Deterministic Approximate Methods for Maximum Consensus Robust Fitting

Maximum consensus estimation plays a critically important role in several robust fitting problems in computer vision. Currently, the most prevalent algorithms for consensus maximization draw from the class of randomized hypothesize-and-verify algorithms, which are cheap but can usually deliver only...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence Jg. 43; H. 3; S. 842 - 857
Hauptverfasser: Le, Huu, Chin, Tat-Jun, Eriksson, Anders, Do, Thanh-Toan, Suter, David
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Maximum consensus estimation plays a critically important role in several robust fitting problems in computer vision. Currently, the most prevalent algorithms for consensus maximization draw from the class of randomized hypothesize-and-verify algorithms, which are cheap but can usually deliver only rough approximate solutions. On the other extreme, there are exact algorithms which are exhaustive search in nature and can be costly for practical-sized inputs. This paper fills the gap between the two extremes by proposing deterministic algorithms to approximately optimize the maximum consensus criterion. Our work begins by reformulating consensus maximization with linear complementarity constraints. Then, we develop two novel algorithms: one based on non-smooth penalty method with a Frank-Wolfe style optimization scheme, the other based on the Alternating Direction Method of Multipliers (ADMM). Both algorithms solve convex subproblems to efficiently perform the optimization. We demonstrate the capability of our algorithms to greatly improve a rough initial estimate, such as those obtained using least squares or a randomized algorithm. Compared to the exact algorithms, our approach is much more practical on realistic input sizes. Further, our approach is naturally applicable to estimation problems with geometric residuals. Matlab code and demo program for our methods can be downloaded from https://goo.gl/FQcxpi .
AbstractList Maximum consensus estimation plays a critically important role in several robust fitting problems in computer vision. Currently, the most prevalent algorithms for consensus maximization draw from the class of randomized hypothesize-and-verify algorithms, which are cheap but can usually deliver only rough approximate solutions. On the other extreme, there are exact algorithms which are exhaustive search in nature and can be costly for practical-sized inputs. This paper fills the gap between the two extremes by proposing deterministic algorithms to approximately optimize the maximum consensus criterion. Our work begins by reformulating consensus maximization with linear complementarity constraints. Then, we develop two novel algorithms: one based on non-smooth penalty method with a Frank-Wolfe style optimization scheme, the other based on the Alternating Direction Method of Multipliers (ADMM). Both algorithms solve convex subproblems to efficiently perform the optimization. We demonstrate the capability of our algorithms to greatly improve a rough initial estimate, such as those obtained using least squares or a randomized algorithm. Compared to the exact algorithms, our approach is much more practical on realistic input sizes. Further, our approach is naturally applicable to estimation problems with geometric residuals. Matlab code and demo program for our methods can be downloaded from https://goo.gl/FQcxpi .
Maximum consensus estimation plays a critically important role in several robust fitting problems in computer vision. Currently, the most prevalent algorithms for consensus maximization draw from the class of randomized hypothesize-and-verify algorithms, which are cheap but can usually deliver only rough approximate solutions. On the other extreme, there are exact algorithms which are exhaustive search in nature and can be costly for practical-sized inputs. This paper fills the gap between the two extremes by proposing deterministic algorithms to approximately optimize the maximum consensus criterion. Our work begins by reformulating consensus maximization with linear complementarity constraints. Then, we develop two novel algorithms: one based on non-smooth penalty method with a Frank-Wolfe style optimization scheme, the other based on the Alternating Direction Method of Multipliers (ADMM). Both algorithms solve convex subproblems to efficiently perform the optimization. We demonstrate the capability of our algorithms to greatly improve a rough initial estimate, such as those obtained using least squares or a randomized algorithm. Compared to the exact algorithms, our approach is much more practical on realistic input sizes. Further, our approach is naturally applicable to estimation problems with geometric residuals. Matlab code and demo program for our methods can be downloaded from https://goo.gl/FQcxpi.Maximum consensus estimation plays a critically important role in several robust fitting problems in computer vision. Currently, the most prevalent algorithms for consensus maximization draw from the class of randomized hypothesize-and-verify algorithms, which are cheap but can usually deliver only rough approximate solutions. On the other extreme, there are exact algorithms which are exhaustive search in nature and can be costly for practical-sized inputs. This paper fills the gap between the two extremes by proposing deterministic algorithms to approximately optimize the maximum consensus criterion. Our work begins by reformulating consensus maximization with linear complementarity constraints. Then, we develop two novel algorithms: one based on non-smooth penalty method with a Frank-Wolfe style optimization scheme, the other based on the Alternating Direction Method of Multipliers (ADMM). Both algorithms solve convex subproblems to efficiently perform the optimization. We demonstrate the capability of our algorithms to greatly improve a rough initial estimate, such as those obtained using least squares or a randomized algorithm. Compared to the exact algorithms, our approach is much more practical on realistic input sizes. Further, our approach is naturally applicable to estimation problems with geometric residuals. Matlab code and demo program for our methods can be downloaded from https://goo.gl/FQcxpi.
Author Do, Thanh-Toan
Chin, Tat-Jun
Le, Huu
Suter, David
Eriksson, Anders
Author_xml – sequence: 1
  givenname: Huu
  orcidid: 0000-0001-7562-7180
  surname: Le
  fullname: Le, Huu
  email: huul@chalmers.se
  organization: Chalmers University of Technology, Göteborg, Sweden
– sequence: 2
  givenname: Tat-Jun
  orcidid: 0000-0003-2423-9342
  surname: Chin
  fullname: Chin, Tat-Jun
  email: tat-jun.chin@adelaide.edu.au
  organization: School of Computer Science, University of Adelaide, Adelaide, SA, Australia
– sequence: 3
  givenname: Anders
  orcidid: 0000-0003-2652-7110
  surname: Eriksson
  fullname: Eriksson, Anders
  email: a.eriksson@uq.edu.au
  organization: School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD, Australia
– sequence: 4
  givenname: Thanh-Toan
  orcidid: 0000-0002-6249-0848
  surname: Do
  fullname: Do, Thanh-Toan
  email: thanh-toan.do@liverpool.ac.uk
  organization: Department of Computer Science, University of Liverpool, Liverpool, United Kingdom
– sequence: 5
  givenname: David
  orcidid: 0000-0001-6306-3023
  surname: Suter
  fullname: Suter, David
  email: david.suter@adelaide.edu.au
  organization: School of Science, Edith Cowan University, Joondalup, WA, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31494545$$D View this record in MEDLINE/PubMed
https://research.chalmers.se/publication/522416$$DView record from Swedish Publication Index (Chalmers tekniska högskola)
BookMark eNp9kkFvFCEYhompsdvqH9DETOLFy67wwQxw3GxdbdKNRuuZMMw3Ls3OsAIT7b8vdXc99OCJhDzPCx8vF-RsDCMS8prRBWNUf7j9utxcL4AyvQDNNafyGZkBa-hcg4YzMqOsgblSoM7JRUp3lDJRU_6CnHMmtKhFPSPrK8wYBz_6lL2rlvt9DH_8YDNWG8zb0KWqD7Ha2LI5DdUqjAnHNKXqW2inlKu1z9mPP1-S573dJXx1XC_Jj_XH29Xn-c2XT9er5c3cCZB53lrWO6o0U8o5LqHrpGiskpbZ3smmB9nYXiiuaosdAjbM2Ya2WDupOFrFL8n3Q276jfupNftY7hrvTbDeRExoo9sat7W7AWMyCU3npBWAnWGKgxG8bo2GVhlpATrHNSKwkvr-kFqG_zVhymbwyeFuZ0cMUzIAStasyKKg756gd2GKY5nZgFBS8KbRulBvj9TUDuXw0zVP714AdQBcDClF7I3z2WYfxhyt3xlGzWPF5m_F5rFic6y4qPBEPaX_V3pzkDwi_hPK1-C05vwB4rextA
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TIP_2022_3192993
crossref_primary_10_1109_LRA_2020_3037843
crossref_primary_10_1109_TPAMI_2020_3030161
crossref_primary_10_1109_TPAMI_2022_3179463
crossref_primary_10_1109_TPAMI_2021_3109784
crossref_primary_10_1109_TIP_2020_3023576
crossref_primary_10_1109_LRA_2024_3471450
crossref_primary_10_1109_LRA_2024_3364842
crossref_primary_10_1109_TPAMI_2024_3376731
crossref_primary_10_1109_LRA_2021_3087080
crossref_primary_10_1109_TPAMI_2024_3442234
crossref_primary_10_3390_jmse13010026
crossref_primary_10_1109_TRO_2025_3542954
crossref_primary_10_1016_j_patcog_2021_107897
crossref_primary_10_1109_TIV_2024_3397992
crossref_primary_10_1007_s11263_022_01574_z
crossref_primary_10_1109_TIV_2023_3327098
crossref_primary_10_1109_TPAMI_2024_3387553
crossref_primary_10_1109_TRO_2020_3033695
crossref_primary_10_3390_electronics13152972
crossref_primary_10_1007_s11263_022_01709_2
crossref_primary_10_1109_TCSVT_2023_3264451
Cites_doi 10.1109/CVPR.2011.5995640
10.1109/CVPR.2008.4587757
10.1145/358669.358692
10.1109/CVPR.2017.48
10.1109/CVPR.2016.194
10.1109/CVPR.2010.5539800
10.1007/BFb0120783
10.1109/ICCV.2005.163
10.1109/CVPR.2015.7298855
10.1007/978-3-642-33718-5_53
10.1137/140990309
10.1109/TPAMI.2007.1083
10.1007/s10915-018-0757-z
10.1007/978-3-540-45243-0_31
10.5244/C.23.81
10.1109/WACV.2015.70
10.1145/1141911.1141964
10.1007/978-3-540-76386-4_2
10.1109/CVPR.2005.221
10.1002/nav.3800030109
10.1109/ICCV.2011.6126350
10.1023/A:1007941100561
10.1109/ICCV.2009.5459456
10.1145/1873951.1874249
10.1109/TPAMI.2005.199
10.1214/aoms/1177703732
10.1561/2200000016
10.1109/WACV.2015.48
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ADTPV
AOWAS
F1S
DOI 10.1109/TPAMI.2019.2939307
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Chalmers tekniska högskola
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 857
ExternalDocumentID oai_research_chalmers_se_dc7a42ed_1832_435b_92b8_7a22dc39ee21
31494545
10_1109_TPAMI_2019_2939307
8823053
Genre orig-research
Journal Article
GrantInformation_xml – fundername: ARC Future Fellowships
  grantid: FT170100072
– fundername: ARC Discovery Project
  grantid: DP160103490
– fundername: ARC Centres of Excellences
  grantid: CE140100016
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
AAYOK
ABFSI
ADRHT
AETIX
AGSQL
AI.
AIBXA
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
PKN
RIC
RIG
RNI
RZB
VH1
XJT
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ADTPV
AETEA
AOWAS
F1S
ID FETCH-LOGICAL-c427t-ba1fc089188cc372dd746a87a1afc76f276af48385aede2e61ca60be5c783ea83
IEDL.DBID RIE
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000616309900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Wed Nov 05 03:59:21 EST 2025
Thu Oct 02 11:17:37 EDT 2025
Sun Nov 09 07:21:52 EST 2025
Wed Feb 19 02:29:47 EST 2025
Sat Nov 29 05:15:59 EST 2025
Tue Nov 18 22:18:34 EST 2025
Wed Aug 27 05:47:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-ba1fc089188cc372dd746a87a1afc76f276af48385aede2e61ca60be5c783ea83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7562-7180
0000-0002-6249-0848
0000-0003-2652-7110
0000-0003-2423-9342
0000-0001-6306-3023
PMID 31494545
PQID 2487436699
PQPubID 85458
PageCount 16
ParticipantIDs proquest_miscellaneous_2287514354
crossref_citationtrail_10_1109_TPAMI_2019_2939307
pubmed_primary_31494545
crossref_primary_10_1109_TPAMI_2019_2939307
ieee_primary_8823053
swepub_primary_oai_research_chalmers_se_dc7a42ed_1832_435b_92b8_7a22dc39ee21
proquest_journals_2487436699
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
eriksson (ref25) 2014
ref15
ref14
agarwal (ref26) 2008
ref31
ref30
ref33
ref11
ref10
lebeda (ref4) 2012
ref2
ref1
ref16
ref19
ref18
hartley (ref32) 2003
sim (ref28) 2006
ref24
ref23
nocedal (ref17) 2006
ref20
ref22
ref21
ref27
ref29
li (ref8) 2009
ref7
ref9
ref3
ref6
ref5
References_xml – ident: ref6
  doi: 10.1109/CVPR.2011.5995640
– ident: ref5
  doi: 10.1109/CVPR.2008.4587757
– ident: ref1
  doi: 10.1145/358669.358692
– ident: ref16
  doi: 10.1109/CVPR.2017.48
– ident: ref24
  doi: 10.1109/CVPR.2016.194
– ident: ref27
  doi: 10.1109/CVPR.2010.5539800
– start-page: 4066
  year: 2014
  ident: ref25
  article-title: Pseudoconvex proximal splitting for L-infty problems in multiview geometry
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref18
  doi: 10.1007/BFb0120783
– ident: ref10
  doi: 10.1109/ICCV.2005.163
– start-page: 485
  year: 2006
  ident: ref28
  article-title: Removing outliers using the Linfty norm
  publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit
– year: 2006
  ident: ref17
  publication-title: Numerical Optimization
– start-page: 1074
  year: 2009
  ident: ref8
  article-title: Consensus set maximization with guaranteed global optimality for robust geometry estimation
  publication-title: Proc IEEE 12th Int Conf Comput Vis
– ident: ref9
  doi: 10.1109/CVPR.2015.7298855
– start-page: 1
  year: 2012
  ident: ref4
  article-title: Fixing the locally optimized RANSAC-full experimental evaluation
  publication-title: Proc Brit Mach Vis Conf
– ident: ref7
  doi: 10.1007/978-3-642-33718-5_53
– ident: ref21
  doi: 10.1137/140990309
– ident: ref11
  doi: 10.1109/TPAMI.2007.1083
– ident: ref22
  doi: 10.1007/s10915-018-0757-z
– ident: ref3
  doi: 10.1007/978-3-540-45243-0_31
– ident: ref2
  doi: 10.5244/C.23.81
– ident: ref14
  doi: 10.1109/WACV.2015.70
– year: 2003
  ident: ref32
  publication-title: Multiple View Geometry in Computer Vision
– ident: ref35
  doi: 10.1145/1141911.1141964
– ident: ref15
  doi: 10.1007/978-3-540-76386-4_2
– ident: ref30
  doi: 10.1109/CVPR.2005.221
– ident: ref19
  doi: 10.1002/nav.3800030109
– ident: ref34
  doi: 10.1109/ICCV.2011.6126350
– ident: ref13
  doi: 10.1023/A:1007941100561
– ident: ref29
  doi: 10.1109/ICCV.2009.5459456
– ident: ref33
  doi: 10.1145/1873951.1874249
– ident: ref31
  doi: 10.1109/TPAMI.2005.199
– ident: ref12
  doi: 10.1214/aoms/1177703732
– start-page: 1
  year: 2008
  ident: ref26
  article-title: Fast algorithms for L problems in multiview geometry
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref20
  doi: 10.1561/2200000016
– ident: ref23
  doi: 10.1109/WACV.2015.48
SSID ssj0014503
Score 2.4884758
Snippet Maximum consensus estimation plays a critically important role in several robust fitting problems in computer vision. Currently, the most prevalent algorithms...
SourceID swepub
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 842
SubjectTerms Algorithms
approximate algorithm
Approximation
Approximation algorithms
Computational modeling
Computer vision
Data models
deterministic algorithm
Estimation
Mathematical model
Maximization
Maximum consensus
Optimization
robust fitting
Robustness
Title Deterministic Approximate Methods for Maximum Consensus Robust Fitting
URI https://ieeexplore.ieee.org/document/8823053
https://www.ncbi.nlm.nih.gov/pubmed/31494545
https://www.proquest.com/docview/2487436699
https://www.proquest.com/docview/2287514354
https://research.chalmers.se/publication/522416
Volume 43
WOSCitedRecordID wos000616309900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_aIlIfrLZ-RGtZwTdNm-xusruPh3oo9EqRKve2bDYTeqB30lzEP9_ZzQdFiuBb2N0Myc5Mdibz8QN4U1Qi90LwFDNTpVIWIjV00qW5a7TyUrs64pB9O1cXF3q5NJc78G6qhUHEmHyGp-EyxvLrje_Cr7IzHaJChdiFXaVUX6s1RQxkEVGQyYIhDSc3YiyQyczZ1eVs8TlkcZlTOtwMSfU-3BfkGsgiVDHdOo8iwMpdtuZfjUTj4TM_-L_HfgQPByOTzXqpeAw7uD6EgxHAgQ36fAgPbnUjPIL5hyE1JvZuZrPQbfz3iixaZIuIM90ysnDZwtFg94MFqM-Ak9GyL5uqa7dsvoo51E_g6_zj1ftP6QCzkHrJ1TatXN74TJtca--F4nWtZOm0csQvr8qGq9I1UgtdOKyRY5l7V2YVFl5pgU6Lp7C33qzxOTByjlylyGLBzMkajUEsqqqUTUbjRDyBfNxs64ce5AEK47uNvkhmbOSVDbyyA68SeDvd87PvwPHP1UeBAdPKYe8TOB55agclbS0nZ02KsjQmgdfTNKlXiJm4NW46WkMeZbQpZQLPelmYaI8ilMB5LxzTTOjZPTRrurb-OiLhtLZFW3vlJCca4UtqiWxlDa-0VY7z2gvaL56_uPsVXsI-D_k0Mf_tGPa2Nx2-gnv-13bV3pyQSiz1SVSJP_3iBZw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VgqAcKLQ8AgWMxA3SJrYT28cVsGrF7qpCC-rNsh1HXQl2UbNB_HzGzkMVqpC4RbYzSjwz8Uzm8QG8LSzLHWM09ZmyKecFSxWedGluaikcl6aKOGTfZmKxkBcX6nwH3o-1MN77mHzmj8NljOVXG9eGX2UnMkSFCnYLbhec07yr1hpjBryIOMhow6COoyMxlMhk6mR5PpmfhTwudYzHm0K53oO7DJ0DXoQ6pmsnUoRYucna_KuVaDx-pvv_9-AP4UFvZpJJJxePYMevD2B_gHAgvUYfwP1r_QgPYfqxT46J3ZvJJPQb_71Cm9aTeUSabgjauGRucLD9QQLYZ0DKaMiXjW2bLZmuYhb1Y_g6_bT8cJr2QAup41RsU2vy2mVS5VI6xwStKsFLI4VBjjlR1lSUpuaSycL4ylNf5s6UmfWFE5J5I9kT2F1v1v4ZEHSPjBVos_jM8Mor5X1hbcnrDMeReAL5sNna9V3IAxjGdx29kUzpyCsdeKV7XiXwbrznZ9eD45-rDwMDxpX93idwNPBU92raaIruGmdlqVQCb8ZpVLAQNTFrv2lxDfqU0arkCTztZGGkPYhQArNOOMaZ0LW7b9d0qd1lxMJpdON15YThFGmEb6lGslYraqUWhtLKMdwvmj-_-RVew73T5XymZ2eLzy9gj4bsmpgNdwS726vWv4Q77td21Vy9iorxB42AB_s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deterministic+Approximate+Methods+for+Maximum+Consensus+Robust+Fitting&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Le%2C+Huu&rft.au=Chin%2C+Tat+Jun&rft.au=Eriksson%2C+Anders&rft.au=Do%2C+Thanh+Toan&rft.date=2021-03-01&rft.issn=0162-8828&rft.volume=43&rft.issue=3&rft.spage=842&rft_id=info:doi/10.1109%2FTPAMI.2019.2939307&rft.externalDocID=oai_research_chalmers_se_dc7a42ed_1832_435b_92b8_7a22dc39ee21
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon