Deterministic Approximate Methods for Maximum Consensus Robust Fitting
Maximum consensus estimation plays a critically important role in several robust fitting problems in computer vision. Currently, the most prevalent algorithms for consensus maximization draw from the class of randomized hypothesize-and-verify algorithms, which are cheap but can usually deliver only...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence Jg. 43; H. 3; S. 842 - 857 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Maximum consensus estimation plays a critically important role in several robust fitting problems in computer vision. Currently, the most prevalent algorithms for consensus maximization draw from the class of randomized hypothesize-and-verify algorithms, which are cheap but can usually deliver only rough approximate solutions. On the other extreme, there are exact algorithms which are exhaustive search in nature and can be costly for practical-sized inputs. This paper fills the gap between the two extremes by proposing deterministic algorithms to approximately optimize the maximum consensus criterion. Our work begins by reformulating consensus maximization with linear complementarity constraints. Then, we develop two novel algorithms: one based on non-smooth penalty method with a Frank-Wolfe style optimization scheme, the other based on the Alternating Direction Method of Multipliers (ADMM). Both algorithms solve convex subproblems to efficiently perform the optimization. We demonstrate the capability of our algorithms to greatly improve a rough initial estimate, such as those obtained using least squares or a randomized algorithm. Compared to the exact algorithms, our approach is much more practical on realistic input sizes. Further, our approach is naturally applicable to estimation problems with geometric residuals. Matlab code and demo program for our methods can be downloaded from https://goo.gl/FQcxpi . |
|---|---|
| AbstractList | Maximum consensus estimation plays a critically important role in several robust fitting problems in computer vision. Currently, the most prevalent algorithms for consensus maximization draw from the class of randomized hypothesize-and-verify algorithms, which are cheap but can usually deliver only rough approximate solutions. On the other extreme, there are exact algorithms which are exhaustive search in nature and can be costly for practical-sized inputs. This paper fills the gap between the two extremes by proposing deterministic algorithms to approximately optimize the maximum consensus criterion. Our work begins by reformulating consensus maximization with linear complementarity constraints. Then, we develop two novel algorithms: one based on non-smooth penalty method with a Frank-Wolfe style optimization scheme, the other based on the Alternating Direction Method of Multipliers (ADMM). Both algorithms solve convex subproblems to efficiently perform the optimization. We demonstrate the capability of our algorithms to greatly improve a rough initial estimate, such as those obtained using least squares or a randomized algorithm. Compared to the exact algorithms, our approach is much more practical on realistic input sizes. Further, our approach is naturally applicable to estimation problems with geometric residuals. Matlab code and demo program for our methods can be downloaded from https://goo.gl/FQcxpi . Maximum consensus estimation plays a critically important role in several robust fitting problems in computer vision. Currently, the most prevalent algorithms for consensus maximization draw from the class of randomized hypothesize-and-verify algorithms, which are cheap but can usually deliver only rough approximate solutions. On the other extreme, there are exact algorithms which are exhaustive search in nature and can be costly for practical-sized inputs. This paper fills the gap between the two extremes by proposing deterministic algorithms to approximately optimize the maximum consensus criterion. Our work begins by reformulating consensus maximization with linear complementarity constraints. Then, we develop two novel algorithms: one based on non-smooth penalty method with a Frank-Wolfe style optimization scheme, the other based on the Alternating Direction Method of Multipliers (ADMM). Both algorithms solve convex subproblems to efficiently perform the optimization. We demonstrate the capability of our algorithms to greatly improve a rough initial estimate, such as those obtained using least squares or a randomized algorithm. Compared to the exact algorithms, our approach is much more practical on realistic input sizes. Further, our approach is naturally applicable to estimation problems with geometric residuals. Matlab code and demo program for our methods can be downloaded from https://goo.gl/FQcxpi.Maximum consensus estimation plays a critically important role in several robust fitting problems in computer vision. Currently, the most prevalent algorithms for consensus maximization draw from the class of randomized hypothesize-and-verify algorithms, which are cheap but can usually deliver only rough approximate solutions. On the other extreme, there are exact algorithms which are exhaustive search in nature and can be costly for practical-sized inputs. This paper fills the gap between the two extremes by proposing deterministic algorithms to approximately optimize the maximum consensus criterion. Our work begins by reformulating consensus maximization with linear complementarity constraints. Then, we develop two novel algorithms: one based on non-smooth penalty method with a Frank-Wolfe style optimization scheme, the other based on the Alternating Direction Method of Multipliers (ADMM). Both algorithms solve convex subproblems to efficiently perform the optimization. We demonstrate the capability of our algorithms to greatly improve a rough initial estimate, such as those obtained using least squares or a randomized algorithm. Compared to the exact algorithms, our approach is much more practical on realistic input sizes. Further, our approach is naturally applicable to estimation problems with geometric residuals. Matlab code and demo program for our methods can be downloaded from https://goo.gl/FQcxpi. |
| Author | Do, Thanh-Toan Chin, Tat-Jun Le, Huu Suter, David Eriksson, Anders |
| Author_xml | – sequence: 1 givenname: Huu orcidid: 0000-0001-7562-7180 surname: Le fullname: Le, Huu email: huul@chalmers.se organization: Chalmers University of Technology, Göteborg, Sweden – sequence: 2 givenname: Tat-Jun orcidid: 0000-0003-2423-9342 surname: Chin fullname: Chin, Tat-Jun email: tat-jun.chin@adelaide.edu.au organization: School of Computer Science, University of Adelaide, Adelaide, SA, Australia – sequence: 3 givenname: Anders orcidid: 0000-0003-2652-7110 surname: Eriksson fullname: Eriksson, Anders email: a.eriksson@uq.edu.au organization: School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD, Australia – sequence: 4 givenname: Thanh-Toan orcidid: 0000-0002-6249-0848 surname: Do fullname: Do, Thanh-Toan email: thanh-toan.do@liverpool.ac.uk organization: Department of Computer Science, University of Liverpool, Liverpool, United Kingdom – sequence: 5 givenname: David orcidid: 0000-0001-6306-3023 surname: Suter fullname: Suter, David email: david.suter@adelaide.edu.au organization: School of Science, Edith Cowan University, Joondalup, WA, Australia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31494545$$D View this record in MEDLINE/PubMed https://research.chalmers.se/publication/522416$$DView record from Swedish Publication Index (Chalmers tekniska högskola) |
| BookMark | eNp9kkFvFCEYhompsdvqH9DETOLFy67wwQxw3GxdbdKNRuuZMMw3Ls3OsAIT7b8vdXc99OCJhDzPCx8vF-RsDCMS8prRBWNUf7j9utxcL4AyvQDNNafyGZkBa-hcg4YzMqOsgblSoM7JRUp3lDJRU_6CnHMmtKhFPSPrK8wYBz_6lL2rlvt9DH_8YDNWG8zb0KWqD7Ha2LI5DdUqjAnHNKXqW2inlKu1z9mPP1-S573dJXx1XC_Jj_XH29Xn-c2XT9er5c3cCZB53lrWO6o0U8o5LqHrpGiskpbZ3smmB9nYXiiuaosdAjbM2Ya2WDupOFrFL8n3Q276jfupNftY7hrvTbDeRExoo9sat7W7AWMyCU3npBWAnWGKgxG8bo2GVhlpATrHNSKwkvr-kFqG_zVhymbwyeFuZ0cMUzIAStasyKKg756gd2GKY5nZgFBS8KbRulBvj9TUDuXw0zVP714AdQBcDClF7I3z2WYfxhyt3xlGzWPF5m_F5rFic6y4qPBEPaX_V3pzkDwi_hPK1-C05vwB4rextA |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1109_TIP_2022_3192993 crossref_primary_10_1109_LRA_2020_3037843 crossref_primary_10_1109_TPAMI_2020_3030161 crossref_primary_10_1109_TPAMI_2022_3179463 crossref_primary_10_1109_TPAMI_2021_3109784 crossref_primary_10_1109_TIP_2020_3023576 crossref_primary_10_1109_LRA_2024_3471450 crossref_primary_10_1109_LRA_2024_3364842 crossref_primary_10_1109_TPAMI_2024_3376731 crossref_primary_10_1109_LRA_2021_3087080 crossref_primary_10_1109_TPAMI_2024_3442234 crossref_primary_10_3390_jmse13010026 crossref_primary_10_1109_TRO_2025_3542954 crossref_primary_10_1016_j_patcog_2021_107897 crossref_primary_10_1109_TIV_2024_3397992 crossref_primary_10_1007_s11263_022_01574_z crossref_primary_10_1109_TIV_2023_3327098 crossref_primary_10_1109_TPAMI_2024_3387553 crossref_primary_10_1109_TRO_2020_3033695 crossref_primary_10_3390_electronics13152972 crossref_primary_10_1007_s11263_022_01709_2 crossref_primary_10_1109_TCSVT_2023_3264451 |
| Cites_doi | 10.1109/CVPR.2011.5995640 10.1109/CVPR.2008.4587757 10.1145/358669.358692 10.1109/CVPR.2017.48 10.1109/CVPR.2016.194 10.1109/CVPR.2010.5539800 10.1007/BFb0120783 10.1109/ICCV.2005.163 10.1109/CVPR.2015.7298855 10.1007/978-3-642-33718-5_53 10.1137/140990309 10.1109/TPAMI.2007.1083 10.1007/s10915-018-0757-z 10.1007/978-3-540-45243-0_31 10.5244/C.23.81 10.1109/WACV.2015.70 10.1145/1141911.1141964 10.1007/978-3-540-76386-4_2 10.1109/CVPR.2005.221 10.1002/nav.3800030109 10.1109/ICCV.2011.6126350 10.1023/A:1007941100561 10.1109/ICCV.2009.5459456 10.1145/1873951.1874249 10.1109/TPAMI.2005.199 10.1214/aoms/1177703732 10.1561/2200000016 10.1109/WACV.2015.48 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 ADTPV AOWAS F1S |
| DOI | 10.1109/TPAMI.2019.2939307 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic SwePub SwePub Articles SWEPUB Chalmers tekniska högskola |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 857 |
| ExternalDocumentID | oai_research_chalmers_se_dc7a42ed_1832_435b_92b8_7a22dc39ee21 31494545 10_1109_TPAMI_2019_2939307 8823053 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: ARC Future Fellowships grantid: FT170100072 – fundername: ARC Discovery Project grantid: DP160103490 – fundername: ARC Centres of Excellences grantid: CE140100016 |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION 5VS 9M8 AAYOK ABFSI ADRHT AETIX AGSQL AI. AIBXA ALLEH FA8 H~9 IBMZZ ICLAB IFJZH NPM PKN RIC RIG RNI RZB VH1 XJT Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 ADTPV AETEA AOWAS F1S |
| ID | FETCH-LOGICAL-c427t-ba1fc089188cc372dd746a87a1afc76f276af48385aede2e61ca60be5c783ea83 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000616309900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Wed Nov 05 03:59:21 EST 2025 Thu Oct 02 11:17:37 EDT 2025 Sun Nov 09 07:21:52 EST 2025 Wed Feb 19 02:29:47 EST 2025 Sat Nov 29 05:15:59 EST 2025 Tue Nov 18 22:18:34 EST 2025 Wed Aug 27 05:47:02 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c427t-ba1fc089188cc372dd746a87a1afc76f276af48385aede2e61ca60be5c783ea83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7562-7180 0000-0002-6249-0848 0000-0003-2652-7110 0000-0003-2423-9342 0000-0001-6306-3023 |
| PMID | 31494545 |
| PQID | 2487436699 |
| PQPubID | 85458 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_2287514354 crossref_citationtrail_10_1109_TPAMI_2019_2939307 pubmed_primary_31494545 crossref_primary_10_1109_TPAMI_2019_2939307 ieee_primary_8823053 swepub_primary_oai_research_chalmers_se_dc7a42ed_1832_435b_92b8_7a22dc39ee21 proquest_journals_2487436699 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-01 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 eriksson (ref25) 2014 ref15 ref14 agarwal (ref26) 2008 ref31 ref30 ref33 ref11 ref10 lebeda (ref4) 2012 ref2 ref1 ref16 ref19 ref18 hartley (ref32) 2003 sim (ref28) 2006 ref24 ref23 nocedal (ref17) 2006 ref20 ref22 ref21 ref27 ref29 li (ref8) 2009 ref7 ref9 ref3 ref6 ref5 |
| References_xml | – ident: ref6 doi: 10.1109/CVPR.2011.5995640 – ident: ref5 doi: 10.1109/CVPR.2008.4587757 – ident: ref1 doi: 10.1145/358669.358692 – ident: ref16 doi: 10.1109/CVPR.2017.48 – ident: ref24 doi: 10.1109/CVPR.2016.194 – ident: ref27 doi: 10.1109/CVPR.2010.5539800 – start-page: 4066 year: 2014 ident: ref25 article-title: Pseudoconvex proximal splitting for L-infty problems in multiview geometry publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref18 doi: 10.1007/BFb0120783 – ident: ref10 doi: 10.1109/ICCV.2005.163 – start-page: 485 year: 2006 ident: ref28 article-title: Removing outliers using the Linfty norm publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit – year: 2006 ident: ref17 publication-title: Numerical Optimization – start-page: 1074 year: 2009 ident: ref8 article-title: Consensus set maximization with guaranteed global optimality for robust geometry estimation publication-title: Proc IEEE 12th Int Conf Comput Vis – ident: ref9 doi: 10.1109/CVPR.2015.7298855 – start-page: 1 year: 2012 ident: ref4 article-title: Fixing the locally optimized RANSAC-full experimental evaluation publication-title: Proc Brit Mach Vis Conf – ident: ref7 doi: 10.1007/978-3-642-33718-5_53 – ident: ref21 doi: 10.1137/140990309 – ident: ref11 doi: 10.1109/TPAMI.2007.1083 – ident: ref22 doi: 10.1007/s10915-018-0757-z – ident: ref3 doi: 10.1007/978-3-540-45243-0_31 – ident: ref2 doi: 10.5244/C.23.81 – ident: ref14 doi: 10.1109/WACV.2015.70 – year: 2003 ident: ref32 publication-title: Multiple View Geometry in Computer Vision – ident: ref35 doi: 10.1145/1141911.1141964 – ident: ref15 doi: 10.1007/978-3-540-76386-4_2 – ident: ref30 doi: 10.1109/CVPR.2005.221 – ident: ref19 doi: 10.1002/nav.3800030109 – ident: ref34 doi: 10.1109/ICCV.2011.6126350 – ident: ref13 doi: 10.1023/A:1007941100561 – ident: ref29 doi: 10.1109/ICCV.2009.5459456 – ident: ref33 doi: 10.1145/1873951.1874249 – ident: ref31 doi: 10.1109/TPAMI.2005.199 – ident: ref12 doi: 10.1214/aoms/1177703732 – start-page: 1 year: 2008 ident: ref26 article-title: Fast algorithms for L problems in multiview geometry publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref20 doi: 10.1561/2200000016 – ident: ref23 doi: 10.1109/WACV.2015.48 |
| SSID | ssj0014503 |
| Score | 2.4884758 |
| Snippet | Maximum consensus estimation plays a critically important role in several robust fitting problems in computer vision. Currently, the most prevalent algorithms... |
| SourceID | swepub proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 842 |
| SubjectTerms | Algorithms approximate algorithm Approximation Approximation algorithms Computational modeling Computer vision Data models deterministic algorithm Estimation Mathematical model Maximization Maximum consensus Optimization robust fitting Robustness |
| Title | Deterministic Approximate Methods for Maximum Consensus Robust Fitting |
| URI | https://ieeexplore.ieee.org/document/8823053 https://www.ncbi.nlm.nih.gov/pubmed/31494545 https://www.proquest.com/docview/2487436699 https://www.proquest.com/docview/2287514354 https://research.chalmers.se/publication/522416 |
| Volume | 43 |
| WOSCitedRecordID | wos000616309900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_aIlIfrLZ-RGtZwTdNm-xusruPh3oo9EqRKve2bDYTeqB30lzEP9_ZzQdFiuBb2N0Myc5Mdibz8QN4U1Qi90LwFDNTpVIWIjV00qW5a7TyUrs64pB9O1cXF3q5NJc78G6qhUHEmHyGp-EyxvLrje_Cr7IzHaJChdiFXaVUX6s1RQxkEVGQyYIhDSc3YiyQyczZ1eVs8TlkcZlTOtwMSfU-3BfkGsgiVDHdOo8iwMpdtuZfjUTj4TM_-L_HfgQPByOTzXqpeAw7uD6EgxHAgQ36fAgPbnUjPIL5hyE1JvZuZrPQbfz3iixaZIuIM90ysnDZwtFg94MFqM-Ak9GyL5uqa7dsvoo51E_g6_zj1ftP6QCzkHrJ1TatXN74TJtca--F4nWtZOm0csQvr8qGq9I1UgtdOKyRY5l7V2YVFl5pgU6Lp7C33qzxOTByjlylyGLBzMkajUEsqqqUTUbjRDyBfNxs64ce5AEK47uNvkhmbOSVDbyyA68SeDvd87PvwPHP1UeBAdPKYe8TOB55agclbS0nZ02KsjQmgdfTNKlXiJm4NW46WkMeZbQpZQLPelmYaI8ilMB5LxzTTOjZPTRrurb-OiLhtLZFW3vlJCca4UtqiWxlDa-0VY7z2gvaL56_uPsVXsI-D_k0Mf_tGPa2Nx2-gnv-13bV3pyQSiz1SVSJP_3iBZw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VgqAcKLQ8AgWMxA3SJrYT28cVsGrF7qpCC-rNsh1HXQl2UbNB_HzGzkMVqpC4RbYzSjwz8Uzm8QG8LSzLHWM09ZmyKecFSxWedGluaikcl6aKOGTfZmKxkBcX6nwH3o-1MN77mHzmj8NljOVXG9eGX2UnMkSFCnYLbhec07yr1hpjBryIOMhow6COoyMxlMhk6mR5PpmfhTwudYzHm0K53oO7DJ0DXoQ6pmsnUoRYucna_KuVaDx-pvv_9-AP4UFvZpJJJxePYMevD2B_gHAgvUYfwP1r_QgPYfqxT46J3ZvJJPQb_71Cm9aTeUSabgjauGRucLD9QQLYZ0DKaMiXjW2bLZmuYhb1Y_g6_bT8cJr2QAup41RsU2vy2mVS5VI6xwStKsFLI4VBjjlR1lSUpuaSycL4ylNf5s6UmfWFE5J5I9kT2F1v1v4ZEHSPjBVos_jM8Mor5X1hbcnrDMeReAL5sNna9V3IAxjGdx29kUzpyCsdeKV7XiXwbrznZ9eD45-rDwMDxpX93idwNPBU92raaIruGmdlqVQCb8ZpVLAQNTFrv2lxDfqU0arkCTztZGGkPYhQArNOOMaZ0LW7b9d0qd1lxMJpdON15YThFGmEb6lGslYraqUWhtLKMdwvmj-_-RVew73T5XymZ2eLzy9gj4bsmpgNdwS726vWv4Q77td21Vy9iorxB42AB_s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deterministic+Approximate+Methods+for+Maximum+Consensus+Robust+Fitting&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Le%2C+Huu&rft.au=Chin%2C+Tat+Jun&rft.au=Eriksson%2C+Anders&rft.au=Do%2C+Thanh+Toan&rft.date=2021-03-01&rft.issn=0162-8828&rft.volume=43&rft.issue=3&rft.spage=842&rft_id=info:doi/10.1109%2FTPAMI.2019.2939307&rft.externalDocID=oai_research_chalmers_se_dc7a42ed_1832_435b_92b8_7a22dc39ee21 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |