An End-to-End Underwater-Image-Enhancement Framework Based on Fractional Integral Retinex and Unsupervised Autoencoder

As an essential low-level computer vision task for remotely operated underwater robots and unmanned underwater vehicles to detect and understand the underwater environment, underwater image enhancement is facing challenges of light scattering, absorption, and distortion. Instead of using a specific...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Fractal and fractional Ročník 7; číslo 1; s. 70
Hlavní autori: Yu, Yang, Qin, Chenfeng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.01.2023
Predmet:
ISSN:2504-3110, 2504-3110
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract As an essential low-level computer vision task for remotely operated underwater robots and unmanned underwater vehicles to detect and understand the underwater environment, underwater image enhancement is facing challenges of light scattering, absorption, and distortion. Instead of using a specific underwater imaging model to mitigate the degradation of underwater images, we propose an end-to-end underwater-image-enhancement framework that combines fractional integral-based Retinex and an encoder–decoder network. The proposed variant of Retinex aims to alleviate haze and color distortion in the input image while preserving edges to a large extent by utilizing a modified fractional integral filter. The encoder–decoder network with channel-wise attention modules trained in an unsupervised manner to overcome the lack of paired underwater image datasets is designed to refine the output of the Retinex. Our framework was evaluated under qualitative and quantitative metrics on several public underwater image datasets and yielded satisfactory enhancement results on the evaluation set.
AbstractList As an essential low-level computer vision task for remotely operated underwater robots and unmanned underwater vehicles to detect and understand the underwater environment, underwater image enhancement is facing challenges of light scattering, absorption, and distortion. Instead of using a specific underwater imaging model to mitigate the degradation of underwater images, we propose an end-to-end underwater-image-enhancement framework that combines fractional integral-based Retinex and an encoder–decoder network. The proposed variant of Retinex aims to alleviate haze and color distortion in the input image while preserving edges to a large extent by utilizing a modified fractional integral filter. The encoder–decoder network with channel-wise attention modules trained in an unsupervised manner to overcome the lack of paired underwater image datasets is designed to refine the output of the Retinex. Our framework was evaluated under qualitative and quantitative metrics on several public underwater image datasets and yielded satisfactory enhancement results on the evaluation set.
Audience Academic
Author Yu, Yang
Qin, Chenfeng
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0002-2971-7828
  surname: Yu
  fullname: Yu, Yang
– sequence: 2
  givenname: Chenfeng
  surname: Qin
  fullname: Qin, Chenfeng
BookMark eNp9UV1rFDEUDVLBWvsLfBnweWoyk4_J41paXSgUxD6HO5mbNetMsibZVv-92d0iIiJ5OJfDOecmOa_JWYgBCXnL6FXfa_reJbAF5iMoyihV9AU57wTlbc8YPftjfkUuc95SSjule0HVOXlcheYmTG2JbYXmIUyYnqBgatcLbLCSXyFYXDCU5jbBgk8xfWs-QMapieFA2eJjgLlZh4KbVIfPWHzAHw0c8_J-h-nRH_SrfYkYbKwr3pCXDuaMl894QR5ub75cf2rv7j-ur1d3reWdKq1Ga1EhgGZCjaoHOeI4UKupRKuHUVohdIeCTc7JYcB-dEJYzuwocRjc0F-Q9Sl3irA1u-QXSD9NBG-OREwbA6l4O6NBJZwEZRXnmjscxtFKqLGUS0aR6Zr17pS1S_H7HnMx27hP9enZdEqqjirFZVVdnVQbqKE-uFjqH9Uz4eJtbc75yq-U6BgTnPFq6E8Gm2LOCd3vazJqDgWbfxRcXfovl_UFDlXUdX7-r_cXpMuzOA
CitedBy_id crossref_primary_10_1007_s00034_024_02778_z
crossref_primary_10_1016_j_eswa_2024_126314
crossref_primary_10_1177_14759217241228780
crossref_primary_10_3390_fractalfract8100554
crossref_primary_10_3788_LOP250975
Cites_doi 10.1109/ICRA.2019.8794272
10.1109/TIP.2019.2955241
10.1007/978-3-319-24574-4_28
10.1109/CVPR.2018.00745
10.1109/48.50695
10.1109/OCEANS.1975.1154053
10.1109/CSAE.2012.6272738
10.1109/LRA.2020.2974710
10.1364/JOSA.61.000001
10.1016/j.patcog.2019.107038
10.1109/TIP.2022.3190209
10.1109/MCSE.2007.55
10.1016/j.optlastec.2018.05.048
10.1016/j.chaos.2019.109463
10.1007/978-3-319-59773-7
10.1109/NCC.2012.6176791
10.1023/A:1016328200723
10.1109/ICIP.2017.8296508
10.1109/TCSVT.2019.2963772
10.1109/CVPR.2012.6247661
10.1109/CVPRW50498.2020.00277
10.1109/CVPR.2019.00178
10.1109/IGARSS.2007.4423193
10.1109/83.597272
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/fractalfract7010070
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2504-3110
ExternalDocumentID oai_doaj_org_article_e75f6a7c74494fe8bbc6aff604610e19
A752115414
10_3390_fractalfract7010070
GroupedDBID 8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c427t-9ecce7eaa9157b73a6beb80c906ec98b6c5592e51dff688e3bf55c41cb6e88f83
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000915091200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2504-3110
IngestDate Fri Oct 03 12:46:09 EDT 2025
Fri Jul 25 11:41:08 EDT 2025
Tue Nov 04 17:52:26 EST 2025
Sat Nov 29 07:11:00 EST 2025
Tue Nov 18 22:22:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-9ecce7eaa9157b73a6beb80c906ec98b6c5592e51dff688e3bf55c41cb6e88f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2971-7828
OpenAccessLink https://doaj.org/article/e75f6a7c74494fe8bbc6aff604610e19
PQID 2767207746
PQPubID 2055410
ParticipantIDs doaj_primary_oai_doaj_org_article_e75f6a7c74494fe8bbc6aff604610e19
proquest_journals_2767207746
gale_infotracacademiconefile_A752115414
crossref_primary_10_3390_fractalfract7010070
crossref_citationtrail_10_3390_fractalfract7010070
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Fractal and fractional
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Li (ref_14) 2019; 29
ref_13
ref_12
ref_11
Liu (ref_18) 2020; 30
Li (ref_15) 2017; 3
Land (ref_8) 1971; 61
Wang (ref_10) 2020; 131
Narasimhan (ref_2) 2002; 48
Jobson (ref_9) 1997; 6
Jaffe (ref_4) 1990; 15
McGlamery (ref_3) 1975; 75
ref_25
ref_24
ref_23
ref_22
ref_21
ref_20
ref_1
Liu (ref_17) 2022; 31
Li (ref_28) 2020; 98
Islam (ref_29) 2020; 5
Lu (ref_16) 2019; 110
ref_27
ref_26
Hunter (ref_19) 2007; 9
ref_5
ref_7
ref_6
References_xml – ident: ref_26
  doi: 10.1109/ICRA.2019.8794272
– volume: 29
  start-page: 4376
  year: 2019
  ident: ref_14
  article-title: An underwater image enhancement benchmark dataset and beyond
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2955241
– ident: ref_22
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref_23
  doi: 10.1109/CVPR.2018.00745
– ident: ref_24
– volume: 15
  start-page: 101
  year: 1990
  ident: ref_4
  article-title: Computer modeling and the design of optimal underwater imaging systems
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/48.50695
– ident: ref_1
– ident: ref_7
  doi: 10.1109/OCEANS.1975.1154053
– ident: ref_11
  doi: 10.1109/CSAE.2012.6272738
– volume: 5
  start-page: 3227
  year: 2020
  ident: ref_29
  article-title: Fast underwater image enhancement for improved visual perception
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2020.2974710
– volume: 61
  start-page: 1
  year: 1971
  ident: ref_8
  article-title: Lightness and retinex theory
  publication-title: Josa
  doi: 10.1364/JOSA.61.000001
– volume: 98
  start-page: 107038
  year: 2020
  ident: ref_28
  article-title: Underwater scene prior inspired deep underwater image and video enhancement
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107038
– volume: 31
  start-page: 4922
  year: 2022
  ident: ref_17
  article-title: Twin adversarial contrastive learning for underwater image enhancement and beyond
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2022.3190209
– ident: ref_27
– volume: 9
  start-page: 90
  year: 2007
  ident: ref_19
  article-title: Matplotlib: A 2D graphics environment
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– volume: 110
  start-page: 105
  year: 2019
  ident: ref_16
  article-title: Multi-scale adversarial network for underwater image restoration
  publication-title: Optics and Laser Technology
  doi: 10.1016/j.optlastec.2018.05.048
– volume: 75
  start-page: 1
  year: 1975
  ident: ref_3
  article-title: Computer analysis and simulation of underwater camera system performance
  publication-title: SIO Ref
– volume: 131
  start-page: 109463
  year: 2020
  ident: ref_10
  article-title: Noise detection and image denoising based on fractional calculus
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2019.109463
– ident: ref_12
  doi: 10.1007/978-3-319-59773-7
– ident: ref_21
  doi: 10.1109/NCC.2012.6176791
– volume: 48
  start-page: 233
  year: 2002
  ident: ref_2
  article-title: Vision and the atmosphere
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1016328200723
– ident: ref_13
  doi: 10.1109/ICIP.2017.8296508
– volume: 30
  start-page: 4861
  year: 2020
  ident: ref_18
  article-title: Real-world underwater enhancement: Challenges, benchmarks, and solutions under natural light
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2019.2963772
– ident: ref_20
  doi: 10.1109/CVPR.2012.6247661
– ident: ref_25
  doi: 10.1109/CVPRW50498.2020.00277
– ident: ref_5
  doi: 10.1109/CVPR.2019.00178
– ident: ref_6
  doi: 10.1109/IGARSS.2007.4423193
– volume: 3
  start-page: 387
  year: 2017
  ident: ref_15
  article-title: WaterGAN: Unsupervised generative network to enable real-time color correction of monocular underwater images
  publication-title: IEEE Robot. Autom. Lett.
– volume: 6
  start-page: 965
  year: 1997
  ident: ref_9
  article-title: A multiscale retinex for bridging the gap between color images and the human observation of scenes
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.597272
SSID ssj0002793507
Score 2.2780395
Snippet As an essential low-level computer vision task for remotely operated underwater robots and unmanned underwater vehicles to detect and understand the underwater...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 70
SubjectTerms Algorithms
Autonomous underwater vehicles
Coders
Computer vision
Datasets
Deep learning
Distortion
Fractional calculus
fractional integral Retinex
Haze
Image enhancement
Machine vision
Robots
underwater image enhancement
Underwater robots
unsupervised autoencoder
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcIBDeVZsKcgHJC5YTWLHdk5oi7qiByrEQ-rN8iuAtE2WTbbw85lxvIuQoBdOkRwnsTOTzzOT8TeEvABgjKLggvmgwEEJQjCrOGeYLuRsGevgXSo2oc7P9cVF8z4H3IacVrnFxATUofcYIz-ulFRVAcaKfL36zrBqFP5dzSU0bpJbyJJQptS9j7sYSwXKB_bORDbEwbs_bnHrkV2mgyowQ6D4Y0FKvP3_Que05Czu_e9g75P9bGzS-aQdD8iN2D0kd9_tmFqHR-Rq3tHTLrCxZ3CgqQzSD7A_1-zsEqAGGr-iXmAMkS62iVz0BNa-QPsOm_wUTaRnE_HEkn7AXdTxJ7XpfsNmhXCE_eebsUfeTHjEY_J5cfrpzVuWazEwLyo1sgZEHVW0tilr5RS30kWnC98UMvpGO-nBNaliXYa2lVpH7tq69qL0TkatW80PyF7Xd_EJoTpKjqTu6HyK2EpXhQpel9OKBwH21oxUW4EYn4nKsV7G0oDDglI0f5HijLzaXbSaeDqu736Ckt51RZLt1NCvv5j8zZqo6lZa5ZUQjWijds5LC9NLHPWxbGbkJeqJQSiAAXqbdzTANJFUy8wV2EYl1lmfkaOtnpiMEYP5rSSH159-Su5gkfsp8HNE9sb1Jj4jt_3V-G1YP08q_wtdPw6T
  priority: 102
  providerName: ProQuest
Title An End-to-End Underwater-Image-Enhancement Framework Based on Fractional Integral Retinex and Unsupervised Autoencoder
URI https://www.proquest.com/docview/2767207746
https://doaj.org/article/e75f6a7c74494fe8bbc6aff604610e19
Volume 7
WOSCitedRecordID wos000915091200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2504-3110
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793507
  issn: 2504-3110
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2504-3110
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793507
  issn: 2504-3110
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2504-3110
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793507
  issn: 2504-3110
  databaseCode: M7S
  dateStart: 20171201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2504-3110
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793507
  issn: 2504-3110
  databaseCode: BENPR
  dateStart: 20171201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2504-3110
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793507
  issn: 2504-3110
  databaseCode: PIMPY
  dateStart: 20171201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQwgEOiKcoLJUPSFywNokd2zm2qBU9bFUtIC0ny3YmAlTSVZsu_HxmnLRaJB4XTpZGTmJ7xuOZyfgbxl6hYgSVSSVibdBBqZUS3kgpKF0o-BzKOoZUbMIsl_byslrdKPVFOWE9PHC_cGdgykZ7E41SlWrAhhC1bxqdgMIhAX4WmaluOFNf0--0SqKl08MMSfTrzxq6dOTXqTEZ5QZkvxxFCbH_T3o5HTbzB-z-YCXyST-6h-wWtI_YvfMjxOruMbuetHzW1qLbCGx4ql_0HQ3HrVh8Qx2BxM_EUAr-8fkhA4tP8dCq-aYlUuzDgHzRI0as-QVdf4Yf3Kf37fZXpEeo_2TfbQjwEj_xhH2czz68fSeGIgoiqsJ0okIegQHvq7w0wUivAwSbxSrTECsbdESfooAyr3FRrQUZmrKMKo9Bg7WNlU_ZSbtp4RnjFrQkNHbyGhU0OhR1oU0RrJG1QkNpxIrDero4IIxToYu1Q0-DmOB-w4QRe3N86KoH2Ph79ykx6tiV0LETAWXGDTLj_iUzI_aa2OxoD-MAox-uIuA0CQ3LTQwaNTkVSB-x04MkuGFz71xhcNYZ2s36-f8YzQt2l2rY93GdU3bSbffwkt2J192X3XbMbk9ny9XFOMn3mFJT3yNttThfffoJizwFRg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELVKQQIOfCMWCvgA4kLUxHZs54DQFrrqqu0KQZF6c2PHAaQlWTbZFv4Uv5EZJ1mEBL31wMmS4zh2_DKemYzfEPIMBKMXMReRKxQYKIUQUa44jzBcyOaJTwtnQ7IJNZvp4-Ps3Qb5OZyFwbDKQSYGQV3UDn3k20xJxWJQVuTrxbcIs0bh39UhhUYHi33_4wxMtubV9C2s73PGJrtHb_aiPqtA5ARTbZTBoL3yeZ4lqbKK59J6q2OXxdK7TFvpQMlmPk2KspRae27LNHUicVZ6rUvNod9L5DKoESwLoYIf1j4dBmAH_aojN-I8i7dLPOqUz0OhYoxIiP_YAEOegH_tBmGLm9z8317OLXKjV6bpuEP_bbLhqzvk-uGaiba5S07HFd2tiqitIyhoSPN0Bvr1Mpp-BVEKlZ8R9-gjpZMhUI3uwN5e0LrCKtd5S-m0I9aY0_d4Stx_p3nor1ktUNxi-_GqrZEXFB5xj3y8kInfJ5tVXfkHhGovOZLWo3EtfCktKxgsj9WKFwCadETYAADjeiJ2zAcyN2CQIWrMX1AzIi_XNy06HpLzm-8gstZNkUQ8VNTLT6aXScartJS5ckqITJReW-tkDtMLHPw-yUbkBeLSoKiDAbq8P7EB00TSMDNWoPslmEd-RLYGXJpeBjbmNygfnn_5Kbm6d3R4YA6ms_1H5BoDNbJzcm2RzXa58o_JFXfafmmWT8LnRsnJRUP4F2mgboE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJw4I1YKOADiAvRJo5jOweEtrQrVqWrFQKpnNLYcWilJVk22Rb-Gr-OmTwWIUFvPXCK5DgPx5_HnyfjbwCeo2F0wg-FZzOFC5RMCC9VYehRuJBJAxdl1jTJJtRspo-O4vkW_Oz3wlBYZW8TG0OdlZZ85COupOI-khU5yruwiPne5M3ym0cZpOhPa59Oo4XIgftxjsu36vV0D_v6BeeT_Y9v33ldhgHPCq5qL8YGOOXSNA4iZVSYSuOM9m3sS2djbaRFws1dFGR5LrV2ocmjyIrAGum0znWI970C20jJBR_A9nx6OP-88fBwhD6yrVbqKAxjf5TTxqd00RyUT_EJ_h_TYZM14F9zQzPhTW79z5_qNtzsaDYbt-PiDmy54i7cONxo1Fb34GxcsP0i8-rSwwNrEkCdI_NeedOvaGSx8IRGBHlP2aQPYWO7OOtnrCyoyLZ-VDZtJTcW7APtH3ffWdrcr1ovyRBT_fG6LkkxFB9xHz5dSsMfwKAoC_cQmHYyJDl7WnYLl0vDM45dZbQKM4FMcwi8B0NiO4l2yhSySHCpRghK_oKgIbzaXLRsFUourr5LKNtUJXnxpqBcfUk6a5U4FeUyVVYJEYvcaWOsTLF5jTq_C-IhvCSMJmQE8QVt2u3lwGaSnFgyVsgKA8owP4SdHqNJZx2r5DdAH118-hlcQ-Qm76ezg8dwnSO_bL1fOzCoV2v3BK7as_q0Wj3txh6D48vG8C8URHi3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+End-to-End+Underwater-Image-Enhancement+Framework+Based+on+Fractional+Integral+Retinex+and+Unsupervised+Autoencoder&rft.jtitle=Fractal+and+fractional&rft.au=Yu%2C+Yang&rft.au=Qin%2C+Chenfeng&rft.date=2023-01-01&rft.issn=2504-3110&rft.eissn=2504-3110&rft.volume=7&rft.issue=1&rft.spage=70&rft_id=info:doi/10.3390%2Ffractalfract7010070&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_fractalfract7010070
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-3110&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-3110&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-3110&client=summon