An End-to-End Underwater-Image-Enhancement Framework Based on Fractional Integral Retinex and Unsupervised Autoencoder
As an essential low-level computer vision task for remotely operated underwater robots and unmanned underwater vehicles to detect and understand the underwater environment, underwater image enhancement is facing challenges of light scattering, absorption, and distortion. Instead of using a specific...
Uložené v:
| Vydané v: | Fractal and fractional Ročník 7; číslo 1; s. 70 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.01.2023
|
| Predmet: | |
| ISSN: | 2504-3110, 2504-3110 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | As an essential low-level computer vision task for remotely operated underwater robots and unmanned underwater vehicles to detect and understand the underwater environment, underwater image enhancement is facing challenges of light scattering, absorption, and distortion. Instead of using a specific underwater imaging model to mitigate the degradation of underwater images, we propose an end-to-end underwater-image-enhancement framework that combines fractional integral-based Retinex and an encoder–decoder network. The proposed variant of Retinex aims to alleviate haze and color distortion in the input image while preserving edges to a large extent by utilizing a modified fractional integral filter. The encoder–decoder network with channel-wise attention modules trained in an unsupervised manner to overcome the lack of paired underwater image datasets is designed to refine the output of the Retinex. Our framework was evaluated under qualitative and quantitative metrics on several public underwater image datasets and yielded satisfactory enhancement results on the evaluation set. |
|---|---|
| AbstractList | As an essential low-level computer vision task for remotely operated underwater robots and unmanned underwater vehicles to detect and understand the underwater environment, underwater image enhancement is facing challenges of light scattering, absorption, and distortion. Instead of using a specific underwater imaging model to mitigate the degradation of underwater images, we propose an end-to-end underwater-image-enhancement framework that combines fractional integral-based Retinex and an encoder–decoder network. The proposed variant of Retinex aims to alleviate haze and color distortion in the input image while preserving edges to a large extent by utilizing a modified fractional integral filter. The encoder–decoder network with channel-wise attention modules trained in an unsupervised manner to overcome the lack of paired underwater image datasets is designed to refine the output of the Retinex. Our framework was evaluated under qualitative and quantitative metrics on several public underwater image datasets and yielded satisfactory enhancement results on the evaluation set. |
| Audience | Academic |
| Author | Yu, Yang Qin, Chenfeng |
| Author_xml | – sequence: 1 givenname: Yang orcidid: 0000-0002-2971-7828 surname: Yu fullname: Yu, Yang – sequence: 2 givenname: Chenfeng surname: Qin fullname: Qin, Chenfeng |
| BookMark | eNp9UV1rFDEUDVLBWvsLfBnweWoyk4_J41paXSgUxD6HO5mbNetMsibZVv-92d0iIiJ5OJfDOecmOa_JWYgBCXnL6FXfa_reJbAF5iMoyihV9AU57wTlbc8YPftjfkUuc95SSjule0HVOXlcheYmTG2JbYXmIUyYnqBgatcLbLCSXyFYXDCU5jbBgk8xfWs-QMapieFA2eJjgLlZh4KbVIfPWHzAHw0c8_J-h-nRH_SrfYkYbKwr3pCXDuaMl894QR5ub75cf2rv7j-ur1d3reWdKq1Ga1EhgGZCjaoHOeI4UKupRKuHUVohdIeCTc7JYcB-dEJYzuwocRjc0F-Q9Sl3irA1u-QXSD9NBG-OREwbA6l4O6NBJZwEZRXnmjscxtFKqLGUS0aR6Zr17pS1S_H7HnMx27hP9enZdEqqjirFZVVdnVQbqKE-uFjqH9Uz4eJtbc75yq-U6BgTnPFq6E8Gm2LOCd3vazJqDgWbfxRcXfovl_UFDlXUdX7-r_cXpMuzOA |
| CitedBy_id | crossref_primary_10_1007_s00034_024_02778_z crossref_primary_10_1016_j_eswa_2024_126314 crossref_primary_10_1177_14759217241228780 crossref_primary_10_3390_fractalfract8100554 crossref_primary_10_3788_LOP250975 |
| Cites_doi | 10.1109/ICRA.2019.8794272 10.1109/TIP.2019.2955241 10.1007/978-3-319-24574-4_28 10.1109/CVPR.2018.00745 10.1109/48.50695 10.1109/OCEANS.1975.1154053 10.1109/CSAE.2012.6272738 10.1109/LRA.2020.2974710 10.1364/JOSA.61.000001 10.1016/j.patcog.2019.107038 10.1109/TIP.2022.3190209 10.1109/MCSE.2007.55 10.1016/j.optlastec.2018.05.048 10.1016/j.chaos.2019.109463 10.1007/978-3-319-59773-7 10.1109/NCC.2012.6176791 10.1023/A:1016328200723 10.1109/ICIP.2017.8296508 10.1109/TCSVT.2019.2963772 10.1109/CVPR.2012.6247661 10.1109/CVPRW50498.2020.00277 10.1109/CVPR.2019.00178 10.1109/IGARSS.2007.4423193 10.1109/83.597272 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
| DOI | 10.3390/fractalfract7010070 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2504-3110 |
| ExternalDocumentID | oai_doaj_org_article_e75f6a7c74494fe8bbc6aff604610e19 A752115414 10_3390_fractalfract7010070 |
| GroupedDBID | 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO IGS ITC L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PROAC PTHSS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c427t-9ecce7eaa9157b73a6beb80c906ec98b6c5592e51dff688e3bf55c41cb6e88f83 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000915091200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2504-3110 |
| IngestDate | Fri Oct 03 12:46:09 EDT 2025 Fri Jul 25 11:41:08 EDT 2025 Tue Nov 04 17:52:26 EST 2025 Sat Nov 29 07:11:00 EST 2025 Tue Nov 18 22:22:04 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c427t-9ecce7eaa9157b73a6beb80c906ec98b6c5592e51dff688e3bf55c41cb6e88f83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2971-7828 |
| OpenAccessLink | https://doaj.org/article/e75f6a7c74494fe8bbc6aff604610e19 |
| PQID | 2767207746 |
| PQPubID | 2055410 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e75f6a7c74494fe8bbc6aff604610e19 proquest_journals_2767207746 gale_infotracacademiconefile_A752115414 crossref_primary_10_3390_fractalfract7010070 crossref_citationtrail_10_3390_fractalfract7010070 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Fractal and fractional |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Li (ref_14) 2019; 29 ref_13 ref_12 ref_11 Liu (ref_18) 2020; 30 Li (ref_15) 2017; 3 Land (ref_8) 1971; 61 Wang (ref_10) 2020; 131 Narasimhan (ref_2) 2002; 48 Jobson (ref_9) 1997; 6 Jaffe (ref_4) 1990; 15 McGlamery (ref_3) 1975; 75 ref_25 ref_24 ref_23 ref_22 ref_21 ref_20 ref_1 Liu (ref_17) 2022; 31 Li (ref_28) 2020; 98 Islam (ref_29) 2020; 5 Lu (ref_16) 2019; 110 ref_27 ref_26 Hunter (ref_19) 2007; 9 ref_5 ref_7 ref_6 |
| References_xml | – ident: ref_26 doi: 10.1109/ICRA.2019.8794272 – volume: 29 start-page: 4376 year: 2019 ident: ref_14 article-title: An underwater image enhancement benchmark dataset and beyond publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2955241 – ident: ref_22 doi: 10.1007/978-3-319-24574-4_28 – ident: ref_23 doi: 10.1109/CVPR.2018.00745 – ident: ref_24 – volume: 15 start-page: 101 year: 1990 ident: ref_4 article-title: Computer modeling and the design of optimal underwater imaging systems publication-title: IEEE J. Ocean. Eng. doi: 10.1109/48.50695 – ident: ref_1 – ident: ref_7 doi: 10.1109/OCEANS.1975.1154053 – ident: ref_11 doi: 10.1109/CSAE.2012.6272738 – volume: 5 start-page: 3227 year: 2020 ident: ref_29 article-title: Fast underwater image enhancement for improved visual perception publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2020.2974710 – volume: 61 start-page: 1 year: 1971 ident: ref_8 article-title: Lightness and retinex theory publication-title: Josa doi: 10.1364/JOSA.61.000001 – volume: 98 start-page: 107038 year: 2020 ident: ref_28 article-title: Underwater scene prior inspired deep underwater image and video enhancement publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.107038 – volume: 31 start-page: 4922 year: 2022 ident: ref_17 article-title: Twin adversarial contrastive learning for underwater image enhancement and beyond publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2022.3190209 – ident: ref_27 – volume: 9 start-page: 90 year: 2007 ident: ref_19 article-title: Matplotlib: A 2D graphics environment publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – volume: 110 start-page: 105 year: 2019 ident: ref_16 article-title: Multi-scale adversarial network for underwater image restoration publication-title: Optics and Laser Technology doi: 10.1016/j.optlastec.2018.05.048 – volume: 75 start-page: 1 year: 1975 ident: ref_3 article-title: Computer analysis and simulation of underwater camera system performance publication-title: SIO Ref – volume: 131 start-page: 109463 year: 2020 ident: ref_10 article-title: Noise detection and image denoising based on fractional calculus publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2019.109463 – ident: ref_12 doi: 10.1007/978-3-319-59773-7 – ident: ref_21 doi: 10.1109/NCC.2012.6176791 – volume: 48 start-page: 233 year: 2002 ident: ref_2 article-title: Vision and the atmosphere publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1016328200723 – ident: ref_13 doi: 10.1109/ICIP.2017.8296508 – volume: 30 start-page: 4861 year: 2020 ident: ref_18 article-title: Real-world underwater enhancement: Challenges, benchmarks, and solutions under natural light publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2019.2963772 – ident: ref_20 doi: 10.1109/CVPR.2012.6247661 – ident: ref_25 doi: 10.1109/CVPRW50498.2020.00277 – ident: ref_5 doi: 10.1109/CVPR.2019.00178 – ident: ref_6 doi: 10.1109/IGARSS.2007.4423193 – volume: 3 start-page: 387 year: 2017 ident: ref_15 article-title: WaterGAN: Unsupervised generative network to enable real-time color correction of monocular underwater images publication-title: IEEE Robot. Autom. Lett. – volume: 6 start-page: 965 year: 1997 ident: ref_9 article-title: A multiscale retinex for bridging the gap between color images and the human observation of scenes publication-title: IEEE Trans. Image Process. doi: 10.1109/83.597272 |
| SSID | ssj0002793507 |
| Score | 2.2780395 |
| Snippet | As an essential low-level computer vision task for remotely operated underwater robots and unmanned underwater vehicles to detect and understand the underwater... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 70 |
| SubjectTerms | Algorithms Autonomous underwater vehicles Coders Computer vision Datasets Deep learning Distortion Fractional calculus fractional integral Retinex Haze Image enhancement Machine vision Robots underwater image enhancement Underwater robots unsupervised autoencoder |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcIBDeVZsKcgHJC5YTWLHdk5oi7qiByrEQ-rN8iuAtE2WTbbw85lxvIuQoBdOkRwnsTOTzzOT8TeEvABgjKLggvmgwEEJQjCrOGeYLuRsGevgXSo2oc7P9cVF8z4H3IacVrnFxATUofcYIz-ulFRVAcaKfL36zrBqFP5dzSU0bpJbyJJQptS9j7sYSwXKB_bORDbEwbs_bnHrkV2mgyowQ6D4Y0FKvP3_Que05Czu_e9g75P9bGzS-aQdD8iN2D0kd9_tmFqHR-Rq3tHTLrCxZ3CgqQzSD7A_1-zsEqAGGr-iXmAMkS62iVz0BNa-QPsOm_wUTaRnE_HEkn7AXdTxJ7XpfsNmhXCE_eebsUfeTHjEY_J5cfrpzVuWazEwLyo1sgZEHVW0tilr5RS30kWnC98UMvpGO-nBNaliXYa2lVpH7tq69qL0TkatW80PyF7Xd_EJoTpKjqTu6HyK2EpXhQpel9OKBwH21oxUW4EYn4nKsV7G0oDDglI0f5HijLzaXbSaeDqu736Ckt51RZLt1NCvv5j8zZqo6lZa5ZUQjWijds5LC9NLHPWxbGbkJeqJQSiAAXqbdzTANJFUy8wV2EYl1lmfkaOtnpiMEYP5rSSH159-Su5gkfsp8HNE9sb1Jj4jt_3V-G1YP08q_wtdPw6T priority: 102 providerName: ProQuest |
| Title | An End-to-End Underwater-Image-Enhancement Framework Based on Fractional Integral Retinex and Unsupervised Autoencoder |
| URI | https://www.proquest.com/docview/2767207746 https://doaj.org/article/e75f6a7c74494fe8bbc6aff604610e19 |
| Volume | 7 |
| WOSCitedRecordID | wos000915091200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2504-3110 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793507 issn: 2504-3110 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2504-3110 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793507 issn: 2504-3110 databaseCode: M~E dateStart: 20170101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2504-3110 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793507 issn: 2504-3110 databaseCode: M7S dateStart: 20171201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2504-3110 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793507 issn: 2504-3110 databaseCode: BENPR dateStart: 20171201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2504-3110 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793507 issn: 2504-3110 databaseCode: PIMPY dateStart: 20171201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQwgEOiKcoLJUPSFywNokd2zm2qBU9bFUtIC0ny3YmAlTSVZsu_HxmnLRaJB4XTpZGTmJ7xuOZyfgbxl6hYgSVSSVibdBBqZUS3kgpKF0o-BzKOoZUbMIsl_byslrdKPVFOWE9PHC_cGdgykZ7E41SlWrAhhC1bxqdgMIhAX4WmaluOFNf0--0SqKl08MMSfTrzxq6dOTXqTEZ5QZkvxxFCbH_T3o5HTbzB-z-YCXyST-6h-wWtI_YvfMjxOruMbuetHzW1qLbCGx4ql_0HQ3HrVh8Qx2BxM_EUAr-8fkhA4tP8dCq-aYlUuzDgHzRI0as-QVdf4Yf3Kf37fZXpEeo_2TfbQjwEj_xhH2czz68fSeGIgoiqsJ0okIegQHvq7w0wUivAwSbxSrTECsbdESfooAyr3FRrQUZmrKMKo9Bg7WNlU_ZSbtp4RnjFrQkNHbyGhU0OhR1oU0RrJG1QkNpxIrDero4IIxToYu1Q0-DmOB-w4QRe3N86KoH2Ph79ykx6tiV0LETAWXGDTLj_iUzI_aa2OxoD-MAox-uIuA0CQ3LTQwaNTkVSB-x04MkuGFz71xhcNYZ2s36-f8YzQt2l2rY93GdU3bSbffwkt2J192X3XbMbk9ny9XFOMn3mFJT3yNttThfffoJizwFRg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELVKQQIOfCMWCvgA4kLUxHZs54DQFrrqqu0KQZF6c2PHAaQlWTbZFv4Uv5EZJ1mEBL31wMmS4zh2_DKemYzfEPIMBKMXMReRKxQYKIUQUa44jzBcyOaJTwtnQ7IJNZvp4-Ps3Qb5OZyFwbDKQSYGQV3UDn3k20xJxWJQVuTrxbcIs0bh39UhhUYHi33_4wxMtubV9C2s73PGJrtHb_aiPqtA5ARTbZTBoL3yeZ4lqbKK59J6q2OXxdK7TFvpQMlmPk2KspRae27LNHUicVZ6rUvNod9L5DKoESwLoYIf1j4dBmAH_aojN-I8i7dLPOqUz0OhYoxIiP_YAEOegH_tBmGLm9z8317OLXKjV6bpuEP_bbLhqzvk-uGaiba5S07HFd2tiqitIyhoSPN0Bvr1Mpp-BVEKlZ8R9-gjpZMhUI3uwN5e0LrCKtd5S-m0I9aY0_d4Stx_p3nor1ktUNxi-_GqrZEXFB5xj3y8kInfJ5tVXfkHhGovOZLWo3EtfCktKxgsj9WKFwCadETYAADjeiJ2zAcyN2CQIWrMX1AzIi_XNy06HpLzm-8gstZNkUQ8VNTLT6aXScartJS5ckqITJReW-tkDtMLHPw-yUbkBeLSoKiDAbq8P7EB00TSMDNWoPslmEd-RLYGXJpeBjbmNygfnn_5Kbm6d3R4YA6ms_1H5BoDNbJzcm2RzXa58o_JFXfafmmWT8LnRsnJRUP4F2mgboE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJw4I1YKOADiAvRJo5jOweEtrQrVqWrFQKpnNLYcWilJVk22Rb-Gr-OmTwWIUFvPXCK5DgPx5_HnyfjbwCeo2F0wg-FZzOFC5RMCC9VYehRuJBJAxdl1jTJJtRspo-O4vkW_Oz3wlBYZW8TG0OdlZZ85COupOI-khU5yruwiPne5M3ym0cZpOhPa59Oo4XIgftxjsu36vV0D_v6BeeT_Y9v33ldhgHPCq5qL8YGOOXSNA4iZVSYSuOM9m3sS2djbaRFws1dFGR5LrV2ocmjyIrAGum0znWI970C20jJBR_A9nx6OP-88fBwhD6yrVbqKAxjf5TTxqd00RyUT_EJ_h_TYZM14F9zQzPhTW79z5_qNtzsaDYbt-PiDmy54i7cONxo1Fb34GxcsP0i8-rSwwNrEkCdI_NeedOvaGSx8IRGBHlP2aQPYWO7OOtnrCyoyLZ-VDZtJTcW7APtH3ffWdrcr1ovyRBT_fG6LkkxFB9xHz5dSsMfwKAoC_cQmHYyJDl7WnYLl0vDM45dZbQKM4FMcwi8B0NiO4l2yhSySHCpRghK_oKgIbzaXLRsFUourr5LKNtUJXnxpqBcfUk6a5U4FeUyVVYJEYvcaWOsTLF5jTq_C-IhvCSMJmQE8QVt2u3lwGaSnFgyVsgKA8owP4SdHqNJZx2r5DdAH118-hlcQ-Qm76ezg8dwnSO_bL1fOzCoV2v3BK7as_q0Wj3txh6D48vG8C8URHi3 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+End-to-End+Underwater-Image-Enhancement+Framework+Based+on+Fractional+Integral+Retinex+and+Unsupervised+Autoencoder&rft.jtitle=Fractal+and+fractional&rft.au=Yu%2C+Yang&rft.au=Qin%2C+Chenfeng&rft.date=2023-01-01&rft.issn=2504-3110&rft.eissn=2504-3110&rft.volume=7&rft.issue=1&rft.spage=70&rft_id=info:doi/10.3390%2Ffractalfract7010070&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_fractalfract7010070 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-3110&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-3110&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-3110&client=summon |