Harmonic distance in intervals and chords

The harmonic distance between two pure tones, in the sense used by Tenney, is generalised to chords whose pitches are harmonic fractions. In the tonal graph generated by the harmonics involved in a chord, which for n-TET systems has its equivalent in the Tonnetz, the melodic distance between the low...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematics and music (Society for Mathematics and Computation in Music) Vol. 13; no. 1; pp. 85 - 106
Main Author: Cubarsi, Rafael
Format: Journal Article Publication
Language:English
Published: Baton Rouge Taylor & Francis 02.01.2019
Taylor & Francis Ltd
Subjects:
ISSN:1745-9737, 1745-9745, 1745-9745
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The harmonic distance between two pure tones, in the sense used by Tenney, is generalised to chords whose pitches are harmonic fractions. In the tonal graph generated by the harmonics involved in a chord, which for n-TET systems has its equivalent in the Tonnetz, the melodic distance between the lowest common ancestor and the lowest common harmonic of the pitches composing the chord is a measure of the relative dissonance. This notion, rooted in just intonation, is extended to Pythagorean tuning and is used as an approximation for equal temperament scales. Harmonic distance and sensory dissonance are compared and discussed for chords in different tuning systems. It is borne out that proximity of chords in the Tonnetz is not exactly related to the harmonic distance.
AbstractList This is an Accepted Manuscript of an article published by Taylor & Francis Group in Journal of Mathematics and Music on 15 of may 2019, available online at: http://www.tandfonline.com/10.1080/17459737.2019.1608600. The harmonic distance between two pure tones, in the sense used by Tenney, is generalised to chords whose pitches are harmonic fractions. In the tonal graph generated by the harmonics involved in a chord, which for n-TET systems has its equivalent in the Tonnetz, the melodic distance between the lowest common ancestor and the lowest common harmonic of the pitches composing the chord is a measure of the relative dissonance. This notion, rooted in just intonation, is extended to Pythagorean tuning and is used as an approximation for equal temperament scales. Harmonic distance and sensory dissonance are compared and discussed for chords in different tuning systems. It is borne out that proximity of chords in the Tonnetz is not exactly related to the harmonic distance. Peer Reviewed
The harmonic distance between two pure tones, in the sense used by Tenney, is generalised to chords whose pitches are harmonic fractions. In the tonal graph generated by the harmonics involved in a chord, which for n-TET systems has its equivalent in the Tonnetz, the melodic distance between the lowest common ancestor and the lowest common harmonic of the pitches composing the chord is a measure of the relative dissonance. This notion, rooted in just intonation, is extended to Pythagorean tuning and is used as an approximation for equal temperament scales. Harmonic distance and sensory dissonance are compared and discussed for chords in different tuning systems. It is borne out that proximity of chords in the Tonnetz is not exactly related to the harmonic distance.
Author Cubarsi, Rafael
Author_xml – sequence: 1
  givenname: Rafael
  orcidid: 0000-0001-7748-1322
  surname: Cubarsi
  fullname: Cubarsi, Rafael
  email: rafael.cubarsi@upc.edu
  organization: Departament de Matemàtiques, Universitat Politècnica de Catalunya
BookMark eNqFkFFLQyEUxyUWtK0-QnChpx7uOurUe-mlGNWCQS_1LF6vlxybLnXFvn1etgp6KPDo8eDvj_xGaOC8MwidY5hgqOAKiymrBRUTArieYA4VBzhCw35e1nkbfPdUnKBRjEsAxnFNhuhyrsLaO6uL1saknDaFdXklE97VKhbKtYV-9aGNp-i4yxNzdjjH6OX-7nk2LxdPD4-z20Wpp0SkUhHRYGoabpRWrOaVwS2FFneEdw0GDDWn7VQLbgBzznQj2opqVjVGMQBV0zHC-1wdt1oGo03QKkmv7M-lLwKCSMoqQXBmLvbMJvi3rYlJLv02uPxNSQirMa-gIvkVOyQHH2MwndwEu1ZhJzHI3qT8Mil7k_JgMnPXvzhtk0rWuxSUXf1L3-xp6zof1urDh1Urk9qtfOhCNm6jpH9HfAJS-oxS
CitedBy_id crossref_primary_10_1080_17459737_2025_2450315
crossref_primary_10_1109_ACCESS_2024_3475218
Cites_doi 10.1126/science.1153021
10.2307/843877
10.1007/978-1-4471-4177-8
10.1126/science.1126287
10.1121/1.1909741
10.1016/0039-3681(85)90017-2
10.1007/978-3-540-68888-4
10.1080/17459737.2015.1033024
10.1017/CBO9781139050852
10.3758/BF03199493
10.2307/843871
10.1121/1.381737
10.1121/1.391937
10.5406/illinois/9780252038723.001.0001
10.1121/1.2968688
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. Departament de Matemàtiques
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Departament de Matemàtiques
Copyright 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
2019 Informa UK Limited, trading as Taylor & Francis Group
Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/es
Copyright_xml – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
– notice: 2019 Informa UK Limited, trading as Taylor & Francis Group
– notice: Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>
DBID AAYXX
CITATION
C18
XX2
DOI 10.1080/17459737.2019.1608600
DatabaseName CrossRef
Humanities Index
Recercat
DatabaseTitle CrossRef
British Humanities Index (BHI)
DatabaseTitleList
British Humanities Index (BHI)

DeliveryMethod fulltext_linktorsrc
Discipline Music
EISSN 1745-9745
EndPage 106
ExternalDocumentID oai_recercat_cat_2072_358721
10_1080_17459737_2019_1608600
1608600
Genre Article
GroupedDBID .7F
0BK
30N
4.4
5GY
AACJB
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
AEISY
AENEX
AFFNX
AFRVT
AGDLA
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AVBZW
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
GTTXZ
H13
HZ~
H~P
IPNFZ
J9A
J~4
KYCEM
LJTGL
M4Z
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TWF
TWQ
UT5
UU3
ZGOLN
AAYXX
CITATION
C18
XX2
ID FETCH-LOGICAL-c427t-a27b13eb6eaca5968e1d30d1f26fb1010963d4c76e01665cb7d83c58bea500a93
IEDL.DBID TFW
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000470480200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1745-9737
1745-9745
IngestDate Fri Nov 07 13:47:21 EST 2025
Wed Aug 13 11:09:47 EDT 2025
Sat Nov 29 02:58:52 EST 2025
Tue Nov 18 22:04:10 EST 2025
Mon Oct 20 23:50:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-a27b13eb6eaca5968e1d30d1f26fb1010963d4c76e01665cb7d83c58bea500a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7748-1322
OpenAccessLink https://recercat.cat/handle/2072/358721
PQID 2259168082
PQPubID 196167
PageCount 22
ParticipantIDs crossref_primary_10_1080_17459737_2019_1608600
crossref_citationtrail_10_1080_17459737_2019_1608600
proquest_journals_2259168082
csuc_recercat_oai_recercat_cat_2072_358721
informaworld_taylorfrancis_310_1080_17459737_2019_1608600
PublicationCentury 2000
PublicationDate 2019-01-02
PublicationDateYYYYMMDD 2019-01-02
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-02
  day: 02
PublicationDecade 2010
PublicationPlace Baton Rouge
PublicationPlace_xml – name: Baton Rouge
PublicationTitle Journal of mathematics and music (Society for Mathematics and Computation in Music)
PublicationYear 2019
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Stumpf C. (CIT0018) 1890
CIT0021
Tenney J. (CIT0019) 1988
CIT0020
CIT0001
CIT0003
CIT0014
CIT0002
CIT0013
CIT0005
Mickens R. E. (CIT0012) 1981
CIT0016
CIT0004
CIT0015
CIT0007
Helmholtz H. V. (CIT0008) 1863
Lewin D. (CIT0010) 1987
CIT0006
CIT0017
CIT0009
Mazzola G. (CIT0011) 2012
References_xml – ident: CIT0002
  doi: 10.1126/science.1153021
– ident: CIT0005
  doi: 10.2307/843877
– ident: CIT0015
  doi: 10.1007/978-1-4471-4177-8
– ident: CIT0021
  doi: 10.1126/science.1126287
– ident: CIT0014
  doi: 10.1121/1.1909741
– volume-title: An Introduction to Nonlinear Oscillations
  year: 1981
  ident: CIT0012
– ident: CIT0003
  doi: 10.1016/0039-3681(85)90017-2
– ident: CIT0007
  doi: 10.1007/978-3-540-68888-4
– ident: CIT0017
  doi: 10.1080/17459737.2015.1033024
– volume-title: Tonpsychologie
  year: 1890
  ident: CIT0018
– ident: CIT0009
  doi: 10.1017/CBO9781139050852
– volume-title: On the Sensations of Tone as a Physiological Basis for the Theory of Music
  year: 1863
  ident: CIT0008
– ident: CIT0016
  doi: 10.3758/BF03199493
– ident: CIT0004
  doi: 10.2307/843871
– volume-title: The Topos of Music: Geometric Logic of Concepts, Theory, and Performance
  year: 2012
  ident: CIT0011
– volume-title: Generalized Musical Intervals and Transformations
  year: 1987
  ident: CIT0010
– ident: CIT0001
  doi: 10.1121/1.381737
– ident: CIT0013
  doi: 10.1121/1.391937
– ident: CIT0020
  doi: 10.5406/illinois/9780252038723.001.0001
– ident: CIT0006
  doi: 10.1121/1.2968688
– volume-title: A History of Consonance and Dissonance
  year: 1988
  ident: CIT0019
SSID ssj0056192
Score 2.0923648
Snippet The harmonic distance between two pure tones, in the sense used by Tenney, is generalised to chords whose pitches are harmonic fractions. In the tonal graph...
This is an Accepted Manuscript of an article published by Taylor & Francis Group in Journal of Mathematics and Music on 15 of may 2019, available online at:...
SourceID csuc
proquest
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 85
SubjectTerms 05 Combinatorics
05C Graph theory
11 Number theory
11A Elementary number theory
54 General topology
54E Spaces with richer structures
Anàlisi matemàtica
chords
Chords (geometry)
Classificació AMS
consonance
dissonance
Espais topològics
Geometria
Grafs, Teoria de
Graph theory
Harmonic analysis
harmonic distance
Instrument tuning
Matemàtica discreta
Matemàtiques i estadística
melodic distance
Nombres, Teoria dels
Number theory
Sensory perception
Teoria de grafs
Tonnetz
Topological spaces
Tuning
tuning systems
Àrees temàtiques de la UPC
Title Harmonic distance in intervals and chords
URI https://www.tandfonline.com/doi/abs/10.1080/17459737.2019.1608600
https://www.proquest.com/docview/2259168082
https://recercat.cat/handle/2072/358721
Volume 13
WOSCitedRecordID wos000470480200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1745-9745
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056192
  issn: 1745-9737
  databaseCode: TFW
  dateStart: 20070301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yevDiW1xf9OBFobpN2rQ5irjsafGw4t5CXoUFXaXt-vudSdPFB7IHPbQQaBI6mXzzJZnMEHIhEPCs0XGqrYNXOYhVYi0eOJbAjylTrvTJJvLxuJhOxUPwJqyDWyWuocs2UITHapzcStedR9wNkGigwSxHxyyB2yMFWG1AYTD9ODUnw6cOizNcHrRXIrMYq3R3eH5r5Yt16pl6Yb6FMP0B2d4ODbf_4Q92yFYgodFtqzW7ZM3N98i6T_m8Ty5HqnrBgLmRRW4JShHN5tHM-0aCrkbQaQSYWdn6gDwO7yd3ozgkVIhNSvMmVjTXCXOaA9qqTPDCJZYNbFJSXuoED8k4s6nJuQMiyDOjc1swkxXaYd4EJdgh6c1f5-6IRBwMfUGFSrXjqRLwgQDuR7VlTiln0j5JO0FKE6KNY9KLZ5mEoKSdDCTKQAYZ9Mn1stpbG25jVYUrHCUJ5sFVRjUSw2UvC_jQQU4ly0Dvkj4Rn8dSNn5TpGwzmEi2oqPTbuBlmOa1BDAEel0AjTr-Q9MnZBOLfmOHnpJeUy3cGdkw782srs69Qn8ANQruLg
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB50FfTiW1yfPXhRqG6TvnIUcVlR97Ti3kJehQVdpdv19zvTx7Iq4kEPLZQ2CZ1MZr5Mkm8ATgUZPGu0H2rr8JZ1fBVYSwuOGeJjxpXLymQTSb-fDodi_iwMbaukOXRWEUWUtpoGNwWjmy1xl4iiEQfzhHZmCYqPpOi2F2EpQl9L_PmD7lNjjSOaIFSHIiOfyjSneH6q5pN_apnJ1HwhMf1mtEtP1F3_j3_YgLUah3pXleJswoIbb8FSmfV5G856Kn8hzlzPErxEvfBGY29Ubo9EdfWwVQ_NZm4nO_DYvRlc9_w6p4JvQpYUvmKJDrjTMRpcFYk4dYHlHRtkLM50QOtkMbehSWKHWDCOjE5syk2UakepE5Tgu9Aav47dHngx-vqUCRVqF4dK4AcC4R_TljulnAnbEDaSlKYmHKe8F88yqHlJGxlIkoGsZdCGi1mxt4px47cC59RNEj2Ey40qJDFmzx7oYp2ESR6h6gVtEPOdKYsyLpJVSUwk_6Whw6bnZT3SJxLtISLsFJHU_h-qPoGV3uDhXt7f9u8OYJVelXEedgitIp-6I1g278Vokh-X2v0BYcLyWA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwEB6x7Qpx4bmI8tocuIAUtrETJz4ioAItqjiA4Gb5FakSlCoJ_H5m8qhgEeLAHhIpSmwr4_HMZ3v8DcCBJIPnrAlj4zze8mGoI-dowzFHfMy49nmdbCIdj7P7e3ndRhOWbVglzaHzhiiittU0uGcu7yLi_iCIRhjMUwrMkrQ8kqHX_gF9hM6ClPxmdNcZ44TmB82ZyCSkMt0hns-qeeeeerZ8tv9wmH6w2bUjGq38h19YheUWhQYnjdqswYKfrkO_zvm8AYcXungkxtzAEbhErQgm02BSB0eisgbYaIBGs3DlL7gdnd-cXoRtRoXQxiytQs1SE3FvBJpbnUiR-cjxoYtyJnIT0S6Z4C62qfCIBEViTeoybpPMeEqcoCXfhN70aeq3IBDo6TMmdWy8iLXEDySCP2Yc91p7Gw8g7gSpbEs3TlkvHlTUspJ2MlAkA9XKYADH82Kzhm_jqwJH1EsK_YMvrK4U8WXPH-hiw5QpnqDiRQOQb_tSVfWqSN6kMFH8i4Z2u45X7TgvFVpDxNcZ4qjtb1T9Gxavz0bq6nL8dweW6E29yMN2oVcVz34PftqXalIW-7VuvwKDVfEK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harmonic+distance+in+intervals+and+chords&rft.jtitle=Journal+of+mathematics+and+music+%28Society+for+Mathematics+and+Computation+in+Music%29&rft.au=Cubarsi%2C+Rafael&rft.date=2019-01-02&rft.pub=Taylor+%26+Francis&rft.issn=1745-9737&rft.eissn=1745-9745&rft.volume=13&rft.issue=1&rft.spage=85&rft.epage=106&rft_id=info:doi/10.1080%2F17459737.2019.1608600&rft.externalDocID=1608600
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-9737&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-9737&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-9737&client=summon