Recent advances in multiscale CFD modelling of cooling processes and systems for the agrifood industry

Spoilage of agrifood produce is a major issue in the industry. Cooling is an effective technique for extending the shelf life of fresh agrifood produce to minimize spoilage. Due to the practical inability of directly solving the wide spatial and temporal scales in large industrial agrifood cooling s...

Full description

Saved in:
Bibliographic Details
Published in:Critical reviews in food science and nutrition Vol. 61; no. 15; pp. 2455 - 2470
Main Authors: Ajani, Clement Kehinde, Zhu, Zhiwei, Sun, Da-Wen
Format: Journal Article
Language:English
Published: United States Taylor & Francis 22.08.2021
Taylor & Francis Ltd
Subjects:
ISSN:1040-8398, 1549-7852, 1549-7852
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Spoilage of agrifood produce is a major issue in the industry. Cooling is an effective technique for extending the shelf life of fresh agrifood produce to minimize spoilage. Due to the practical inability of directly solving the wide spatial and temporal scales in large industrial agrifood cooling systems, the porous medium approach is mostly used. However, improvements of current porous medium models and modeling across much wider scales are needed to better understand the multiscale cooling process and system problems. Recently, as a result of increased computational capacity, multiscale computational fluid dynamics (CFD) modeling approaches have been developed to tackle some of these challenges. The associated problems and applications of CFD in the design and process optimization of cooling processes and systems at different scales are considered. CFD solution and scale bridging techniques relevant for handling multiscale cooling processes and systems problems are discussed. Innovative applications of various CFD modeling techniques at different scales in cooling processes and systems are reviewed. CFD modeling techniques can be used to handle multiscale cooling process and system problems. Lattice Boltzmann method (LBM) is a potentially viable discrete modeling technique for complimentary usages alongside current continuum techniques in future multiscale CFD modeling. The multiscale CFD modeling paradigm can overcome the computational resource limitations associated with the direct modeling approach and enhance model extension across wider spatial and temporal scales. Information from multiscale CFD could be used to improve the accuracy of current porous medium models, and thus the design of more efficient cooling systems.
AbstractList Spoilage of agrifood produce is a major issue in the industry. Cooling is an effective technique for extending the shelf life of fresh agrifood produce to minimize spoilage. Due to the practical inability of directly solving the wide spatial and temporal scales in large industrial agrifood cooling systems, the porous medium approach is mostly used. However, improvements of current porous medium models and modeling across much wider scales are needed to better understand the multiscale cooling process and system problems. Recently, as a result of increased computational capacity, multiscale computational fluid dynamics (CFD) modeling approaches have been developed to tackle some of these challenges. The associated problems and applications of CFD in the design and process optimization of cooling processes and systems at different scales are considered. CFD solution and scale bridging techniques relevant for handling multiscale cooling processes and systems problems are discussed. Innovative applications of various CFD modeling techniques at different scales in cooling processes and systems are reviewed. CFD modeling techniques can be used to handle multiscale cooling process and system problems. Lattice Boltzmann method (LBM) is a potentially viable discrete modeling technique for complimentary usages alongside current continuum techniques in future multiscale CFD modeling. The multiscale CFD modeling paradigm can overcome the computational resource limitations associated with the direct modeling approach and enhance model extension across wider spatial and temporal scales. Information from multiscale CFD could be used to improve the accuracy of current porous medium models, and thus the design of more efficient cooling systems.
Spoilage of agrifood produce is a major issue in the industry. Cooling is an effective technique for extending the shelf life of fresh agrifood produce to minimize spoilage. Due to the practical inability of directly solving the wide spatial and temporal scales in large industrial agrifood cooling systems, the porous medium approach is mostly used. However, improvements of current porous medium models and modeling across much wider scales are needed to better understand the multiscale cooling process and system problems. Recently, as a result of increased computational capacity, multiscale computational fluid dynamics (CFD) modeling approaches have been developed to tackle some of these challenges. The associated problems and applications of CFD in the design and process optimization of cooling processes and systems at different scales are considered. CFD solution and scale bridging techniques relevant for handling multiscale cooling processes and systems problems are discussed. Innovative applications of various CFD modeling techniques at different scales in cooling processes and systems are reviewed. CFD modeling techniques can be used to handle multiscale cooling process and system problems. Lattice Boltzmann method (LBM) is a potentially viable discrete modeling technique for complimentary usages alongside current continuum techniques in future multiscale CFD modeling. The multiscale CFD modeling paradigm can overcome the computational resource limitations associated with the direct modeling approach and enhance model extension across wider spatial and temporal scales. Information from multiscale CFD could be used to improve the accuracy of current porous medium models, and thus the design of more efficient cooling systems.Spoilage of agrifood produce is a major issue in the industry. Cooling is an effective technique for extending the shelf life of fresh agrifood produce to minimize spoilage. Due to the practical inability of directly solving the wide spatial and temporal scales in large industrial agrifood cooling systems, the porous medium approach is mostly used. However, improvements of current porous medium models and modeling across much wider scales are needed to better understand the multiscale cooling process and system problems. Recently, as a result of increased computational capacity, multiscale computational fluid dynamics (CFD) modeling approaches have been developed to tackle some of these challenges. The associated problems and applications of CFD in the design and process optimization of cooling processes and systems at different scales are considered. CFD solution and scale bridging techniques relevant for handling multiscale cooling processes and systems problems are discussed. Innovative applications of various CFD modeling techniques at different scales in cooling processes and systems are reviewed. CFD modeling techniques can be used to handle multiscale cooling process and system problems. Lattice Boltzmann method (LBM) is a potentially viable discrete modeling technique for complimentary usages alongside current continuum techniques in future multiscale CFD modeling. The multiscale CFD modeling paradigm can overcome the computational resource limitations associated with the direct modeling approach and enhance model extension across wider spatial and temporal scales. Information from multiscale CFD could be used to improve the accuracy of current porous medium models, and thus the design of more efficient cooling systems.
Author Ajani, Clement Kehinde
Zhu, Zhiwei
Sun, Da-Wen
Author_xml – sequence: 1
  givenname: Clement Kehinde
  surname: Ajani
  fullname: Ajani, Clement Kehinde
  organization: Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre
– sequence: 2
  givenname: Zhiwei
  surname: Zhu
  fullname: Zhu, Zhiwei
  organization: Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre
– sequence: 3
  givenname: Da-Wen
  surname: Sun
  fullname: Sun, Da-Wen
  organization: Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32880478$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtrGzEURkVJaRK3PyFF0E03k-o5I9FNg_OEQKG0ayHrkSjMSKmkSfC_rxzbmyyalS7ifFf36hyDg5iiA-AEo1OMBPqGEUOCSnFKEGlXAkkpyTtwhDmT3SA4OWh1Y7oNdAiOS3lACDGG-w_gkBIhEBvEEfC_nHGxQm2fdDSuwBDhNI81FKNHB5eX53BK1o1jiHcweWhSeikfc2p0aQEdLSzrUt1UoE8Z1nsH9V0OPiXbutm51Lz-CN57PRb3aXcuwJ_Li9_L6-7259XN8uy2M4wMtdOSWCYY8d54vqKcDitssOXEraTuHcNGc4Gsx8QiJp3otdfeSmm0R9QZTxfg67Zvm-_v7EpVU9ukja-jS3NRpKc9HxCj5G2UUSmHXjZ4Ab68Qh_SnGNbRBHOpWRYENqozztqXk3OqsccJp3Xav_ZDfi-BUxOpWTnlQlV15BizTqMCiO1Uav2atVGrdqpbWn-Kr1_4K3cj20uxKZn0s8pj1ZVvR5T9rlJD0XR_7f4Bxb5unk
CitedBy_id crossref_primary_10_3390_app15158752
crossref_primary_10_1016_j_icheatmasstransfer_2024_107758
crossref_primary_10_1093_fqsafe_fyae002
crossref_primary_10_1016_j_biosystemseng_2025_104254
crossref_primary_10_1007_s12393_022_09309_z
crossref_primary_10_1111_1541_4337_12766
crossref_primary_10_1016_j_applthermaleng_2024_124625
crossref_primary_10_1016_j_ijmecsci_2025_110374
crossref_primary_10_1016_j_jfoodeng_2025_112545
crossref_primary_10_3390_atmos16040394
crossref_primary_10_1016_j_biosystemseng_2024_06_007
crossref_primary_10_1111_1541_4337_13014
crossref_primary_10_1016_j_lwt_2025_118202
crossref_primary_10_1007_s11242_022_01796_2
crossref_primary_10_1016_j_ijthermalsci_2024_108888
crossref_primary_10_1007_s00217_023_04231_y
crossref_primary_10_1007_s00217_023_04401_y
crossref_primary_10_3390_foods14030401
crossref_primary_10_1111_jfpe_14021
crossref_primary_10_3390_en15228659
crossref_primary_10_1111_jfpe_70024
crossref_primary_10_1007_s11242_023_01942_4
crossref_primary_10_1016_j_tifs_2022_11_018
crossref_primary_10_3389_fsufs_2022_1030915
Cites_doi 10.1016/j.agrformet.2019.107773
10.1016/j.scienta.2016.06.011
10.1016/j.jfoodeng.2017.02.011
10.1016/j.jfoodeng.2020.110112
10.1007/s11947-016-1733-y
10.1016/j.ijheatmasstransfer.2015.04.003
10.1016/bs.host.2018.06.002
10.1016/j.jfoodeng.2013.05.007
10.1111/jfpp.12556
10.1016/j.jfoodeng.2008.08.027
10.1016/j.egypro.2017.07.284
10.1016/j.lwt.2020.109066
10.1016/j.tifs.2018.02.019
10.1016/j.ijheatmasstransfer.2019.118624
10.1016/j.ijheatmasstransfer.2015.04.004
10.1080/10408398.2018.1482528
10.1016/j.jcp.2012.08.029
10.1016/j.biosystemseng.2010.02.004
10.1016/j.foodchem.2017.07.011
10.1016/j.lwt.2018.12.079
10.1016/j.biosystemseng.2018.02.003
10.1016/j.apm.2014.07.001
10.1016/j.tifs.2012.08.001
10.1016/j.ijheatmasstransfer.2017.04.015
10.3390/en12173272
10.1016/j.jfoodeng.2017.01.026
10.1016/j.ijrefrig.2018.02.012
10.1016/j.camwa.2018.08.018
10.1016/j.compag.2012.05.009
10.1016/j.compag.2013.05.008
10.1201/9781420009217
10.1016/j.ijrefrig.2006.03.019
10.1016/j.apenergy.2016.01.101
10.18280/ijht.340426
10.1080/10408398.2017.1345854
10.1016/j.compag.2017.02.015
10.1016/j.ijrefrig.2016.06.013
10.1016/j.jbiotec.2015.11.008
10.1016/j.jfoodeng.2009.03.004
10.1017/S0022112005008153
10.1016/j.jcp.2006.07.034
10.1016/j.applthermaleng.2014.11.012
10.1007/s10494-016-9751-4
10.1016/j.tifs.2017.11.017
10.13140/RG.2.2.35857.33129/2
10.1093/oso/9780198503989.001.0001
10.1016/j.jfoodeng.2008.03.026
10.1016/j.tifs.2015.04.008
10.1533/9780857098894.2.336
10.1007/s11947-018-2086-5
10.1007/s11947-012-0883-9
10.1155/2013/928309
10.1016/j.enconman.2005.10.007
10.1007/s11431-017-9100-2
10.1016/S0260-8774(00)00082-0
10.1111/j.1469-8137.2008.02732.x
10.3182/20110828-6-IT-1002.02886
10.1016/j.ijheatmasstransfer.2013.05.075
10.1080/23311835.2017.1327502
10.1016/j.tifs.2006.05.004
10.1016/j.ijthermalsci.2017.12.017
10.1080/10408398.2010.518256
10.1016/j.jfoodeng.2012.08.019
10.1515/ijfe-2012-0015
10.1016/j.jfoodeng.2012.09.003
10.1007/s11947-012-0913-7
10.1080/10408398.2018.1490696
10.1016/j.applthermaleng.2018.12.054
10.1016/j.foodchem.2017.12.050
10.1007/s11947-018-2163-9
10.1016/j.postharvbio.2016.05.008
10.1016/j.agrformet.2012.04.010
10.1016/j.jfoodeng.2014.06.041
10.1007/s11242-019-01282-2
10.1016/j.jfoodeng.2004.11.010
10.1080/10408398.2018.1496900
10.1016/j.postharvbio.2016.10.005
10.1016/j.jfoodeng.2017.02.010
10.5539/mas.v6n1p102
10.1016/j.ijheatmasstransfer.2014.09.051
10.1016/j.tifs.2019.09.010
10.1016/j.ijrefrig.2005.12.010
10.1016/j.applthermaleng.2017.11.049
10.1016/j.postharvbio.2016.11.019
10.33552/GJES.2018.01.000503
10.1016/j.ijrefrig.2006.01.013
10.1016/j.tifs.2019.11.009
10.1016/j.ijheatmasstransfer.2009.09.029
10.1016/j.applthermaleng.2016.12.063
10.1137/09077059X
10.1111/1541-4337.12380
10.1016/j.cja.2014.12.007
10.1007/s12393-010-9027-z
10.1093/aob/mct313
10.1016/j.ultsonch.2020.105162
ContentType Journal Article
Copyright 2020 Taylor & Francis Group, LLC 2020
2020 Taylor & Francis Group, LLC
Copyright_xml – notice: 2020 Taylor & Francis Group, LLC 2020
– notice: 2020 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
NPM
7QO
7QP
7QR
7T7
7TK
8FD
C1K
FR3
K9.
NAPCQ
P64
7X8
7S9
L.6
DOI 10.1080/10408398.2020.1809992
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Nursing and Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Nursing & Allied Health Premium
Biotechnology Research Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
Nursing & Allied Health Premium
PubMed
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Diet & Clinical Nutrition
EISSN 1549-7852
EndPage 2470
ExternalDocumentID 32880478
10_1080_10408398_2020_1809992
1809992
Genre Review
Journal Article
GroupedDBID ---
.7F
.QJ
0BK
0R~
29F
2DF
30N
36B
4.4
5GY
5VS
6J9
6PF
AAENE
AAGDL
AAHBH
AAHIA
AAIKC
AAJMT
AALDU
AAMIU
AAMNW
AAPUL
AAQRR
AAWTL
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRAH
AFRVT
AGDLA
AGMYJ
AHDZW
AHMBA
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
E.L
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KSZGM
KYCEM
LJTGL
M4Z
NA5
NX0
O9-
RIG
RNANH
ROSJB
RTWRZ
RWL
S-T
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEI
TFL
TFT
TFW
TQWBC
TTHFI
TUROJ
TWF
UT5
UU3
WH7
ZGOLN
~KM
~S~
AAYXX
CITATION
ADYSH
ALIPV
NPM
7QO
7QP
7QR
7T7
7TK
8FD
C1K
FR3
K9.
NAPCQ
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-c427t-a92d4842ffcf5b3537b1c1d52eb9a6e41ca580df12d049e86afafd99caf03ecf3
IEDL.DBID TFW
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000566607000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1040-8398
1549-7852
IngestDate Fri Sep 05 17:25:04 EDT 2025
Wed Oct 01 13:51:11 EDT 2025
Fri Oct 03 08:31:45 EDT 2025
Wed Feb 19 02:28:28 EST 2025
Sat Nov 29 04:45:21 EST 2025
Tue Nov 18 21:47:09 EST 2025
Mon Oct 20 23:48:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords Cooling process
multiscale CFD modeling
turbulence
LBM
porous medium modeling
cooling systems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-a92d4842ffcf5b3537b1c1d52eb9a6e41ca580df12d049e86afafd99caf03ecf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 32880478
PQID 2559941823
PQPubID 32624
PageCount 16
ParticipantIDs proquest_miscellaneous_2439976904
crossref_primary_10_1080_10408398_2020_1809992
proquest_journals_2559941823
informaworld_taylorfrancis_310_1080_10408398_2020_1809992
crossref_citationtrail_10_1080_10408398_2020_1809992
pubmed_primary_32880478
proquest_miscellaneous_2636570432
PublicationCentury 2000
PublicationDate 2021-08-22
PublicationDateYYYYMMDD 2021-08-22
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Boca Raton
PublicationTitle Critical reviews in food science and nutrition
PublicationTitleAlternate Crit Rev Food Sci Nutr
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0071
CIT1042
CIT0074
CIT0073
CIT1044
CIT0076
CIT1043
CIT0075
CIT1046
CIT0078
CIT1045
CIT0070
Kitazawa H. (CIT0052) 2019
CIT1048
CIT1047
CIT0079
CIT1049
CIT1051
CIT0083
CIT1050
CIT0082
CIT0085
CIT1053
CIT0084
CIT1052
CIT0087
CIT1055
CIT0086
CIT1054
CIT0001
Moureh J. (CIT0057) 2019
CIT0089
CIT0088
CIT0081
CIT0003
CIT0002
CIT0005
Jacob B. (CIT0048) 2018
CIT0004
CIT0007
CIT0006
CIT0009
CIT0008
CIT0010
CIT0012
CIT0011
CIT0090
CIT0092
CIT0091
Delele M. A. (CIT0025) 2019
CIT0014
CIT0013
CIT0016
CIT0018
CIT0019
CIT0021
CIT0020
CIT0023
CIT0022
Han J. (CIT0040) 2016; 40
CIT0024
CIT0027
CIT0026
CIT0029
CIT0028
Opara U. L. (CIT0062) 2019
CIT0030
CIT0032
CIT0031
CIT0034
CIT0033
Kitazawa H. (CIT0053) 2014; 12
Cortella G. (CIT0017) 2019
CIT0036
CIT0035
CIT0038
CIT0037
CIT0039
CIT0041
CIT0043
CIT0042
CIT0045
CIT0044
Versteeg H. K. (CIT0080) 2007
CIT0047
CIT0046
CIT0049
CIT0050
CIT0051
CIT0054
CIT0056
CIT0055
Succi S. (CIT0072) 2001
Peralta J. M. (CIT0064) 2019
CIT0058
CIT0059
CIT0061
CIT0060
CIT0063
CIT0065
CIT0067
CIT0066
CIT0069
Sun D.-W. (CIT0077) 2019
CIT0068
References_xml – ident: CIT0051
  doi: 10.1016/j.agrformet.2019.107773
– ident: CIT0058
  doi: 10.1016/j.scienta.2016.06.011
– ident: CIT0036
  doi: 10.1016/j.jfoodeng.2017.02.011
– ident: CIT1050
  doi: 10.1016/j.jfoodeng.2020.110112
– ident: CIT0010
  doi: 10.1007/s11947-016-1733-y
– ident: CIT0086
  doi: 10.1016/j.ijheatmasstransfer.2015.04.003
– ident: CIT0034
  doi: 10.1016/bs.host.2018.06.002
– ident: CIT0003
  doi: 10.1016/j.jfoodeng.2013.05.007
– volume: 40
  start-page: 1
  year: 2016
  ident: CIT0040
  publication-title: Journal of Food Process Engineering
  doi: 10.1111/jfpp.12556
– start-page: 121
  volume-title: Computational fluid dynamics in food processing
  year: 2019
  ident: CIT0062
– start-page: 149
  volume-title: Computational fluid dynamics in food processing
  year: 2019
  ident: CIT0052
– ident: CIT0026
  doi: 10.1016/j.jfoodeng.2008.08.027
– ident: CIT0078
  doi: 10.1016/j.egypro.2017.07.284
– ident: CIT1049
  doi: 10.1016/j.lwt.2020.109066
– ident: CIT1045
  doi: 10.1016/j.tifs.2018.02.019
– ident: CIT0016
  doi: 10.1016/j.ijheatmasstransfer.2019.118624
– ident: CIT0085
  doi: 10.1016/j.ijheatmasstransfer.2015.04.004
– ident: CIT1055
  doi: 10.1080/10408398.2018.1482528
– ident: CIT0046
  doi: 10.1016/j.jcp.2012.08.029
– ident: CIT0087
  doi: 10.1016/j.biosystemseng.2010.02.004
– ident: CIT1043
  doi: 10.1016/j.foodchem.2017.07.011
– ident: CIT1053
  doi: 10.1016/j.lwt.2018.12.079
– ident: CIT0084
  doi: 10.1016/j.biosystemseng.2018.02.003
– ident: CIT0007
  doi: 10.1016/j.apm.2014.07.001
– ident: CIT0055
  doi: 10.1016/j.tifs.2012.08.001
– ident: CIT0041
  doi: 10.1016/j.ijheatmasstransfer.2017.04.015
– ident: CIT0030
  doi: 10.3390/en12173272
– ident: CIT0005
  doi: 10.1016/j.jfoodeng.2017.01.026
– ident: CIT0042
  doi: 10.1016/j.ijrefrig.2018.02.012
– ident: CIT0033
  doi: 10.1016/j.camwa.2018.08.018
– start-page: 87
  volume-title: Computational fluid dynamics in food processing
  year: 2019
  ident: CIT0064
– ident: CIT0002
  doi: 10.1016/j.compag.2012.05.009
– ident: CIT0022
  doi: 10.1016/j.compag.2013.05.008
– ident: CIT0076
  doi: 10.1201/9781420009217
– ident: CIT0071
  doi: 10.1016/j.ijrefrig.2006.03.019
– ident: CIT0090
  doi: 10.1016/j.apenergy.2016.01.101
– ident: CIT0014
  doi: 10.18280/ijht.340426
– ident: CIT1052
  doi: 10.1080/10408398.2017.1345854
– ident: CIT0006
  doi: 10.1016/j.compag.2017.02.015
– ident: CIT0054
  doi: 10.1016/j.ijrefrig.2016.06.013
– ident: CIT0013
  doi: 10.1016/j.jbiotec.2015.11.008
– ident: CIT0027
  doi: 10.1016/j.jfoodeng.2009.03.004
– ident: CIT0070
  doi: 10.1017/S0022112005008153
– ident: CIT0088
  doi: 10.1016/j.jcp.2006.07.034
– ident: CIT0045
  doi: 10.1016/j.applthermaleng.2014.11.012
– start-page: 3
  volume-title: Computational fluid dynamics in food processing
  year: 2019
  ident: CIT0017
– ident: CIT0056
  doi: 10.1007/s10494-016-9751-4
– ident: CIT1046
  doi: 10.1016/j.tifs.2017.11.017
– ident: CIT0066
  doi: 10.13140/RG.2.2.35857.33129/2
– volume-title: The Lattice Boltzmann equation for fluid dynamics and beyound
  year: 2001
  ident: CIT0072
  doi: 10.1093/oso/9780198503989.001.0001
– ident: CIT0028
  doi: 10.1016/j.jfoodeng.2008.03.026
– ident: CIT0019
  doi: 10.1016/j.tifs.2015.04.008
– volume-title: An Introduction to Computational Fluid Dynamics
  year: 2007
  ident: CIT0080
– ident: CIT0031
  doi: 10.1533/9780857098894.2.336
– ident: CIT0037
  doi: 10.1007/s11947-018-2086-5
– ident: CIT0063
  doi: 10.1007/s11947-012-0883-9
– volume-title: CRC Press Taylor & Francis Group
  year: 2019
  ident: CIT0077
– ident: CIT0012
  doi: 10.1155/2013/928309
– ident: CIT0049
  doi: 10.1016/j.enconman.2005.10.007
– start-page: 61
  volume-title: Computational Fluid Dynamics in Food Processing
  year: 2019
  ident: CIT0025
– ident: CIT0089
  doi: 10.1007/s11431-017-9100-2
– ident: CIT0047
  doi: 10.1016/S0260-8774(00)00082-0
– ident: CIT0043
  doi: 10.1111/j.1469-8137.2008.02732.x
– ident: CIT0008
  doi: 10.3182/20110828-6-IT-1002.02886
– ident: CIT0023
  doi: 10.1016/j.ijheatmasstransfer.2013.05.075
– ident: CIT0032
  doi: 10.1080/23311835.2017.1327502
– ident: CIT0059
  doi: 10.1016/j.tifs.2006.05.004
– ident: CIT0061
  doi: 10.1016/j.ijthermalsci.2017.12.017
– ident: CIT0060
  doi: 10.1080/10408398.2010.518256
– ident: CIT0044
  doi: 10.1016/j.jfoodeng.2012.08.019
– ident: CIT0068
  doi: 10.1515/ijfe-2012-0015
– volume-title: Theory and Applications of Transport in Porous Media Modelling Phenomena of Flow and Transport in Porous Media
  year: 2018
  ident: CIT0048
– ident: CIT0024
  doi: 10.1016/j.jfoodeng.2012.09.003
– ident: CIT0004
  doi: 10.1007/s11947-012-0913-7
– ident: CIT0091
  doi: 10.1080/10408398.2018.1490696
– ident: CIT0001
  doi: 10.1016/j.applthermaleng.2018.12.054
– ident: CIT1044
  doi: 10.1016/j.foodchem.2017.12.050
– ident: CIT0039
  doi: 10.1007/s11947-018-2163-9
– ident: CIT0074
  doi: 10.1016/j.postharvbio.2016.05.008
– ident: CIT0021
  doi: 10.1016/j.agrformet.2012.04.010
– ident: CIT0075
  doi: 10.1016/j.jfoodeng.2014.06.041
– ident: CIT0009
  doi: 10.1007/s11242-019-01282-2
– ident: CIT1042
  doi: 10.1016/j.jfoodeng.2004.11.010
– ident: CIT1054
  doi: 10.1080/10408398.2018.1496900
– ident: CIT0011
  doi: 10.1016/j.postharvbio.2016.10.005
– ident: CIT0035
  doi: 10.1016/j.jfoodeng.2017.02.010
– start-page: 23
  volume-title: Computational fluid dynamics in food processing
  year: 2019
  ident: CIT0057
– ident: CIT0067
  doi: 10.5539/mas.v6n1p102
– ident: CIT0050
  doi: 10.1016/j.ijheatmasstransfer.2014.09.051
– ident: CIT1047
  doi: 10.1016/j.tifs.2019.09.010
– ident: CIT0079
  doi: 10.1016/j.ijrefrig.2005.12.010
– ident: CIT0083
  doi: 10.1016/j.applthermaleng.2017.11.049
– ident: CIT0073
  doi: 10.1016/j.postharvbio.2016.11.019
– ident: CIT0029
  doi: 10.33552/GJES.2018.01.000503
– ident: CIT0065
  doi: 10.1016/j.ijrefrig.2006.01.013
– ident: CIT1051
  doi: 10.1016/j.tifs.2019.11.009
– ident: CIT0018
  doi: 10.1016/j.ijheatmasstransfer.2009.09.029
– ident: CIT0069
  doi: 10.1016/j.applthermaleng.2016.12.063
– ident: CIT0038
  doi: 10.1137/09077059X
– ident: CIT0082
  doi: 10.1111/1541-4337.12380
– volume: 12
  start-page: 46
  issue: 3
  year: 2014
  ident: CIT0053
  publication-title: Journal of Food, Agriculture and Environment
– ident: CIT0092
  doi: 10.1016/j.cja.2014.12.007
– ident: CIT0081
  doi: 10.1007/s12393-010-9027-z
– ident: CIT0020
  doi: 10.1093/aob/mct313
– ident: CIT1048
  doi: 10.1016/j.ultsonch.2020.105162
SSID ssj0004416
Score 2.4762368
SecondaryResourceType review_article
Snippet Spoilage of agrifood produce is a major issue in the industry. Cooling is an effective technique for extending the shelf life of fresh agrifood produce to...
SourceID proquest
pubmed
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2455
SubjectTerms Agribusiness
Agricultural production
Computational fluid dynamics
Computer applications
Cooling
Cooling process
Cooling systems
Design optimization
Fluid dynamics
fluid mechanics
food industry
food science
Hydrodynamics
LBM
Mathematical models
multiscale CFD modeling
nutrition
Porous media
porous medium modeling
Shelf life
Spoilage
turbulence
Title Recent advances in multiscale CFD modelling of cooling processes and systems for the agrifood industry
URI https://www.tandfonline.com/doi/abs/10.1080/10408398.2020.1809992
https://www.ncbi.nlm.nih.gov/pubmed/32880478
https://www.proquest.com/docview/2559941823
https://www.proquest.com/docview/2439976904
https://www.proquest.com/docview/2636570432
Volume 61
WOSCitedRecordID wos000566607000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals
  customDbUrl:
  eissn: 1549-7852
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004416
  issn: 1040-8398
  databaseCode: TFW
  dateStart: 19880101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BhQQ98FgoXSiVkRC3oMR2YvuIWlacVhyK2FtkOx6pUpVUzRaJf8_YcZb2UHqAU57jxM54Hs7MNwAfAuraduSWmEabQjoXCmJlVXiuvDHeoZCYik2o9VpvNuZbjiYcc1hl9KFxAopIsjpObuvGOSKOtpIMBxMDszid0tHIiVKYVH-cmmerH38yI2Uqfhopikgy5_Dc1cot7XQLu_RuCzRpotWz_9CH5_A0m6Hs88Q3L-BB6BewPD0PW_aRZazQC7aeofoX8HjOYB4XsH8DxPAlIFmepLlYjiYY2XnPUpjiSE0EdrI6ZancTsx7ZwMyPwxp93JKUSAC6gSbEKVHRkPByCZlNq4mDUNHraXaIr9ewffVl7OTr0Wu3lB4ydW2sIZ3UkuO6LF2ohbKVb7qah6csU2Qlbe1LjuseEdeStCNRYsd8YfFUgSP4gD2-qEPh8CkjVas9iYoL22gIx3QOW_QlthZtwQ5f7XWZ2jzWGHjoq0yAuo83G0c7jYP9xI-7cguJ2yP-wjMTZZot2lRBacKKK24h_Zo5p82i4mxTXhvklw8sYT3u8s0weNfG9uH4ZruiR6jakwp_3JPI2IIkxT0mNcTb-56JDiJaKn0m394-bfwhMdYnpKkKj-Cve3VdXgHj_xP4qWrY3ioNvo4TbzfUcMo7w
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hglQ48FgoLBQwEuIWlNhOYh9Ry6qIsqdF9GbZji1VqpKq2Vbqv2fGSZbtofQApzzHiZ3xPJyZbwA-hqhK26BboiulM-lcyJCV68zz2mvtXRQypmIT9XKpTk70di4MhVWSDx0HoIgkq2ly02L0FBKHW4mWg6bILI6nFFk5KIbvl6hrCT9_tfj1JzdSpvKnRJIRzZTFc1szN_TTDfTS223QpIsWT_5HL57C49ESZV8G1nkG90I7g_nhaVizT2yECz1jywmtfwa7UxJzP4NHWziGzyGi8YnKi40BBT07bVmKVOyxicAOFocsVdyh1HfWRea7Lu2eD1kKSIC9YAOodM9wLBiapczSglLXNdhaKi9y_QJ-Lr6uDo6ysYBD5iWv15nVvJFK8hh9LJ0oRe0KXzQlD07bKsjC21LlTSx4g45KUJWNNjbIIjbmIvgo9mCn7drwCpi0ZMgqr0PtpQ14pEJ0zuto89hYNwc5fTbjR3RzKrJxZooRBHUabkPDbcbhnsPnDdn5AO9xF4He5gmzTusqcSiCYsQdtPsTA5lRUvQmQb5J9PLEHD5sLuMcpx83tg3dJd5DTmNd6Vz-5Z5KUBSTFPiYlwNzbnokOEppWavX__Dy72H3aPXj2Bx_W35_Aw85hfbkKGT5PuysLy7DW3jgr5CvLt6l-fcbDA0sMQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQQTwOPJbXQgEjIW5Bie0k9hF1iUCgVQ9F9Gb5NVKlKlk1WyT-PWPHWdpD6QFOeY4TT8bjGWfmG0LeBZC18eiWqEaqQlgbChTltnCsdUo5C1xAKjbRrtfy-Fgd5mjCMYdVRh8aJqCIpKvj4N54mCPicCvQcFAxMIvhKRmNHNTCN9F0bqKQH3U__qRGilT9NJIUkWZO4rmqmUvT0yXw0qtN0DQVdQ_-QycekvvZDqUfJ8F5RG6EfkGWq5Owpe9pBgs9pesZq39B7swpzOOC3LuAYviYAJqeOHXRHE4w0pOepjjFEZsI9KBb0VRvJya-0wGoG4a0u5lyFJAAO0EnSOmRIisoGqXUxOWkYfDYWiou8usJ-d59Ojr4XOTyDYUTrN0WRjEvpGAADmrLa97aylW-ZsEq0wRROVPL0kPFPLopQTYGDHgUEAMlDw74U7LXD314Tqgw0YyVToXWCRPwSAaw1ikwJXhjl0TMX027jG0eS2yc6ipDoM7s1pHdOrN7ST7syDYTuMd1BOqiSOhtWlWBqQSK5tfQ7s_yo7OeGHUCfBPo4_Elebu7jCM8_rYxfRjO8Z7oMraNKsVf7ml4jGESHB_zbJLNXY84Qx0tWvniH17-Dbl9uOr0ty_rry_JXRbjekrUsGyf7G3PzsMrcsv9RLE6e51G329bXCrj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+multiscale+CFD+modelling+of+cooling+processes+and+systems+for+the+agrifood+industry&rft.jtitle=Critical+reviews+in+food+science+and+nutrition&rft.au=Ajani%2C+Clement+Kehinde&rft.au=Zhu%2C+Zhiwei&rft.au=Sun%2C+Da-Wen&rft.date=2021-08-22&rft.issn=1549-7852&rft.eissn=1549-7852&rft.volume=61&rft.issue=15&rft.spage=2455&rft_id=info:doi/10.1080%2F10408398.2020.1809992&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-8398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-8398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-8398&client=summon