Recent advances in multiscale CFD modelling of cooling processes and systems for the agrifood industry
Spoilage of agrifood produce is a major issue in the industry. Cooling is an effective technique for extending the shelf life of fresh agrifood produce to minimize spoilage. Due to the practical inability of directly solving the wide spatial and temporal scales in large industrial agrifood cooling s...
Gespeichert in:
| Veröffentlicht in: | Critical reviews in food science and nutrition Jg. 61; H. 15; S. 2455 - 2470 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Taylor & Francis
22.08.2021
Taylor & Francis Ltd |
| Schlagworte: | |
| ISSN: | 1040-8398, 1549-7852, 1549-7852 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Spoilage of agrifood produce is a major issue in the industry. Cooling is an effective technique for extending the shelf life of fresh agrifood produce to minimize spoilage. Due to the practical inability of directly solving the wide spatial and temporal scales in large industrial agrifood cooling systems, the porous medium approach is mostly used. However, improvements of current porous medium models and modeling across much wider scales are needed to better understand the multiscale cooling process and system problems. Recently, as a result of increased computational capacity, multiscale computational fluid dynamics (CFD) modeling approaches have been developed to tackle some of these challenges. The associated problems and applications of CFD in the design and process optimization of cooling processes and systems at different scales are considered. CFD solution and scale bridging techniques relevant for handling multiscale cooling processes and systems problems are discussed. Innovative applications of various CFD modeling techniques at different scales in cooling processes and systems are reviewed. CFD modeling techniques can be used to handle multiscale cooling process and system problems. Lattice Boltzmann method (LBM) is a potentially viable discrete modeling technique for complimentary usages alongside current continuum techniques in future multiscale CFD modeling. The multiscale CFD modeling paradigm can overcome the computational resource limitations associated with the direct modeling approach and enhance model extension across wider spatial and temporal scales. Information from multiscale CFD could be used to improve the accuracy of current porous medium models, and thus the design of more efficient cooling systems. |
|---|---|
| AbstractList | Spoilage of agrifood produce is a major issue in the industry. Cooling is an effective technique for extending the shelf life of fresh agrifood produce to minimize spoilage. Due to the practical inability of directly solving the wide spatial and temporal scales in large industrial agrifood cooling systems, the porous medium approach is mostly used. However, improvements of current porous medium models and modeling across much wider scales are needed to better understand the multiscale cooling process and system problems. Recently, as a result of increased computational capacity, multiscale computational fluid dynamics (CFD) modeling approaches have been developed to tackle some of these challenges. The associated problems and applications of CFD in the design and process optimization of cooling processes and systems at different scales are considered. CFD solution and scale bridging techniques relevant for handling multiscale cooling processes and systems problems are discussed. Innovative applications of various CFD modeling techniques at different scales in cooling processes and systems are reviewed. CFD modeling techniques can be used to handle multiscale cooling process and system problems. Lattice Boltzmann method (LBM) is a potentially viable discrete modeling technique for complimentary usages alongside current continuum techniques in future multiscale CFD modeling. The multiscale CFD modeling paradigm can overcome the computational resource limitations associated with the direct modeling approach and enhance model extension across wider spatial and temporal scales. Information from multiscale CFD could be used to improve the accuracy of current porous medium models, and thus the design of more efficient cooling systems. Spoilage of agrifood produce is a major issue in the industry. Cooling is an effective technique for extending the shelf life of fresh agrifood produce to minimize spoilage. Due to the practical inability of directly solving the wide spatial and temporal scales in large industrial agrifood cooling systems, the porous medium approach is mostly used. However, improvements of current porous medium models and modeling across much wider scales are needed to better understand the multiscale cooling process and system problems. Recently, as a result of increased computational capacity, multiscale computational fluid dynamics (CFD) modeling approaches have been developed to tackle some of these challenges. The associated problems and applications of CFD in the design and process optimization of cooling processes and systems at different scales are considered. CFD solution and scale bridging techniques relevant for handling multiscale cooling processes and systems problems are discussed. Innovative applications of various CFD modeling techniques at different scales in cooling processes and systems are reviewed. CFD modeling techniques can be used to handle multiscale cooling process and system problems. Lattice Boltzmann method (LBM) is a potentially viable discrete modeling technique for complimentary usages alongside current continuum techniques in future multiscale CFD modeling. The multiscale CFD modeling paradigm can overcome the computational resource limitations associated with the direct modeling approach and enhance model extension across wider spatial and temporal scales. Information from multiscale CFD could be used to improve the accuracy of current porous medium models, and thus the design of more efficient cooling systems.Spoilage of agrifood produce is a major issue in the industry. Cooling is an effective technique for extending the shelf life of fresh agrifood produce to minimize spoilage. Due to the practical inability of directly solving the wide spatial and temporal scales in large industrial agrifood cooling systems, the porous medium approach is mostly used. However, improvements of current porous medium models and modeling across much wider scales are needed to better understand the multiscale cooling process and system problems. Recently, as a result of increased computational capacity, multiscale computational fluid dynamics (CFD) modeling approaches have been developed to tackle some of these challenges. The associated problems and applications of CFD in the design and process optimization of cooling processes and systems at different scales are considered. CFD solution and scale bridging techniques relevant for handling multiscale cooling processes and systems problems are discussed. Innovative applications of various CFD modeling techniques at different scales in cooling processes and systems are reviewed. CFD modeling techniques can be used to handle multiscale cooling process and system problems. Lattice Boltzmann method (LBM) is a potentially viable discrete modeling technique for complimentary usages alongside current continuum techniques in future multiscale CFD modeling. The multiscale CFD modeling paradigm can overcome the computational resource limitations associated with the direct modeling approach and enhance model extension across wider spatial and temporal scales. Information from multiscale CFD could be used to improve the accuracy of current porous medium models, and thus the design of more efficient cooling systems. |
| Author | Ajani, Clement Kehinde Zhu, Zhiwei Sun, Da-Wen |
| Author_xml | – sequence: 1 givenname: Clement Kehinde surname: Ajani fullname: Ajani, Clement Kehinde organization: Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre – sequence: 2 givenname: Zhiwei surname: Zhu fullname: Zhu, Zhiwei organization: Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre – sequence: 3 givenname: Da-Wen surname: Sun fullname: Sun, Da-Wen organization: Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32880478$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUtrGzEURkVJaRK3PyFF0E03k-o5I9FNg_OEQKG0ayHrkSjMSKmkSfC_rxzbmyyalS7ifFf36hyDg5iiA-AEo1OMBPqGEUOCSnFKEGlXAkkpyTtwhDmT3SA4OWh1Y7oNdAiOS3lACDGG-w_gkBIhEBvEEfC_nHGxQm2fdDSuwBDhNI81FKNHB5eX53BK1o1jiHcweWhSeikfc2p0aQEdLSzrUt1UoE8Z1nsH9V0OPiXbutm51Lz-CN57PRb3aXcuwJ_Li9_L6-7259XN8uy2M4wMtdOSWCYY8d54vqKcDitssOXEraTuHcNGc4Gsx8QiJp3otdfeSmm0R9QZTxfg67Zvm-_v7EpVU9ukja-jS3NRpKc9HxCj5G2UUSmHXjZ4Ab68Qh_SnGNbRBHOpWRYENqozztqXk3OqsccJp3Xav_ZDfi-BUxOpWTnlQlV15BizTqMCiO1Uav2atVGrdqpbWn-Kr1_4K3cj20uxKZn0s8pj1ZVvR5T9rlJD0XR_7f4Bxb5unk |
| CitedBy_id | crossref_primary_10_3390_app15158752 crossref_primary_10_1016_j_icheatmasstransfer_2024_107758 crossref_primary_10_1093_fqsafe_fyae002 crossref_primary_10_1016_j_biosystemseng_2025_104254 crossref_primary_10_1007_s12393_022_09309_z crossref_primary_10_1111_1541_4337_12766 crossref_primary_10_1016_j_applthermaleng_2024_124625 crossref_primary_10_1016_j_ijmecsci_2025_110374 crossref_primary_10_1016_j_jfoodeng_2025_112545 crossref_primary_10_3390_atmos16040394 crossref_primary_10_1016_j_biosystemseng_2024_06_007 crossref_primary_10_1111_1541_4337_13014 crossref_primary_10_1016_j_lwt_2025_118202 crossref_primary_10_1007_s11242_022_01796_2 crossref_primary_10_1016_j_ijthermalsci_2024_108888 crossref_primary_10_1007_s00217_023_04231_y crossref_primary_10_1007_s00217_023_04401_y crossref_primary_10_3390_foods14030401 crossref_primary_10_1111_jfpe_14021 crossref_primary_10_3390_en15228659 crossref_primary_10_1111_jfpe_70024 crossref_primary_10_1007_s11242_023_01942_4 crossref_primary_10_1016_j_tifs_2022_11_018 crossref_primary_10_3389_fsufs_2022_1030915 |
| Cites_doi | 10.1016/j.agrformet.2019.107773 10.1016/j.scienta.2016.06.011 10.1016/j.jfoodeng.2017.02.011 10.1016/j.jfoodeng.2020.110112 10.1007/s11947-016-1733-y 10.1016/j.ijheatmasstransfer.2015.04.003 10.1016/bs.host.2018.06.002 10.1016/j.jfoodeng.2013.05.007 10.1111/jfpp.12556 10.1016/j.jfoodeng.2008.08.027 10.1016/j.egypro.2017.07.284 10.1016/j.lwt.2020.109066 10.1016/j.tifs.2018.02.019 10.1016/j.ijheatmasstransfer.2019.118624 10.1016/j.ijheatmasstransfer.2015.04.004 10.1080/10408398.2018.1482528 10.1016/j.jcp.2012.08.029 10.1016/j.biosystemseng.2010.02.004 10.1016/j.foodchem.2017.07.011 10.1016/j.lwt.2018.12.079 10.1016/j.biosystemseng.2018.02.003 10.1016/j.apm.2014.07.001 10.1016/j.tifs.2012.08.001 10.1016/j.ijheatmasstransfer.2017.04.015 10.3390/en12173272 10.1016/j.jfoodeng.2017.01.026 10.1016/j.ijrefrig.2018.02.012 10.1016/j.camwa.2018.08.018 10.1016/j.compag.2012.05.009 10.1016/j.compag.2013.05.008 10.1201/9781420009217 10.1016/j.ijrefrig.2006.03.019 10.1016/j.apenergy.2016.01.101 10.18280/ijht.340426 10.1080/10408398.2017.1345854 10.1016/j.compag.2017.02.015 10.1016/j.ijrefrig.2016.06.013 10.1016/j.jbiotec.2015.11.008 10.1016/j.jfoodeng.2009.03.004 10.1017/S0022112005008153 10.1016/j.jcp.2006.07.034 10.1016/j.applthermaleng.2014.11.012 10.1007/s10494-016-9751-4 10.1016/j.tifs.2017.11.017 10.13140/RG.2.2.35857.33129/2 10.1093/oso/9780198503989.001.0001 10.1016/j.jfoodeng.2008.03.026 10.1016/j.tifs.2015.04.008 10.1533/9780857098894.2.336 10.1007/s11947-018-2086-5 10.1007/s11947-012-0883-9 10.1155/2013/928309 10.1016/j.enconman.2005.10.007 10.1007/s11431-017-9100-2 10.1016/S0260-8774(00)00082-0 10.1111/j.1469-8137.2008.02732.x 10.3182/20110828-6-IT-1002.02886 10.1016/j.ijheatmasstransfer.2013.05.075 10.1080/23311835.2017.1327502 10.1016/j.tifs.2006.05.004 10.1016/j.ijthermalsci.2017.12.017 10.1080/10408398.2010.518256 10.1016/j.jfoodeng.2012.08.019 10.1515/ijfe-2012-0015 10.1016/j.jfoodeng.2012.09.003 10.1007/s11947-012-0913-7 10.1080/10408398.2018.1490696 10.1016/j.applthermaleng.2018.12.054 10.1016/j.foodchem.2017.12.050 10.1007/s11947-018-2163-9 10.1016/j.postharvbio.2016.05.008 10.1016/j.agrformet.2012.04.010 10.1016/j.jfoodeng.2014.06.041 10.1007/s11242-019-01282-2 10.1016/j.jfoodeng.2004.11.010 10.1080/10408398.2018.1496900 10.1016/j.postharvbio.2016.10.005 10.1016/j.jfoodeng.2017.02.010 10.5539/mas.v6n1p102 10.1016/j.ijheatmasstransfer.2014.09.051 10.1016/j.tifs.2019.09.010 10.1016/j.ijrefrig.2005.12.010 10.1016/j.applthermaleng.2017.11.049 10.1016/j.postharvbio.2016.11.019 10.33552/GJES.2018.01.000503 10.1016/j.ijrefrig.2006.01.013 10.1016/j.tifs.2019.11.009 10.1016/j.ijheatmasstransfer.2009.09.029 10.1016/j.applthermaleng.2016.12.063 10.1137/09077059X 10.1111/1541-4337.12380 10.1016/j.cja.2014.12.007 10.1007/s12393-010-9027-z 10.1093/aob/mct313 10.1016/j.ultsonch.2020.105162 |
| ContentType | Journal Article |
| Copyright | 2020 Taylor & Francis Group, LLC 2020 2020 Taylor & Francis Group, LLC |
| Copyright_xml | – notice: 2020 Taylor & Francis Group, LLC 2020 – notice: 2020 Taylor & Francis Group, LLC |
| DBID | AAYXX CITATION NPM 7QO 7QP 7QR 7T7 7TK 8FD C1K FR3 K9. NAPCQ P64 7X8 7S9 L.6 |
| DOI | 10.1080/10408398.2020.1809992 |
| DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed Nursing & Allied Health Premium Biotechnology Research Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic Nursing & Allied Health Premium PubMed AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering Diet & Clinical Nutrition |
| EISSN | 1549-7852 |
| EndPage | 2470 |
| ExternalDocumentID | 32880478 10_1080_10408398_2020_1809992 1809992 |
| Genre | Review Journal Article |
| GroupedDBID | --- .7F .QJ 0BK 0R~ 29F 2DF 30N 36B 4.4 5GY 5VS 6J9 6PF AAENE AAGDL AAHBH AAHIA AAIKC AAJMT AALDU AAMIU AAMNW AAPUL AAQRR AAWTL ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFO ACGFS ACGOD ACIWK ACPRK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRAH AFRVT AGDLA AGMYJ AHDZW AHMBA AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 E.L EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KSZGM KYCEM LJTGL M4Z NA5 NX0 O9- RIG RNANH ROSJB RTWRZ RWL S-T SNACF TAE TASJS TBQAZ TDBHL TEI TFL TFT TFW TQWBC TTHFI TUROJ TWF UT5 UU3 WH7 ZGOLN ~KM ~S~ AAYXX CITATION ADYSH ALIPV NPM 7QO 7QP 7QR 7T7 7TK 8FD C1K FR3 K9. NAPCQ P64 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c427t-a92d4842ffcf5b3537b1c1d52eb9a6e41ca580df12d049e86afafd99caf03ecf3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000566607000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1040-8398 1549-7852 |
| IngestDate | Fri Sep 05 17:25:04 EDT 2025 Wed Oct 01 13:51:11 EDT 2025 Fri Oct 03 08:31:45 EDT 2025 Wed Feb 19 02:28:28 EST 2025 Sat Nov 29 04:45:21 EST 2025 Tue Nov 18 21:47:09 EST 2025 Mon Oct 20 23:48:13 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Keywords | Cooling process multiscale CFD modeling turbulence LBM porous medium modeling cooling systems |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c427t-a92d4842ffcf5b3537b1c1d52eb9a6e41ca580df12d049e86afafd99caf03ecf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 32880478 |
| PQID | 2559941823 |
| PQPubID | 32624 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_2439976904 crossref_primary_10_1080_10408398_2020_1809992 proquest_journals_2559941823 informaworld_taylorfrancis_310_1080_10408398_2020_1809992 crossref_citationtrail_10_1080_10408398_2020_1809992 pubmed_primary_32880478 proquest_miscellaneous_2636570432 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-22 |
| PublicationDateYYYYMMDD | 2021-08-22 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Boca Raton |
| PublicationTitle | Critical reviews in food science and nutrition |
| PublicationTitleAlternate | Crit Rev Food Sci Nutr |
| PublicationYear | 2021 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | CIT0071 CIT1042 CIT0074 CIT0073 CIT1044 CIT0076 CIT1043 CIT0075 CIT1046 CIT0078 CIT1045 CIT0070 Kitazawa H. (CIT0052) 2019 CIT1048 CIT1047 CIT0079 CIT1049 CIT1051 CIT0083 CIT1050 CIT0082 CIT0085 CIT1053 CIT0084 CIT1052 CIT0087 CIT1055 CIT0086 CIT1054 CIT0001 Moureh J. (CIT0057) 2019 CIT0089 CIT0088 CIT0081 CIT0003 CIT0002 CIT0005 Jacob B. (CIT0048) 2018 CIT0004 CIT0007 CIT0006 CIT0009 CIT0008 CIT0010 CIT0012 CIT0011 CIT0090 CIT0092 CIT0091 Delele M. A. (CIT0025) 2019 CIT0014 CIT0013 CIT0016 CIT0018 CIT0019 CIT0021 CIT0020 CIT0023 CIT0022 Han J. (CIT0040) 2016; 40 CIT0024 CIT0027 CIT0026 CIT0029 CIT0028 Opara U. L. (CIT0062) 2019 CIT0030 CIT0032 CIT0031 CIT0034 CIT0033 Kitazawa H. (CIT0053) 2014; 12 Cortella G. (CIT0017) 2019 CIT0036 CIT0035 CIT0038 CIT0037 CIT0039 CIT0041 CIT0043 CIT0042 CIT0045 CIT0044 Versteeg H. K. (CIT0080) 2007 CIT0047 CIT0046 CIT0049 CIT0050 CIT0051 CIT0054 CIT0056 CIT0055 Succi S. (CIT0072) 2001 Peralta J. M. (CIT0064) 2019 CIT0058 CIT0059 CIT0061 CIT0060 CIT0063 CIT0065 CIT0067 CIT0066 CIT0069 Sun D.-W. (CIT0077) 2019 CIT0068 |
| References_xml | – ident: CIT0051 doi: 10.1016/j.agrformet.2019.107773 – ident: CIT0058 doi: 10.1016/j.scienta.2016.06.011 – ident: CIT0036 doi: 10.1016/j.jfoodeng.2017.02.011 – ident: CIT1050 doi: 10.1016/j.jfoodeng.2020.110112 – ident: CIT0010 doi: 10.1007/s11947-016-1733-y – ident: CIT0086 doi: 10.1016/j.ijheatmasstransfer.2015.04.003 – ident: CIT0034 doi: 10.1016/bs.host.2018.06.002 – ident: CIT0003 doi: 10.1016/j.jfoodeng.2013.05.007 – volume: 40 start-page: 1 year: 2016 ident: CIT0040 publication-title: Journal of Food Process Engineering doi: 10.1111/jfpp.12556 – start-page: 121 volume-title: Computational fluid dynamics in food processing year: 2019 ident: CIT0062 – start-page: 149 volume-title: Computational fluid dynamics in food processing year: 2019 ident: CIT0052 – ident: CIT0026 doi: 10.1016/j.jfoodeng.2008.08.027 – ident: CIT0078 doi: 10.1016/j.egypro.2017.07.284 – ident: CIT1049 doi: 10.1016/j.lwt.2020.109066 – ident: CIT1045 doi: 10.1016/j.tifs.2018.02.019 – ident: CIT0016 doi: 10.1016/j.ijheatmasstransfer.2019.118624 – ident: CIT0085 doi: 10.1016/j.ijheatmasstransfer.2015.04.004 – ident: CIT1055 doi: 10.1080/10408398.2018.1482528 – ident: CIT0046 doi: 10.1016/j.jcp.2012.08.029 – ident: CIT0087 doi: 10.1016/j.biosystemseng.2010.02.004 – ident: CIT1043 doi: 10.1016/j.foodchem.2017.07.011 – ident: CIT1053 doi: 10.1016/j.lwt.2018.12.079 – ident: CIT0084 doi: 10.1016/j.biosystemseng.2018.02.003 – ident: CIT0007 doi: 10.1016/j.apm.2014.07.001 – ident: CIT0055 doi: 10.1016/j.tifs.2012.08.001 – ident: CIT0041 doi: 10.1016/j.ijheatmasstransfer.2017.04.015 – ident: CIT0030 doi: 10.3390/en12173272 – ident: CIT0005 doi: 10.1016/j.jfoodeng.2017.01.026 – ident: CIT0042 doi: 10.1016/j.ijrefrig.2018.02.012 – ident: CIT0033 doi: 10.1016/j.camwa.2018.08.018 – start-page: 87 volume-title: Computational fluid dynamics in food processing year: 2019 ident: CIT0064 – ident: CIT0002 doi: 10.1016/j.compag.2012.05.009 – ident: CIT0022 doi: 10.1016/j.compag.2013.05.008 – ident: CIT0076 doi: 10.1201/9781420009217 – ident: CIT0071 doi: 10.1016/j.ijrefrig.2006.03.019 – ident: CIT0090 doi: 10.1016/j.apenergy.2016.01.101 – ident: CIT0014 doi: 10.18280/ijht.340426 – ident: CIT1052 doi: 10.1080/10408398.2017.1345854 – ident: CIT0006 doi: 10.1016/j.compag.2017.02.015 – ident: CIT0054 doi: 10.1016/j.ijrefrig.2016.06.013 – ident: CIT0013 doi: 10.1016/j.jbiotec.2015.11.008 – ident: CIT0027 doi: 10.1016/j.jfoodeng.2009.03.004 – ident: CIT0070 doi: 10.1017/S0022112005008153 – ident: CIT0088 doi: 10.1016/j.jcp.2006.07.034 – ident: CIT0045 doi: 10.1016/j.applthermaleng.2014.11.012 – start-page: 3 volume-title: Computational fluid dynamics in food processing year: 2019 ident: CIT0017 – ident: CIT0056 doi: 10.1007/s10494-016-9751-4 – ident: CIT1046 doi: 10.1016/j.tifs.2017.11.017 – ident: CIT0066 doi: 10.13140/RG.2.2.35857.33129/2 – volume-title: The Lattice Boltzmann equation for fluid dynamics and beyound year: 2001 ident: CIT0072 doi: 10.1093/oso/9780198503989.001.0001 – ident: CIT0028 doi: 10.1016/j.jfoodeng.2008.03.026 – ident: CIT0019 doi: 10.1016/j.tifs.2015.04.008 – volume-title: An Introduction to Computational Fluid Dynamics year: 2007 ident: CIT0080 – ident: CIT0031 doi: 10.1533/9780857098894.2.336 – ident: CIT0037 doi: 10.1007/s11947-018-2086-5 – ident: CIT0063 doi: 10.1007/s11947-012-0883-9 – volume-title: CRC Press Taylor & Francis Group year: 2019 ident: CIT0077 – ident: CIT0012 doi: 10.1155/2013/928309 – ident: CIT0049 doi: 10.1016/j.enconman.2005.10.007 – start-page: 61 volume-title: Computational Fluid Dynamics in Food Processing year: 2019 ident: CIT0025 – ident: CIT0089 doi: 10.1007/s11431-017-9100-2 – ident: CIT0047 doi: 10.1016/S0260-8774(00)00082-0 – ident: CIT0043 doi: 10.1111/j.1469-8137.2008.02732.x – ident: CIT0008 doi: 10.3182/20110828-6-IT-1002.02886 – ident: CIT0023 doi: 10.1016/j.ijheatmasstransfer.2013.05.075 – ident: CIT0032 doi: 10.1080/23311835.2017.1327502 – ident: CIT0059 doi: 10.1016/j.tifs.2006.05.004 – ident: CIT0061 doi: 10.1016/j.ijthermalsci.2017.12.017 – ident: CIT0060 doi: 10.1080/10408398.2010.518256 – ident: CIT0044 doi: 10.1016/j.jfoodeng.2012.08.019 – ident: CIT0068 doi: 10.1515/ijfe-2012-0015 – volume-title: Theory and Applications of Transport in Porous Media Modelling Phenomena of Flow and Transport in Porous Media year: 2018 ident: CIT0048 – ident: CIT0024 doi: 10.1016/j.jfoodeng.2012.09.003 – ident: CIT0004 doi: 10.1007/s11947-012-0913-7 – ident: CIT0091 doi: 10.1080/10408398.2018.1490696 – ident: CIT0001 doi: 10.1016/j.applthermaleng.2018.12.054 – ident: CIT1044 doi: 10.1016/j.foodchem.2017.12.050 – ident: CIT0039 doi: 10.1007/s11947-018-2163-9 – ident: CIT0074 doi: 10.1016/j.postharvbio.2016.05.008 – ident: CIT0021 doi: 10.1016/j.agrformet.2012.04.010 – ident: CIT0075 doi: 10.1016/j.jfoodeng.2014.06.041 – ident: CIT0009 doi: 10.1007/s11242-019-01282-2 – ident: CIT1042 doi: 10.1016/j.jfoodeng.2004.11.010 – ident: CIT1054 doi: 10.1080/10408398.2018.1496900 – ident: CIT0011 doi: 10.1016/j.postharvbio.2016.10.005 – ident: CIT0035 doi: 10.1016/j.jfoodeng.2017.02.010 – start-page: 23 volume-title: Computational fluid dynamics in food processing year: 2019 ident: CIT0057 – ident: CIT0067 doi: 10.5539/mas.v6n1p102 – ident: CIT0050 doi: 10.1016/j.ijheatmasstransfer.2014.09.051 – ident: CIT1047 doi: 10.1016/j.tifs.2019.09.010 – ident: CIT0079 doi: 10.1016/j.ijrefrig.2005.12.010 – ident: CIT0083 doi: 10.1016/j.applthermaleng.2017.11.049 – ident: CIT0073 doi: 10.1016/j.postharvbio.2016.11.019 – ident: CIT0029 doi: 10.33552/GJES.2018.01.000503 – ident: CIT0065 doi: 10.1016/j.ijrefrig.2006.01.013 – ident: CIT1051 doi: 10.1016/j.tifs.2019.11.009 – ident: CIT0018 doi: 10.1016/j.ijheatmasstransfer.2009.09.029 – ident: CIT0069 doi: 10.1016/j.applthermaleng.2016.12.063 – ident: CIT0038 doi: 10.1137/09077059X – ident: CIT0082 doi: 10.1111/1541-4337.12380 – volume: 12 start-page: 46 issue: 3 year: 2014 ident: CIT0053 publication-title: Journal of Food, Agriculture and Environment – ident: CIT0092 doi: 10.1016/j.cja.2014.12.007 – ident: CIT0081 doi: 10.1007/s12393-010-9027-z – ident: CIT0020 doi: 10.1093/aob/mct313 – ident: CIT1048 doi: 10.1016/j.ultsonch.2020.105162 |
| SSID | ssj0004416 |
| Score | 2.476313 |
| SecondaryResourceType | review_article |
| Snippet | Spoilage of agrifood produce is a major issue in the industry. Cooling is an effective technique for extending the shelf life of fresh agrifood produce to... |
| SourceID | proquest pubmed crossref informaworld |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2455 |
| SubjectTerms | Agribusiness Agricultural production Computational fluid dynamics Computer applications Cooling Cooling process Cooling systems Design optimization Fluid dynamics fluid mechanics food industry food science Hydrodynamics LBM Mathematical models multiscale CFD modeling nutrition Porous media porous medium modeling Shelf life Spoilage turbulence |
| Title | Recent advances in multiscale CFD modelling of cooling processes and systems for the agrifood industry |
| URI | https://www.tandfonline.com/doi/abs/10.1080/10408398.2020.1809992 https://www.ncbi.nlm.nih.gov/pubmed/32880478 https://www.proquest.com/docview/2559941823 https://www.proquest.com/docview/2439976904 https://www.proquest.com/docview/2636570432 |
| Volume | 61 |
| WOSCitedRecordID | wos000566607000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis customDbUrl: eissn: 1549-7852 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004416 issn: 1040-8398 databaseCode: TFW dateStart: 19880101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RhNRy6GNbyrYUuVLVW6rEdhL7WEFXPa04gLq3yLE9EhJKEFmQ-PcdO84WDpQDnBIlGSe2x_NwZr4B-ObRFblybdb6ihwUbHWmVSGz3BmuC1sYV7pYbKJeLtVqpU9SNOGQwiqDD40jUESU1WFxm3aYIuLoKMlw0CEwi9MlFYycIIVJ9Yelebr48y8zUsbip4EiCyRTDs9DrdzTTvewSx-2QKMmWrx5hj68hdfJDGU_R755B1u-m8H8-Nyv2XeWsEIv2HKC6p_ByymDeZjB7h0Qw_eAZHmS5mIpmmBg5x2LYYoDNeHZ0eKYxXI7Ie-d9chs38fTyzFFgQioE2xElB4YDQUjm5SZsJvU945ai7VFbj_A2eLX6dHvLFVvyKzk9TozmjupJEe0WLaiFHVLc-9K7lttKi8La0qVOyy4Iy_Fq8qgQae1NZgLb1HswXbXd34fGK8cGovUQOFlXRtFQjn3OifTDj1N8RzkNGuNTdDmocLGRVMkBNRpuJsw3E0a7jn82JBdjtgejxHouyzRrOOmCo4VUBrxCO3BxD9NEhNDE_HeJLl4Yg5fN7dpgYe_Nqbz_TU9EzzGutK5_M8zlQghTFLQaz6OvLnpkeAkomWtPj3h4z_DKx5ieXKSqvwAttdX1_4L7Ngb4qWrQ3hRr9RhXHh_AfNnKFc |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hglQ48FgoLBQwEuIWlNhOYh9Ry6qIsqdF9GY5fkiVqqRqtpX675lxkmV7KD3AKVGScWJ7PA9n5huAjyH6Ile-yZpQoYMSG51pVcgs95brwhXWlz4Vm6iXS3VyordzYSisknzoOABFJFlNi5s2o6eQODxKtBw0RWZxvKTIykExfL9EXUv4-avFrz-5kTKVPyWSjGimLJ7bmrmhn26gl95ugyZdtHjyP3rxFB6Plij7MrDOM7gX2hnMD0_Dmn1iI1zoGVtOaP0z2J2SmPsZPNrCMXwOEY1PVF5sDCjo2WnLUqRij00EdrA4ZKniDqW-sy4y13Xp9HzIUkAC7AUbQKV7hmPB0CxlljaUus5ja6m8yPUL-Ln4ujo4ysYCDpmTvF5nVnMvleQxulg2ohR1g9PvSx4abasgC2dLlftYcI-OSlCVjTZ6rZ2NuQguij3Yabs2vALGKx-ti9hAEWRdW4VyOQ86R-suBpzjOchp2owb0c2pyMaZKUYQ1Gm4DQ23GYd7Dp83ZOcDvMddBHqbJ8w67avEoQiKEXfQ7k8MZEZJ0ZsE-SbRyxNz-LC5jWucftzYNnSX-Aw5jXWlc_mXZypBUUxS4GteDsy56ZHgKKVlrV7_w8e_h92j1Y9jc_xt-f0NPOQU2pOjkOX7sLO-uAxv4YG7Qr66eJfW32-qxiuZ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hgngceCyvhQJGQtyCEtt5-Ii6RCDQqocierMc2yNVqpJVs0Xi3zN2nKU9lB7glCjJOPF4PJ5xZr4BeOfRFXnjuqzzFTko2KlMNYXMcme4KmxhXOlisYl6vW6Oj9VhiiYcU1hl8KFxAoqIujpM7o3DOSKOjpIMBxUCszhdaoKRQ1r4JpnOVRDyo_bHn9RIGaufBpIs0MxJPFc1c2l5ugReerUJGpei9sF_6MRDuJ_sUPZxEpxHcMP3C1iuTvyWvWcJLPSUrWes_gXcmVOYxwXcu4Bi-BiQTE9aulgKJxjZSc9inOJITXh20K5YrLcTEt_ZgMwOQzzdTDkKRECdYBOk9MiIFYyMUmbCdtIwOGotFhf59QS-t5-ODj5nqXxDZiWvt5lR3MlGckSLZSdKUXc0-K7kvlOm8rKwpmxyhwV35Kb4pjJo0CllDebCWxRPYa8fev8cGK8cGovUQOFlXZuGtHLuVU62HXoa4iXIedS0TdjmocTGqS4SBOrMbh3YrRO7l_BhR7aZwD2uI1AXRUJv464KTiVQtLiGdn-WH530xKgj4JskH08s4e3uNs3w8NvG9H44p2eCy1hXKpd_eaYSIYZJCnrNs0k2dz0SnHS0rJsX__Dxb-D24arV376sv76EuzzE9eSkYfk-7G3Pzv0ruGV_klidvY6z7zf6PypL |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+multiscale+CFD+modelling+of+cooling+processes+and+systems+for+the+agrifood+industry&rft.jtitle=Critical+reviews+in+food+science+and+nutrition&rft.au=Ajani%2C+Clement+Kehinde&rft.au=Zhu%2C+Zhiwei&rft.au=Sun%2C+Da-Wen&rft.date=2021-08-22&rft.pub=Taylor+%26+Francis&rft.issn=1040-8398&rft.eissn=1549-7852&rft.volume=61&rft.issue=15&rft.spage=2455&rft.epage=2470&rft_id=info:doi/10.1080%2F10408398.2020.1809992&rft.externalDocID=1809992 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-8398&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-8398&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-8398&client=summon |