Numerical Solution of the Retrospective Inverse Parabolic Problem on Disjoint Intervals

The retrospective inverse problem for evolution equations is formulated as the reconstruction of unknown initial data by a given solution at the final time. We consider the inverse retrospective problem for a one-dimensional parabolic equation in two disconnected intervals with weak solutions in wei...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computation Ročník 11; číslo 10; s. 204
Hlavní autori: Koleva, Miglena N., Vulkov, Lubin G.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.10.2023
Predmet:
ISSN:2079-3197, 2079-3197
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The retrospective inverse problem for evolution equations is formulated as the reconstruction of unknown initial data by a given solution at the final time. We consider the inverse retrospective problem for a one-dimensional parabolic equation in two disconnected intervals with weak solutions in weighted Sobolev spaces. The two solutions are connected with nonstandard interface conditions, and thus this problem is solved in the whole spatial region. Such a problem, as with other inverse problems, is ill-posed, and for its numerical solution, specific techniques have to be used. The direct problem is first discretized by a difference scheme which provides a second order of approximation in space. For the resulting ordinary differential equation system, the positive coerciveness is established. Next, we develop an iterative conjugate gradient method to solve the ill-posed systems of the difference equations, which are obtained after weighted time discretization, of the inverse problem. Test examples with noisy input data are discussed.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2079-3197
2079-3197
DOI:10.3390/computation11100204