013 ident: 268_CR10 publication-title: PLoS One doi: 10.1371/journal.pone.0065245 – volume: 38 start-page: 904 year: 2006 ident: 268_CR20 publication-title: Nat. Genet. doi: 10.1038/ng1847 – volume: 198 start-page: 497 year: 2014 ident: 268_CR26 publication-title: Genetics doi: 10.1534/genetics.114.167908 – volume: 325 start-page: 1246 year: 2009 ident: 268_CR4 publication-title: Science doi: 10.1126/science.1174148 – volume: 6 start-page: e1001117 year: 2010 ident: 268_CR21 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1001117 – volume: 200 start-page: 719 year: 2015 ident: 268_CR28 publication-title: Genetics doi: 10.1534/genetics.115.176107 – volume: 9 start-page: e1003491 year: 2013 ident: 268_CR11 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003491 – volume: 21 start-page: 43 year: 2011 ident: 268_CR36 publication-title: Stat. Sin. – volume: 5 start-page: 1657 year: 2011 ident: 268_CR35 publication-title: Ann. Appl. Stat. doi: 10.1214/10-AOAS439 – volume: 35 start-page: 335 year: 2008 ident: 268_CR38 publication-title: Scand. J. Stat. doi: 10.1111/j.1467-9469.2007.00585.x – volume: 5 year: 2015 ident: 268_CR1 publication-title: Sci. Rep. doi: 10.1038/srep16882 – volume: 6 start-page: e1000895 year: 2010 ident: 268_CR32 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000895 – volume: 28 start-page: 1353 year: 2012 ident: 268_CR19 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts163 – volume: 10 start-page: e1004722 year: 2014 ident: 268_CR27 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004722 – volume: 4 start-page: 1158 year: 2010 ident: 268_CR8 publication-title: Ann. Appl. Stat. doi: 10.1214/10-AOAS338 – volume: 6 start-page: e1000888 year: 2010 ident: 268_CR18 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000888 – volume: 185 start-page: 1124 year: 1974 ident: 268_CR22 publication-title: Science doi: 10.1126/science.185.4157.1124 – volume: 3 start-page: e114 year: 2007 ident: 268_CR24 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.0030114 – volume: 39 start-page: 1 year: 1977 ident: 268_CR37 publication-title: J. R. Stat. Soc. Series B Stat. Methodol. doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 8 start-page: 176 year: 2014 ident: 268_CR23 publication-title: Ann. Appl. Stat. doi: 10.1214/13-AOAS695 – volume: 8 start-page: e1002555 year: 2012 ident: 268_CR14 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002555 – volume: 11 start-page: 407 year: 2014 ident: 268_CR13 publication-title: Nat. Methods doi: 10.1038/nmeth.2848 – volume: 348 start-page: 648 year: 2015 ident: 268_CR17 publication-title: Science doi: 10.1126/science.1262110 – volume: 6 start-page: e1000737 year: 2010 ident: 268_CR7 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000737 – volume: 10 start-page: e1004383 year: 2014 ident: 268_CR30 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004383 – volume: 16 start-page: 31 year: 2015 ident: 268_CR12 publication-title: Biostatistics doi: 10.1093/biostatistics/kxu038 – ident: 268_CR15 doi: 10.2202/1544-6115.1503 – volume: 4 start-page: e1000214 year: 2008 ident: 268_CR25 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000214 – volume: 19 start-page: 391 year: 2017 ident: 268_CR6 publication-title: Biostatistics doi: 10.1093/biostatistics/kxx048 – volume: 18 start-page: 275 year: 2017 ident: 268_CR16 publication-title: Biostatistics – volume: 47 start-page: 839 year: 2015 ident: 268_CR31 publication-title: Nat. Genet. doi: 10.1038/ng.3330 – volume: 9 start-page: e1003486 year: 2013 ident: 268_CR5 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003486 |
| SSID | ssj0014408 |
| Score | 2.6653025 |
| Snippet | We introduce new statistical methods for analyzing genomic data sets that measure many effects in many conditions (for example, gene expression changes under... We introduce new statistical methods for analyzing genomic datasets that measure many effects in many conditions (e.g., gene expression changes under many... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 187 |
| SubjectTerms | 38 45 45/23 45/43 45/91 631/208/212 639/705/531 Agriculture Animal Genetics and Genomics Assessments Biomedical and Life Sciences Biomedicine Brain Cancer Research Data processing Estimates Gene expression Gene Expression - genetics Gene Expression Profiling - statistics & numerical data Gene Expression Regulation - genetics Gene Function Gene mapping Genetic effects Genetics Genomics - statistics & numerical data Heterogeneity Human Genetics Human tissues Humans Polymorphism, Single Nucleotide - genetics Power Principal components analysis Quantitative trait loci Quantitative Trait Loci - genetics Statistical methods Statistics technical-report Tissue analysis Tissues |
| Title | Flexible statistical methods for estimating and testing effects in genomic studies with multiple conditions |
| URI | https://link.springer.com/article/10.1038/s41588-018-0268-8 https://www.ncbi.nlm.nih.gov/pubmed/30478440 https://www.proquest.com/docview/2161266954 https://www.proquest.com/docview/2138649163 https://pubmed.ncbi.nlm.nih.gov/PMC6309609 |
| Volume | 51 |
| WOSCitedRecordID | wos000454108800026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1546-1718 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0014408 issn: 1061-4036 databaseCode: M7P dateStart: 20000101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1546-1718 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0014408 issn: 1061-4036 databaseCode: 7X7 dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1546-1718 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0014408 issn: 1061-4036 databaseCode: BENPR dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1546-1718 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0014408 issn: 1061-4036 databaseCode: 8C1 dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1546-1718 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0014408 issn: 1061-4036 databaseCode: M2O dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xDaS9MBg_FjYqI_EEipbFqX15Qtu0igcoFQKpb5HtOFAx0m3pkPjvuYuTTGViLzw0ahq7rXV3ue98l-8AXlurqkxXMla5ymKuI4xz78jw0KJEzI0v2weFP-jpFOfzfNZtuDVdWWV_T2xv1OXS8R75YUrQhJxJPs7eXVzG3DWKs6tdC40N2DpKk4wNE0-HEg_OW4ZH4RTHSVL1WU2Jhw05LuQyLnqlCmNc90u3wObtmsm_EqetP5rs_O9KHsHDDomK46A6j-Ger3fhQehN-XsXthmGBhbnJ_BjwryZ9tyLpv-Upobu040g3CuYrIPBb_1NmLoUKz6n9125iFjUgtlgfy6caELlouAdYNHXMwoKy8tQPfYUvk7Ovpy-j7s2DbHLUr2KXc6YTVYGZeaUTJOxIY9npCmNpGDKGkKVzlZHuU89ZxMsOp3YcT6meaXPnHwGm_Wy9nsgDGalofjYtmGqlmhNRd_p0sRrLJ2KIOmFVLiOw5xbaZwXbS5dYhHkWpBcC5ZrgRG8GaZcBAKPuwYf9CIrOltuiht5RfBquExWyKkVU_vlNY-RqDKC2jKC50FRhl_jxCaSKkag11RoGMAM3-tX6sX3lulbyZYRMIK3vbLd_K1_LuLF3YvYh20CfXnYRjqAzdXVtX8J990v0p6rEWzouW6POGqNaQRbJ2fT2Wc6-5h-4qOe_QHQXSeg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VAmovPMproYCR4EK1alhv_DgghICoVUPEoUi5GdvrhahlU7opqH-K38jMenerUNFbDxwiJVl7Eyefx994Ps8APHdOlLkseSq0yFPSEaY6eJx4yimulLahaA4Kj-VkoqZT_WkFfndnYUhW2dnExlAXc0975NsZUhNcTPQwf3P0I6WqURRd7UpoRFjshdNf6LLVr3ff4__7IstGH_bf7aRtVYHU55lcpF4TxeClVTz3gmeDoUUDbbktLEfu7yySIO_KVzpkgTa_nfJy4IZ6iP2KkHuO970CV9GOS5KQyWnv4FGcNB69E-SXcdFFUbnarnGhVCQbw0cmVKqW18Fz5Pa8RvOvQG2z_o1u_m-_3C240TJt9jZOjduwEqoNuB5rb55uwDrR7Jil-g4cjCgvqDsMrO7exa6xunbNkNczSkZC5L76ymxVsAW9xuetHIbNKkbZbr_PPKujMpPRDjfr9JrMz0kbQHP8Lny-lGHfg9VqXoUHwKzKC4v-v2vccMmVsyXe02eDIFXhRQKDDhTGtznaqVTIoWm0AlyZiCODODKEI6MSeNl3OYoJSi5qvNlBxLS2qjZn-EjgWX8ZrQyFjmwV5ifUhiuRoyvBE7gfgdl_GgVuFUI_AbkE2b4BZTBfvlLNvjWZzAVvMh4msNWB--xr_XMQDy8exFNY29n_ODbj3cneI1hHgqvjltkmrC6OT8JjuOZ_IpKOnzSTl8GXy8b8Hz_wfbY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDaa9DBi_AgOMBC-gqF2cOvbDhICtYtpUVQikvWW247CKkY6lA-1f21-3uzjOVCb2tgceKqWNncbtd-fPvi93AK-NEWWalTwWSqQx6Qhj5SwanjSSS6m0K5oHhfey0Uju76vxApyHZ2FIVhl8YuOoi6mlPfJegtQEJxM1SHtlK4sYbw3fH_-KqYIURVpDOQ0PkV139geXb_Xmzhb-12-SZLj99dPnuK0wENs0yWaxVUQ3eKklT63gSX-g0VlrrgvNcR1gNBIia8oN5RJHG-FG2qxvBmqA_QqXWo7XvQVLGZIMtK6lj9uj8ZcuhkG1nJtYq6BVGhchpsplr8ZpU5KIDF-JkLGcnxWvUN2ris2_wrbNbDi8-z__jvdgteXg7IM3mvuw4Ko1uOOrcp6twQoRcJ-_-gH8GFLGUHPkWB0-xa6-7nbNkPEzSlNCtL_6znRVsBm9x-NWKMMmFaM8uD8nltVes8lo75sFJSezU1INkPU_hG83MuxHsFhNK_cEmJZpoTd4YpoFesal0SVe0yZ9l8nCigj6ASC5bbO3UxGRo7xREXCZe0zliKmcMJXLCN52XY596pLrGq8HuOStF6vzS6xE8Ko7jf6Hgkq6ctNTasOlSHGRwSN47EHafRuFdCWaQQTZHHy7BpTbfP5MNTlscpwL3uRCjOBdAPrlbf1zEE-vH8RLWEao53s7o91nsILMV_m9tHVYnJ2cuudw2_5GIJ28aC2ZwcFNg_4CbU-H1w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+statistical+methods+for+estimating+and+testing+effects+in+genomic+studies+with+multiple+conditions&rft.jtitle=Nature+genetics&rft.au=Urbut%2C+Sarah+M.&rft.au=Wang%2C+Gao&rft.au=Carbonetto%2C+Peter&rft.au=Stephens%2C+Matthew&rft.date=2019-01-01&rft.issn=1061-4036&rft.eissn=1546-1718&rft.volume=51&rft.issue=1&rft.spage=187&rft.epage=195&rft_id=info:doi/10.1038%2Fs41588-018-0268-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41588_018_0268_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-4036&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-4036&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-4036&client=summon |