Flexible statistical methods for estimating and testing effects in genomic studies with multiple conditions

We introduce new statistical methods for analyzing genomic data sets that measure many effects in many conditions (for example, gene expression changes under many treatments). These new methods improve on existing methods by allowing for arbitrary correlations in effect sizes among conditions. This...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nature genetics Ročník 51; číslo 1; s. 187 - 195
Hlavní autori: Urbut, Sarah M., Wang, Gao, Carbonetto, Peter, Stephens, Matthew
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Nature Publishing Group US 01.01.2019
Nature Publishing Group
Predmet:
ISSN:1061-4036, 1546-1718, 1546-1718
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We introduce new statistical methods for analyzing genomic data sets that measure many effects in many conditions (for example, gene expression changes under many treatments). These new methods improve on existing methods by allowing for arbitrary correlations in effect sizes among conditions. This flexible approach increases power, improves effect estimates and allows for more quantitative assessments of effect-size heterogeneity compared to simple shared or condition-specific assessments. We illustrate these features through an analysis of locally acting variants associated with gene expression (cis expression quantitative trait loci (eQTLs)) in 44 human tissues. Our analysis identifies more eQTLs than existing approaches, consistent with improved power. We show that although genetic effects on expression are extensively shared among tissues, effect sizes can still vary greatly among tissues. Some shared eQTLs show stronger effects in subsets of biologically related tissues (for example, brain-related tissues), or in only one tissue (for example, testis). Our methods are widely applicable, computationally tractable for many conditions and available online. Multivariate adaptive shrinkage (mash) is a method for estimating and testing multiple effects in multiple conditions. When applied to GTEx data, mash can be used to analyze sharing of eQTL effects by examining variation in effect sizes.
AbstractList We introduce new statistical methods for analyzing genomic data sets that measure many effects in many conditions (for example, gene expression changes under many treatments). These new methods improve on existing methods by allowing for arbitrary correlations in effect sizes among conditions. This flexible approach increases power, improves effect estimates and allows for more quantitative assessments of effect-size heterogeneity compared to simple shared or condition-specific assessments. We illustrate these features through an analysis of locally acting variants associated with gene expression (cis expression quantitative trait loci (eQTLs)) in 44 human tissues. Our analysis identifies more eQTLs than existing approaches, consistent with improved power. We show that although genetic effects on expression are extensively shared among tissues, effect sizes can still vary greatly among tissues. Some shared eQTLs show stronger effects in subsets of biologically related tissues (for example, brain-related tissues), or in only one tissue (for example, testis). Our methods are widely applicable, computationally tractable for many conditions and available online.We introduce new statistical methods for analyzing genomic data sets that measure many effects in many conditions (for example, gene expression changes under many treatments). These new methods improve on existing methods by allowing for arbitrary correlations in effect sizes among conditions. This flexible approach increases power, improves effect estimates and allows for more quantitative assessments of effect-size heterogeneity compared to simple shared or condition-specific assessments. We illustrate these features through an analysis of locally acting variants associated with gene expression (cis expression quantitative trait loci (eQTLs)) in 44 human tissues. Our analysis identifies more eQTLs than existing approaches, consistent with improved power. We show that although genetic effects on expression are extensively shared among tissues, effect sizes can still vary greatly among tissues. Some shared eQTLs show stronger effects in subsets of biologically related tissues (for example, brain-related tissues), or in only one tissue (for example, testis). Our methods are widely applicable, computationally tractable for many conditions and available online.
We introduce new statistical methods for analyzing genomic data sets that measure many effects in many conditions (for example, gene expression changes under many treatments). These new methods improve on existing methods by allowing for arbitrary correlations in effect sizes among conditions. This flexible approach increases power, improves effect estimates and allows for more quantitative assessments of effect-size heterogeneity compared to simple shared or condition-specific assessments. We illustrate these features through an analysis of locally acting variants associated with gene expression (cis expression quantitative trait loci (eQTLs)) in 44 human tissues. Our analysis identifies more eQTLs than existing approaches, consistent with improved power. We show that although genetic effects on expression are extensively shared among tissues, effect sizes can still vary greatly among tissues. Some shared eQTLs show stronger effects in subsets of biologically related tissues (for example, brain-related tissues), or in only one tissue (for example, testis). Our methods are widely applicable, computationally tractable for many conditions and available online.
We introduce new statistical methods for analyzing genomic data sets that measure many effects in many conditions (for example, gene expression changes under many treatments). These new methods improve on existing methods by allowing for arbitrary correlations in effect sizes among conditions. This flexible approach increases power, improves effect estimates and allows for more quantitative assessments of effect-size heterogeneity compared to simple shared or condition-specific assessments. We illustrate these features through an analysis of locally acting variants associated with gene expression (cis expression quantitative trait loci (eQTLs)) in 44 human tissues. Our analysis identifies more eQTLs than existing approaches, consistent with improved power. We show that although genetic effects on expression are extensively shared among tissues, effect sizes can still vary greatly among tissues. Some shared eQTLs show stronger effects in subsets of biologically related tissues (for example, brain-related tissues), or in only one tissue (for example, testis). Our methods are widely applicable, computationally tractable for many conditions and available online. Multivariate adaptive shrinkage (mash) is a method for estimating and testing multiple effects in multiple conditions. When applied to GTEx data, mash can be used to analyze sharing of eQTL effects by examining variation in effect sizes.
We introduce new statistical methods for analyzing genomic datasets that measure many effects in many conditions (e.g., gene expression changes under many treatments). These new methods improve on existing methods by allowing for arbitrary correlations in effect sizes among conditions. This flexible approach increases power, improves effect estimates, and allows for more quantitative assessments of effect-size heterogeneity compared to simple “shared/condition-specific” assessments. We illustrate these features through an analysis of locally-acting variants associated with gene expression (“cis eQTLs”) in 44 human tissues. Our analysis identifies more eQTLs than existing approaches, consistent with improved power. We show that while genetic effects on expression are extensively shared among tissues, effect sizes can still vary greatly among tissues. Some shared eQTLs show stronger effects in subsets of biologically related tissues (e.g., brain-related tissues), or in only one tissue (e.g., testis). Our methods are widely applicable, computationally tractable for many conditions, and available online.
Author Stephens, Matthew
Urbut, Sarah M.
Wang, Gao
Carbonetto, Peter
AuthorAffiliation 2 Department of Human Genetics, University of Chicago, Chicago, IL, USA
1 Pritzker School of Medicine, Growth & Development Training Program, University of Chicago, Chicago, IL, USA
4 Research Computing Center, University of Chicago, Chicago, IL, USA
3 Department of Statistics, University of Chicago, Chicago, IL, USA
AuthorAffiliation_xml – name: 3 Department of Statistics, University of Chicago, Chicago, IL, USA
– name: 1 Pritzker School of Medicine, Growth & Development Training Program, University of Chicago, Chicago, IL, USA
– name: 2 Department of Human Genetics, University of Chicago, Chicago, IL, USA
– name: 4 Research Computing Center, University of Chicago, Chicago, IL, USA
Author_xml – sequence: 1
  givenname: Sarah M.
  orcidid: 0000-0002-1135-9647
  surname: Urbut
  fullname: Urbut, Sarah M.
  organization: Pritzker School of Medicine, Growth & Development Training Program, University of Chicago, Department of Human Genetics, University of Chicago
– sequence: 2
  givenname: Gao
  orcidid: 0000-0001-9336-402X
  surname: Wang
  fullname: Wang, Gao
  organization: Department of Human Genetics, University of Chicago
– sequence: 3
  givenname: Peter
  orcidid: 0000-0003-1144-6780
  surname: Carbonetto
  fullname: Carbonetto, Peter
  organization: Department of Human Genetics, University of Chicago, Research Computing Center, University of Chicago
– sequence: 4
  givenname: Matthew
  orcidid: 0000-0001-5397-9257
  surname: Stephens
  fullname: Stephens, Matthew
  email: mstephens@uchicago.edu
  organization: Department of Human Genetics, University of Chicago, Department of Statistics, University of Chicago
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30478440$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1v1TAQtFAR_YAfwAVZ4tJLwBs7jnNBQhUFpEpc4Gw5zuY9l8R-xE6Bf999eqVAJThY3vXOjHc0p-wopoiMPQfxCoQ0r7OCxphKAJ1am8o8YifQKF1BC-aIaqGhUkLqY3aa87UQoJQwT9ixFKo1VJ-wr5cT_gj9hDwXV0IuwbuJz1i2ach8TAtHeptpFDfcxYGXfU81jiP6knmIfIMxzcGTwjoEzPx7KFs-r1MJO9L1KQ6hhBTzU_Z4dFPGZ3f3Gfty-e7zxYfq6tP7jxdvryqv6rZUvgOoOzk6I5XXshaNUy046QYnO617J0D7foQOawQhRG98K_qma4g3oPLyjL056O7WfsbBYyyLm-xuIR_LT5tcsH9PYtjaTbqxWopOi44Ezu8ElvRtJcN2DtnjNLmIac22Bmm06kBLgr58AL1O6xLJHqE01Fp3jSLUiz83ul_lVw4EgAPALynnBcd7CAi7z9oesraUtd1nbQ1x2gccH_YZpr2pMP2XWR-YmX6JG1x-L_1v0i3ryr9G
CitedBy_id crossref_primary_10_1093_nar_gkaa767
crossref_primary_10_1016_j_ebiom_2025_105821
crossref_primary_10_1126_science_aaw7317
crossref_primary_10_1038_s41588_020_0706_2
crossref_primary_10_1534_genetics_120_303038
crossref_primary_10_1038_s41431_019_0468_4
crossref_primary_10_1038_s41598_022_21003_y
crossref_primary_10_1038_s41467_025_60275_6
crossref_primary_10_1016_j_ajhg_2024_01_006
crossref_primary_10_1016_j_jpsychires_2024_11_033
crossref_primary_10_1038_s41588_021_00800_7
crossref_primary_10_1038_s41588_023_01585_7
crossref_primary_10_1371_journal_pgen_1010557
crossref_primary_10_1038_s42003_022_03408_7
crossref_primary_10_1016_j_jgg_2023_05_003
crossref_primary_10_1038_s41467_024_53602_w
crossref_primary_10_1038_s43586_022_00188_6
crossref_primary_10_1093_plcell_koac279
crossref_primary_10_1038_s41598_020_80145_z
crossref_primary_10_1002_wcms_70042
crossref_primary_10_1371_journal_pgen_1011519
crossref_primary_10_1038_s41593_024_01636_0
crossref_primary_10_1016_j_ajhg_2025_07_003
crossref_primary_10_1126_science_abg0928
crossref_primary_10_1007_s00122_022_04096_x
crossref_primary_10_3389_fpls_2024_1356619
crossref_primary_10_1126_science_abm4917
crossref_primary_10_1038_s41467_022_33212_0
crossref_primary_10_15252_msb_202110663
crossref_primary_10_3389_fgene_2025_1597005
crossref_primary_10_1126_science_aaz1776
crossref_primary_10_3389_fgene_2023_1143395
crossref_primary_10_1371_journal_pgen_1010539
crossref_primary_10_1158_0008_5472_CAN_24_0521
crossref_primary_10_1371_journal_pgen_1009666
crossref_primary_10_1016_j_ajhg_2021_11_017
crossref_primary_10_1158_0008_5472_CAN_21_1207
crossref_primary_10_1097_CORR_0000000000003679
crossref_primary_10_3390_ijms26188806
crossref_primary_10_3389_fpls_2022_790005
crossref_primary_10_12688_f1000research_20843_1
crossref_primary_10_1186_s13059_021_02334_x
crossref_primary_10_1186_s13073_020_00790_x
crossref_primary_10_1016_j_ajhg_2023_04_005
crossref_primary_10_1016_j_ajhg_2024_06_012
crossref_primary_10_1038_s41588_021_00924_w
crossref_primary_10_1038_s41588_024_01973_7
crossref_primary_10_3389_fimmu_2023_1129577
crossref_primary_10_1515_sagmb_2023_0041
crossref_primary_10_1146_annurev_biodatasci_122120_010010
crossref_primary_10_1186_s13058_024_01809_6
crossref_primary_10_1016_j_compbiomed_2024_108108
crossref_primary_10_1186_s13073_024_01397_2
crossref_primary_10_1214_21_AOS2139
crossref_primary_10_1007_s10238_023_01215_w
crossref_primary_10_1038_s41586_022_05052_x
crossref_primary_10_1080_00401706_2023_2257760
crossref_primary_10_1016_j_jpsychires_2020_02_012
crossref_primary_10_1038_s41593_021_00886_6
crossref_primary_10_1038_s41467_024_53131_6
crossref_primary_10_1038_s43588_021_00087_y
crossref_primary_10_1371_journal_pone_0236209
crossref_primary_10_1038_s41588_025_02155_9
crossref_primary_10_1016_j_molp_2021_03_010
crossref_primary_10_1177_11779322241281188
crossref_primary_10_1038_s41598_022_19106_7
crossref_primary_10_1038_s41467_020_17477_x
crossref_primary_10_1038_s41467_023_35888_4
crossref_primary_10_1111_tpj_15853
crossref_primary_10_1101_gr_280219_124
crossref_primary_10_1016_j_immuni_2024_07_021
crossref_primary_10_1038_s41588_024_01668_z
crossref_primary_10_1038_s41593_022_01182_7
crossref_primary_10_1016_j_xgen_2025_100812
crossref_primary_10_1371_journal_pgen_1011553
crossref_primary_10_1126_science_aaz8528
crossref_primary_10_1038_s41588_022_01066_3
crossref_primary_10_1038_s41588_022_01237_2
crossref_primary_10_1002_gepi_22425
crossref_primary_10_1038_s41467_022_34360_z
crossref_primary_10_1186_s13293_024_00682_4
crossref_primary_10_1038_s41588_022_01153_5
crossref_primary_10_1038_s41586_020_03127_1
crossref_primary_10_1038_s41588_021_00801_6
crossref_primary_10_1371_journal_pcbi_1008315
crossref_primary_10_1016_j_xgen_2025_100820
crossref_primary_10_1016_j_ebiom_2025_105675
crossref_primary_10_1186_s13073_021_00967_y
crossref_primary_10_1016_j_ajo_2021_06_014
crossref_primary_10_1038_s41467_025_61670_9
crossref_primary_10_1038_s41467_025_62463_w
crossref_primary_10_7554_eLife_99210
crossref_primary_10_1371_journal_pone_0292089
crossref_primary_10_1016_j_ajhg_2022_03_005
crossref_primary_10_1016_j_ajhg_2022_03_007
crossref_primary_10_1080_00218839_2025_2455852
crossref_primary_10_7555_JBR_39_20250066
crossref_primary_10_1007_s00439_023_02568_8
crossref_primary_10_1038_s41588_024_02070_5
crossref_primary_10_1080_01621459_2024_2422124
crossref_primary_10_1016_j_jaci_2019_12_910
crossref_primary_10_1111_rssb_12323
crossref_primary_10_1002_pld3_416
crossref_primary_10_1038_s41591_023_02509_y
crossref_primary_10_1093_pcp_pcae079
crossref_primary_10_1038_s41588_021_00976_y
crossref_primary_10_1101_gr_279957_124
crossref_primary_10_1186_s13148_021_01188_1
crossref_primary_10_1016_j_gde_2025_102374
crossref_primary_10_1002_advs_202411974
crossref_primary_10_1038_s41588_024_01776_w
crossref_primary_10_1038_s41467_024_45652_x
crossref_primary_10_1126_science_adh4265
crossref_primary_10_7554_eLife_74970
crossref_primary_10_1038_s41588_024_01702_0
crossref_primary_10_1038_s41588_023_01530_8
crossref_primary_10_1038_s41593_022_01031_7
crossref_primary_10_1038_s41588_022_01248_z
crossref_primary_10_1038_s41467_021_22206_z
crossref_primary_10_1002_cac2_70042
crossref_primary_10_1038_s41467_024_44935_7
crossref_primary_10_1016_j_biopsych_2021_03_020
crossref_primary_10_1038_s41467_025_61669_2
crossref_primary_10_1126_science_abn2253
crossref_primary_10_1038_s41588_021_00909_9
crossref_primary_10_1093_plcell_koac322
crossref_primary_10_1038_s41588_024_02057_2
crossref_primary_10_1038_s41588_025_02266_3
crossref_primary_10_1002_gepi_22346
crossref_primary_10_1038_s41467_022_33628_8
crossref_primary_10_1016_j_cell_2021_08_025
crossref_primary_10_1080_13506129_2021_2018678
crossref_primary_10_1038_s41588_024_02019_8
crossref_primary_10_1038_s41467_025_61192_4
crossref_primary_10_1038_s41588_023_01648_9
crossref_primary_10_17586_2226_1494_2025_25_3_487_497
crossref_primary_10_1038_s41467_024_48048_z
crossref_primary_10_1371_journal_pgen_1008977
crossref_primary_10_1073_pnas_2400413121
crossref_primary_10_1038_s41593_024_01742_z
crossref_primary_10_1038_s41588_021_00864_5
crossref_primary_10_1016_j_ajhg_2022_04_003
crossref_primary_10_1093_genetics_iyab087
crossref_primary_10_1038_s41588_024_01701_1
crossref_primary_10_1101_gr_276765_122
crossref_primary_10_1016_j_ajhg_2022_12_005
crossref_primary_10_1038_s41588_023_01390_2
crossref_primary_10_3390_genes16010084
crossref_primary_10_1016_j_ajhg_2024_04_010
crossref_primary_10_1038_s41467_023_36638_2
crossref_primary_10_1161_ATVBAHA_122_318213
crossref_primary_10_1038_s41467_023_44191_1
crossref_primary_10_1038_s41593_024_01773_6
crossref_primary_10_1007_s00439_021_02305_z
crossref_primary_10_1016_j_ajhg_2025_06_006
crossref_primary_10_1093_g3journal_jkad229
crossref_primary_10_1038_s41467_020_20578_2
crossref_primary_10_1016_j_isci_2023_107854
crossref_primary_10_1093_molbev_msac239
crossref_primary_10_1371_journal_pbio_3001723
crossref_primary_10_1038_s41588_023_01545_1
crossref_primary_10_1186_s13293_024_00659_3
crossref_primary_10_1016_j_jspi_2023_06_003
crossref_primary_10_1126_science_ads6601
crossref_primary_10_1371_journal_pgen_1008431
crossref_primary_10_1093_jnci_djae041
crossref_primary_10_1016_j_ajhg_2024_09_004
crossref_primary_10_1093_nar_gkae1022
crossref_primary_10_1038_s41467_022_35742_z
crossref_primary_10_7554_eLife_99210_3
crossref_primary_10_1007_s00439_019_02044_2
crossref_primary_10_1186_s13059_020_02125_w
crossref_primary_10_1016_j_biopsych_2023_01_023
crossref_primary_10_1038_s41588_019_0521_9
crossref_primary_10_1186_s12967_025_06570_8
crossref_primary_10_1016_j_bbi_2023_03_004
crossref_primary_10_1016_j_cell_2021_03_056
crossref_primary_10_1038_s41467_024_46675_0
crossref_primary_10_1016_j_ajhg_2024_10_010
crossref_primary_10_1038_s41598_025_12342_7
crossref_primary_10_1038_s41588_025_02169_3
crossref_primary_10_1038_s41588_021_00879_y
crossref_primary_10_1111_acel_14266
crossref_primary_10_1016_j_xgen_2025_100775
crossref_primary_10_1038_s41467_024_49924_4
crossref_primary_10_1016_j_cell_2021_03_050
crossref_primary_10_1016_j_csbj_2024_05_050
crossref_primary_10_1007_s40300_025_00293_y
crossref_primary_10_1038_s41576_024_00709_x
crossref_primary_10_1111_nph_20241
crossref_primary_10_1126_science_aba3066
crossref_primary_10_1136_gutjnl_2024_332121
crossref_primary_10_3389_fgene_2023_1221148
crossref_primary_10_1038_s41593_022_01197_0
crossref_primary_10_1002_gepi_22380
crossref_primary_10_1038_s41591_024_02858_2
crossref_primary_10_1111_nph_19937
crossref_primary_10_1016_j_envexpbot_2021_104740
Cites_doi 10.1371/journal.pgen.0030114
10.1038/ng.3330
10.1371/journal.pgen.1000888
10.1038/ng.3570
10.1111/j.1467-9469.2007.00585.x
10.1214/10-AOAS338
10.1534/genetics.115.176107
10.1214/13-AOAS695
10.1126/science.1174148
10.1126/science.1262110
10.1038/nmeth.2848
10.1371/journal.pgen.1000895
10.1214/10-AOAS439
10.1038/srep16882
10.1371/journal.pcbi.1000737
10.1371/journal.pgen.1000214
10.1371/journal.pgen.1004383
10.1371/journal.pgen.1003491
10.1371/journal.pgen.1001117
10.1371/journal.pgen.1005875
10.1038/ng1847
10.1371/journal.pgen.1003486
10.1534/genetics.114.167908
10.1016/j.ajhg.2011.04.014
10.1093/bioinformatics/bts163
10.1093/biostatistics/kxx048
10.1371/journal.pone.0065245
10.1214/aos/1074290335
10.1093/biostatistics/kxu038
10.1371/journal.pgen.1002555
10.1126/science.185.4157.1124
10.1214/07-STS236
10.1371/journal.pgen.1004722
10.1111/j.2517-6161.1995.tb02031.x
10.1515/1544-6115.1660
10.1111/j.2517-6161.1977.tb01600.x
10.2202/1544-6115.1503
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2018
Copyright Nature Publishing Group Jan 2019
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2018
– notice: Copyright Nature Publishing Group Jan 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SS
7T7
7TK
7TM
7U9
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7N
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOI 10.1038/s41588-018-0268-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
Statistics
EISSN 1546-1718
EndPage 195
ExternalDocumentID PMC6309609
30478440
10_1038_s41588_018_0268_8
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH101822
– fundername: NIMH NIH HHS
  grantid: R01 MH101810
– fundername: NHGRI NIH HHS
  grantid: R56 HG002585
– fundername: NIDA NIH HHS
  grantid: R01 DA006227
– fundername: CCR NIH HHS
  grantid: HHSN261200800001C
– fundername: NIMH NIH HHS
  grantid: R01 MH101819
– fundername: NIMH NIH HHS
  grantid: R01 MH090936
– fundername: NIDA NIH HHS
  grantid: R01 DA033684
– fundername: NHGRI NIH HHS
  grantid: R01 HG002585
– fundername: NIMH NIH HHS
  grantid: R01 MH101820
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29M
2FS
36B
39C
3O-
3V.
4.4
53G
5BI
5M7
5RE
5S5
70F
7X7
85S
88A
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAEEF
AAHBH
AARCD
AAYOK
AAYZH
AAZLF
ABAWZ
ABCQX
ABDBF
ABDPE
ABEFU
ABJNI
ABLJU
ABOCM
ABTAH
ABUWG
ACBWK
ACGFO
ACGFS
ACIWK
ACMJI
ACNCT
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AGAYW
AGCDD
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
DWQXO
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IH2
IHR
INH
INR
IOV
ISR
ITC
L7B
LGEZI
LK8
LOTEE
M0L
M1P
M2O
M7P
MVM
N9A
NADUK
NNMJJ
NXXTH
ODYON
P2P
PKN
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNS
RNT
RNTTT
RVV
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TN5
TSG
TUS
UKHRP
VQA
X7M
XJT
XOL
Y6R
YHZ
ZGI
ZXP
ZY4
~8M
~KM
AAYXX
AETEA
AFANA
AFFHD
AGSTI
AIEIU
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
7QL
7QP
7QR
7SS
7T7
7TK
7TM
7U9
7XB
8FD
8FK
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c427t-c911293fa834c63205a471a3ada3966ba016cbf19e2e1000b8c70b595911de4c3
IEDL.DBID 8C1
ISICitedReferencesCount 231
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454108800026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1061-4036
1546-1718
IngestDate Tue Nov 04 01:55:30 EST 2025
Sun Nov 09 12:19:40 EST 2025
Fri Oct 03 09:41:55 EDT 2025
Thu Apr 03 07:07:53 EDT 2025
Sat Nov 29 03:07:09 EST 2025
Tue Nov 18 22:37:50 EST 2025
Fri Feb 21 02:39:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-c911293fa834c63205a471a3ada3966ba016cbf19e2e1000b8c70b595911de4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions S.M.U. and M.S. conceived of the project and developed the statistical methods. S.M.U. implemented the comparisons with simulated data. S.M.U. and G.W. performed the analyses of the GTEx data, and additional analyses. S.M.U., G.W. and M.S. implemented the software, with contributions from P.C. S.M.U. and M.S. wrote the manuscript, with input from G.W. and P.C. P.C. and G.W. prepared the online code and data resources.
ORCID 0000-0003-1144-6780
0000-0002-1135-9647
0000-0001-9336-402X
0000-0001-5397-9257
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6309609
PMID 30478440
PQID 2161266954
PQPubID 33429
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6309609
proquest_miscellaneous_2138649163
proquest_journals_2161266954
pubmed_primary_30478440
crossref_primary_10_1038_s41588_018_0268_8
crossref_citationtrail_10_1038_s41588_018_0268_8
springer_journals_10_1038_s41588_018_0268_8
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature genetics
PublicationTitleAbbrev Nat Genet
PublicationTitleAlternate Nat Genet
PublicationYear 2019
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Varadhan, Roland (CR38) 2008; 35
Engelhardt, Stephens (CR21) 2010; 6
Moyerbrailean (CR29) 2016; 12
Veyrieras (CR25) 2008; 4
Nica (CR32) 2010; 6
Shabalin (CR19) 2012; 28
Efron (CR39) 2008; 23
CR15
Stephens (CR10) 2013; 8
Benjamini, Hochberg (CR33) 1995; 57
Larribe, Fearnhead (CR36) 2011; 21
Storey (CR34) 2003; 31
Blischak, Tailleux, Mitrano, Barreiro, Gilad (CR1) 2015; 5
Pickrell, Berisa, Ségurel, Tung, Hinds (CR3) 2016; 48
Wen, Stephens (CR8) 2010; 4
Price (CR20) 2006; 38
Wen, Stephens (CR23) 2014; 8
Dempster, Laird, Rubin (CR37) 1977; 39
Bovy, Hogg, Roweis (CR35) 2011; 5
CR2
Petretto (CR7) 2010; 6
Li, Shabalin, Rusyn, Wright, Nobel (CR6) 2017; 19
Han, Eskin (CR9) 2011; 88
Hormozdiari, Kostem, Kang, Pasaniuc, Eskin (CR26) 2014; 198
Servin, Stephens (CR24) 2007; 3
Tversky, Kahneman (CR22) 1974; 185
Giambartolomei (CR30) 2014; 10
Stephens (CR16) 2017; 18
(CR17) 2015; 348
Fortune (CR31) 2015; 47
Sul, Han, Ye, Choi, Eskin (CR11) 2013; 9
Dimas (CR4) 2009; 325
Zhou, Stephens (CR13) 2014; 11
Flutre, Wen, Pritchard, Stephens (CR5) 2013; 9
Wei, Tenzen, Ji (CR12) 2015; 16
Han, Eskin (CR14) 2012; 8
Kichaev (CR27) 2014; 10
Nicolae (CR18) 2010; 6
Chen (CR28) 2015; 200
GA Moyerbrailean (268_CR29) 2016; 12
AA Shabalin (268_CR19) 2012; 28
B Servin (268_CR24) 2007; 3
268_CR2
G Kichaev (268_CR27) 2014; 10
268_CR15
M Stephens (268_CR10) 2013; 8
X Wen (268_CR23) 2014; 8
AC Nica (268_CR32) 2010; 6
J Bovy (268_CR35) 2011; 5
AP Dempster (268_CR37) 1977; 39
JB Veyrieras (268_CR25) 2008; 4
AL Price (268_CR20) 2006; 38
B Han (268_CR9) 2011; 88
G Li (268_CR6) 2017; 19
F Larribe (268_CR36) 2011; 21
T Flutre (268_CR5) 2013; 9
E Petretto (268_CR7) 2010; 6
BMicroarrays Efron (268_CR39) 2008; 23
A Tversky (268_CR22) 1974; 185
C Giambartolomei (268_CR30) 2014; 10
GTEx Consortium. (268_CR17) 2015; 348
J Pickrell (268_CR3) 2016; 48
M Stephens (268_CR16) 2017; 18
X Wen (268_CR8) 2010; 4
X Zhou (268_CR13) 2014; 11
DL Nicolae (268_CR18) 2010; 6
JD Blischak (268_CR1) 2015; 5
Y Benjamini (268_CR33) 1995; 57
JD Storey (268_CR34) 2003; 31
AS Dimas (268_CR4) 2009; 325
W Chen (268_CR28) 2015; 200
MD Fortune (268_CR31) 2015; 47
R Varadhan (268_CR38) 2008; 35
JH Sul (268_CR11) 2013; 9
BE Engelhardt (268_CR21) 2010; 6
B Han (268_CR14) 2012; 8
F Hormozdiari (268_CR26) 2014; 198
Y Wei (268_CR12) 2015; 16
References_xml – volume: 3
  start-page: e114
  year: 2007
  ident: CR24
  article-title: Imputation-based analysis of association studies: candidate regions and quantitative traits
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.0030114
– volume: 47
  start-page: 839
  year: 2015
  end-page: 846
  ident: CR31
  article-title: Statistical colocalization of genetic risk variants for related autoimmune diseases in the context of common controls
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3330
– volume: 6
  start-page: e1000888
  year: 2010
  ident: CR18
  article-title: Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000888
– volume: 48
  start-page: 709
  year: 2016
  end-page: 717
  ident: CR3
  article-title: Detection and interpretation of shared genetic influences on 40 human traits
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3570
– volume: 35
  start-page: 335
  year: 2008
  end-page: 353
  ident: CR38
  article-title: Simple and globally convergent methods for accelerating the convergence of any EM algorithm
  publication-title: Scand. J. Stat.
  doi: 10.1111/j.1467-9469.2007.00585.x
– volume: 4
  start-page: 1158
  year: 2010
  end-page: 1182
  ident: CR8
  article-title: Using linear predictors to impute allele frequencies from summary of pooled genotype data
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/10-AOAS338
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  ident: CR33
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. Series B Stat. Methodol.
– volume: 200
  start-page: 719
  year: 2015
  end-page: 736
  ident: CR28
  article-title: Fine mapping causal variants with an approximate Bayesian method using marginal test statistics
  publication-title: Genetics
  doi: 10.1534/genetics.115.176107
– ident: CR2
– volume: 18
  start-page: 275
  year: 2017
  end-page: 294
  ident: CR16
  article-title: False discovery rates: a new deal
  publication-title: Biostatistics
– volume: 8
  start-page: 176
  year: 2014
  end-page: 203
  ident: CR23
  article-title: Bayesian methods for genetic association analysis with heterogeneous subgroups: from meta-analyses to gene-environment interactions
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/13-AOAS695
– volume: 325
  start-page: 1246
  year: 2009
  end-page: 1250
  ident: CR4
  article-title: Common regulatory variation impacts gene expression in a cell type-dependent manner
  publication-title: Science
  doi: 10.1126/science.1174148
– volume: 348
  start-page: 648
  year: 2015
  end-page: 660
  ident: CR17
  article-title: The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans
  publication-title: Science
  doi: 10.1126/science.1262110
– volume: 11
  start-page: 407
  year: 2014
  end-page: 409
  ident: CR13
  article-title: Efficient multivariate linear mixed model algorithms for genome-wide association studies
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2848
– volume: 6
  start-page: e1000895
  year: 2010
  ident: CR32
  article-title: Candidate causal regulatory effects by integration of expression QTLs with complex trait genetic associations
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000895
– volume: 5
  start-page: 1657
  year: 2011
  end-page: 1677
  ident: CR35
  article-title: Extreme Deconvolution: inferring complete distribution functions from noisy, heterogeneous and incomplete observations
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/10-AOAS439
– volume: 5
  year: 2015
  ident: CR1
  article-title: Mycobacterial infection induces a specific human innate immune response
  publication-title: Sci. Rep.
  doi: 10.1038/srep16882
– volume: 6
  start-page: e1000737
  year: 2010
  ident: CR7
  article-title: New insights into the genetic control of gene expression using a Bayesian multi-tissue approach
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000737
– volume: 4
  start-page: e1000214
  year: 2008
  ident: CR25
  article-title: High-resolution mapping of expression-QTLs yields insight into human gene regulation
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000214
– volume: 10
  start-page: e1004383
  year: 2014
  ident: CR30
  article-title: Bayesian test for colocalisation between pairs of genetic association studies using summary statistics
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004383
– volume: 9
  start-page: e1003491
  year: 2013
  ident: CR11
  article-title: Effectively identifying eQTLs from multiple tissues by combining mixed model and meta-analytic approaches
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003491
– volume: 6
  start-page: e1001117
  year: 2010
  ident: CR21
  article-title: Analysis of population structure: a unifying framework and novel methods based on sparse factor analysis
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1001117
– volume: 12
  start-page: e1005875
  year: 2016
  ident: CR29
  article-title: Which genetic variants in DNase-seq footprints are more likely to alter binding?
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1005875
– volume: 38
  start-page: 904
  year: 2006
  end-page: 909
  ident: CR20
  article-title: Principal components analysis corrects for stratification in genome-wide association studies
  publication-title: Nat. Genet.
  doi: 10.1038/ng1847
– volume: 9
  start-page: e1003486
  year: 2013
  ident: CR5
  article-title: A statistical framework for joint eQTL analysis in multiple tissues
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003486
– volume: 198
  start-page: 497
  year: 2014
  end-page: 508
  ident: CR26
  article-title: Identifying causal variants at loci with multiple signals of association
  publication-title: Genetics
  doi: 10.1534/genetics.114.167908
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: CR37
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Series B Stat. Methodol.
– volume: 88
  start-page: 586
  year: 2011
  end-page: 598
  ident: CR9
  article-title: Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2011.04.014
– ident: CR15
– volume: 28
  start-page: 1353
  year: 2012
  end-page: 1358
  ident: CR19
  article-title: Matrix eQTL: ultra fast eQTL analysis via large matrix operations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts163
– volume: 19
  start-page: 391
  year: 2017
  end-page: 406
  ident: CR6
  article-title: An Empirical Bayes approach for multiple tissue eQTL Analysis
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxx048
– volume: 21
  start-page: 43
  year: 2011
  end-page: 69
  ident: CR36
  article-title: Composite likelihood methods in statistical genetics
  publication-title: Stat. Sin.
– volume: 8
  start-page: e65245
  year: 2013
  ident: CR10
  article-title: Unified framework for association analysis with multiple related phenotypes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0065245
– volume: 31
  start-page: 2013
  year: 2003
  end-page: 2035
  ident: CR34
  article-title: The positive false discovery rate: a Bayesian interpretation and the -value
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1074290335
– volume: 16
  start-page: 31
  year: 2015
  end-page: 46
  ident: CR12
  article-title: Joint analysis of differential gene expression in multiple studies using correlation motifs
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxu038
– volume: 8
  start-page: e1002555
  year: 2012
  ident: CR14
  article-title: Interpreting meta-analyses of genome-wide association studies
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002555
– volume: 185
  start-page: 1124
  year: 1974
  end-page: 1131
  ident: CR22
  article-title: Judgment under uncertainty: heuristics and biases
  publication-title: Science
  doi: 10.1126/science.185.4157.1124
– volume: 23
  start-page: 1
  year: 2008
  end-page: 22
  ident: CR39
  article-title: empirical Bayes and the two-groups model
  publication-title: Stat. Sci.
  doi: 10.1214/07-STS236
– volume: 10
  start-page: e1004722
  year: 2014
  ident: CR27
  article-title: Integrating functional data to prioritize causal variants in statistical fine-mapping studies
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004722
– volume: 48
  start-page: 709
  year: 2016
  ident: 268_CR3
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3570
– volume: 12
  start-page: e1005875
  year: 2016
  ident: 268_CR29
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1005875
– volume: 57
  start-page: 289
  year: 1995
  ident: 268_CR33
  publication-title: J. R. Stat. Soc. Series B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 88
  start-page: 586
  year: 2011
  ident: 268_CR9
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2011.04.014
– ident: 268_CR2
  doi: 10.1515/1544-6115.1660
– volume: 31
  start-page: 2013
  year: 2003
  ident: 268_CR34
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1074290335
– volume: 23
  start-page: 1
  year: 2008
  ident: 268_CR39
  publication-title: Stat. Sci.
  doi: 10.1214/07-STS236
– volume: 8
  start-page: e65245
  year: 2013
  ident: 268_CR10
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0065245
– volume: 38
  start-page: 904
  year: 2006
  ident: 268_CR20
  publication-title: Nat. Genet.
  doi: 10.1038/ng1847
– volume: 198
  start-page: 497
  year: 2014
  ident: 268_CR26
  publication-title: Genetics
  doi: 10.1534/genetics.114.167908
– volume: 325
  start-page: 1246
  year: 2009
  ident: 268_CR4
  publication-title: Science
  doi: 10.1126/science.1174148
– volume: 6
  start-page: e1001117
  year: 2010
  ident: 268_CR21
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1001117
– volume: 200
  start-page: 719
  year: 2015
  ident: 268_CR28
  publication-title: Genetics
  doi: 10.1534/genetics.115.176107
– volume: 9
  start-page: e1003491
  year: 2013
  ident: 268_CR11
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003491
– volume: 21
  start-page: 43
  year: 2011
  ident: 268_CR36
  publication-title: Stat. Sin.
– volume: 5
  start-page: 1657
  year: 2011
  ident: 268_CR35
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/10-AOAS439
– volume: 35
  start-page: 335
  year: 2008
  ident: 268_CR38
  publication-title: Scand. J. Stat.
  doi: 10.1111/j.1467-9469.2007.00585.x
– volume: 5
  year: 2015
  ident: 268_CR1
  publication-title: Sci. Rep.
  doi: 10.1038/srep16882
– volume: 6
  start-page: e1000895
  year: 2010
  ident: 268_CR32
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000895
– volume: 28
  start-page: 1353
  year: 2012
  ident: 268_CR19
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts163
– volume: 10
  start-page: e1004722
  year: 2014
  ident: 268_CR27
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004722
– volume: 4
  start-page: 1158
  year: 2010
  ident: 268_CR8
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/10-AOAS338
– volume: 6
  start-page: e1000888
  year: 2010
  ident: 268_CR18
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000888
– volume: 185
  start-page: 1124
  year: 1974
  ident: 268_CR22
  publication-title: Science
  doi: 10.1126/science.185.4157.1124
– volume: 3
  start-page: e114
  year: 2007
  ident: 268_CR24
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.0030114
– volume: 39
  start-page: 1
  year: 1977
  ident: 268_CR37
  publication-title: J. R. Stat. Soc. Series B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 8
  start-page: 176
  year: 2014
  ident: 268_CR23
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/13-AOAS695
– volume: 8
  start-page: e1002555
  year: 2012
  ident: 268_CR14
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002555
– volume: 11
  start-page: 407
  year: 2014
  ident: 268_CR13
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2848
– volume: 348
  start-page: 648
  year: 2015
  ident: 268_CR17
  publication-title: Science
  doi: 10.1126/science.1262110
– volume: 6
  start-page: e1000737
  year: 2010
  ident: 268_CR7
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000737
– volume: 10
  start-page: e1004383
  year: 2014
  ident: 268_CR30
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004383
– volume: 16
  start-page: 31
  year: 2015
  ident: 268_CR12
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxu038
– ident: 268_CR15
  doi: 10.2202/1544-6115.1503
– volume: 4
  start-page: e1000214
  year: 2008
  ident: 268_CR25
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000214
– volume: 19
  start-page: 391
  year: 2017
  ident: 268_CR6
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxx048
– volume: 18
  start-page: 275
  year: 2017
  ident: 268_CR16
  publication-title: Biostatistics
– volume: 47
  start-page: 839
  year: 2015
  ident: 268_CR31
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3330
– volume: 9
  start-page: e1003486
  year: 2013
  ident: 268_CR5
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003486
SSID ssj0014408
Score 2.6653025
Snippet We introduce new statistical methods for analyzing genomic data sets that measure many effects in many conditions (for example, gene expression changes under...
We introduce new statistical methods for analyzing genomic datasets that measure many effects in many conditions (e.g., gene expression changes under many...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 187
SubjectTerms 38
45
45/23
45/43
45/91
631/208/212
639/705/531
Agriculture
Animal Genetics and Genomics
Assessments
Biomedical and Life Sciences
Biomedicine
Brain
Cancer Research
Data processing
Estimates
Gene expression
Gene Expression - genetics
Gene Expression Profiling - statistics & numerical data
Gene Expression Regulation - genetics
Gene Function
Gene mapping
Genetic effects
Genetics
Genomics - statistics & numerical data
Heterogeneity
Human Genetics
Human tissues
Humans
Polymorphism, Single Nucleotide - genetics
Power
Principal components analysis
Quantitative trait loci
Quantitative Trait Loci - genetics
Statistical methods
Statistics
technical-report
Tissue analysis
Tissues
Title Flexible statistical methods for estimating and testing effects in genomic studies with multiple conditions
URI https://link.springer.com/article/10.1038/s41588-018-0268-8
https://www.ncbi.nlm.nih.gov/pubmed/30478440
https://www.proquest.com/docview/2161266954
https://www.proquest.com/docview/2138649163
https://pubmed.ncbi.nlm.nih.gov/PMC6309609
Volume 51
WOSCitedRecordID wos000454108800026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1546-1718
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014408
  issn: 1061-4036
  databaseCode: M7P
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1546-1718
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014408
  issn: 1061-4036
  databaseCode: 7X7
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1546-1718
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014408
  issn: 1061-4036
  databaseCode: BENPR
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1546-1718
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014408
  issn: 1061-4036
  databaseCode: 8C1
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1546-1718
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014408
  issn: 1061-4036
  databaseCode: M2O
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xDaS9MBg_FjYqI_EEipbFqX15Qtu0igcoFQKpb5HtOFAx0m3pkPjvuYuTTGViLzw0ahq7rXV3ue98l-8AXlurqkxXMla5ymKuI4xz78jw0KJEzI0v2weFP-jpFOfzfNZtuDVdWWV_T2xv1OXS8R75YUrQhJxJPs7eXVzG3DWKs6tdC40N2DpKk4wNE0-HEg_OW4ZH4RTHSVL1WU2Jhw05LuQyLnqlCmNc90u3wObtmsm_EqetP5rs_O9KHsHDDomK46A6j-Ger3fhQehN-XsXthmGBhbnJ_BjwryZ9tyLpv-Upobu040g3CuYrIPBb_1NmLoUKz6n9125iFjUgtlgfy6caELlouAdYNHXMwoKy8tQPfYUvk7Ovpy-j7s2DbHLUr2KXc6YTVYGZeaUTJOxIY9npCmNpGDKGkKVzlZHuU89ZxMsOp3YcT6meaXPnHwGm_Wy9nsgDGalofjYtmGqlmhNRd_p0sRrLJ2KIOmFVLiOw5xbaZwXbS5dYhHkWpBcC5ZrgRG8GaZcBAKPuwYf9CIrOltuiht5RfBquExWyKkVU_vlNY-RqDKC2jKC50FRhl_jxCaSKkag11RoGMAM3-tX6sX3lulbyZYRMIK3vbLd_K1_LuLF3YvYh20CfXnYRjqAzdXVtX8J990v0p6rEWzouW6POGqNaQRbJ2fT2Wc6-5h-4qOe_QHQXSeg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VAmovPMproYCR4EK1alhv_DgghICoVUPEoUi5GdvrhahlU7opqH-K38jMenerUNFbDxwiJVl7Eyefx994Ps8APHdOlLkseSq0yFPSEaY6eJx4yimulLahaA4Kj-VkoqZT_WkFfndnYUhW2dnExlAXc0975NsZUhNcTPQwf3P0I6WqURRd7UpoRFjshdNf6LLVr3ff4__7IstGH_bf7aRtVYHU55lcpF4TxeClVTz3gmeDoUUDbbktLEfu7yySIO_KVzpkgTa_nfJy4IZ6iP2KkHuO970CV9GOS5KQyWnv4FGcNB69E-SXcdFFUbnarnGhVCQbw0cmVKqW18Fz5Pa8RvOvQG2z_o1u_m-_3C240TJt9jZOjduwEqoNuB5rb55uwDrR7Jil-g4cjCgvqDsMrO7exa6xunbNkNczSkZC5L76ymxVsAW9xuetHIbNKkbZbr_PPKujMpPRDjfr9JrMz0kbQHP8Lny-lGHfg9VqXoUHwKzKC4v-v2vccMmVsyXe02eDIFXhRQKDDhTGtznaqVTIoWm0AlyZiCODODKEI6MSeNl3OYoJSi5qvNlBxLS2qjZn-EjgWX8ZrQyFjmwV5ifUhiuRoyvBE7gfgdl_GgVuFUI_AbkE2b4BZTBfvlLNvjWZzAVvMh4msNWB--xr_XMQDy8exFNY29n_ODbj3cneI1hHgqvjltkmrC6OT8JjuOZ_IpKOnzSTl8GXy8b8Hz_wfbY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDaa9DBi_AgOMBC-gqF2cOvbDhICtYtpUVQikvWW247CKkY6lA-1f21-3uzjOVCb2tgceKqWNncbtd-fPvi93AK-NEWWalTwWSqQx6Qhj5SwanjSSS6m0K5oHhfey0Uju76vxApyHZ2FIVhl8YuOoi6mlPfJegtQEJxM1SHtlK4sYbw3fH_-KqYIURVpDOQ0PkV139geXb_Xmzhb-12-SZLj99dPnuK0wENs0yWaxVUQ3eKklT63gSX-g0VlrrgvNcR1gNBIia8oN5RJHG-FG2qxvBmqA_QqXWo7XvQVLGZIMtK6lj9uj8ZcuhkG1nJtYq6BVGhchpsplr8ZpU5KIDF-JkLGcnxWvUN2ris2_wrbNbDi8-z__jvdgteXg7IM3mvuw4Ko1uOOrcp6twQoRcJ-_-gH8GFLGUHPkWB0-xa6-7nbNkPEzSlNCtL_6znRVsBm9x-NWKMMmFaM8uD8nltVes8lo75sFJSezU1INkPU_hG83MuxHsFhNK_cEmJZpoTd4YpoFesal0SVe0yZ9l8nCigj6ASC5bbO3UxGRo7xREXCZe0zliKmcMJXLCN52XY596pLrGq8HuOStF6vzS6xE8Ko7jf6Hgkq6ctNTasOlSHGRwSN47EHafRuFdCWaQQTZHHy7BpTbfP5MNTlscpwL3uRCjOBdAPrlbf1zEE-vH8RLWEao53s7o91nsILMV_m9tHVYnJ2cuudw2_5GIJ28aC2ZwcFNg_4CbU-H1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+statistical+methods+for+estimating+and+testing+effects+in+genomic+studies+with+multiple+conditions&rft.jtitle=Nature+genetics&rft.au=Urbut%2C+Sarah+M.&rft.au=Wang%2C+Gao&rft.au=Carbonetto%2C+Peter&rft.au=Stephens%2C+Matthew&rft.date=2019-01-01&rft.issn=1061-4036&rft.eissn=1546-1718&rft.volume=51&rft.issue=1&rft.spage=187&rft.epage=195&rft_id=info:doi/10.1038%2Fs41588-018-0268-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41588_018_0268_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-4036&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-4036&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-4036&client=summon