Representation of Special Functions by Multidimensional A- and J-Fractions with Independent Variables
The paper deals with the problem of representing special functions by branched continued fractions, particularly multidimensional A- and J-fractions with independent variables, which are generalizations of associated continued fractions and Jacobi continued fractions, respectively. A generalized Gra...
Gespeichert in:
| Veröffentlicht in: | Fractal and fractional Jg. 9; H. 2; S. 89 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.02.2025
|
| Schlagworte: | |
| ISSN: | 2504-3110, 2504-3110 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The paper deals with the problem of representing special functions by branched continued fractions, particularly multidimensional A- and J-fractions with independent variables, which are generalizations of associated continued fractions and Jacobi continued fractions, respectively. A generalized Gragg’s algorithm is constructed that enables us to compute, by the coefficients of the given formal multiple power series, the coefficients of the corresponding multidimensional A- and J-fractions with independent variables. Presented below are numerical experiments for approximating some special functions by these branched continued fractions, which are similar to fractals. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2504-3110 2504-3110 |
| DOI: | 10.3390/fractalfract9020089 |