New Inequalities for GA–h Convex Functions via Generalized Fractional Integral Operators with Applications to Entropy and Mean Inequalities

We prove the inequalities of the weighted Hermite–Hadamard type the and Hermite–Hadamard–Mercer type for an extremely rich class of geometrically arithmetically-h-convex functions (GA-h-CFs) via generalized Hadamard–Fractional integral operators (HFIOs). The two generalized fractional integral opera...

Full description

Saved in:
Bibliographic Details
Published in:Fractal and fractional Vol. 8; no. 12; p. 728
Main Authors: Fahad, Asfand, Ali, Zammad, Furuichi, Shigeru, Butt, Saad Ihsan, Ayesha, Ayesha, Wang, Yuanheng
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.12.2024
Subjects:
ISSN:2504-3110, 2504-3110
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We prove the inequalities of the weighted Hermite–Hadamard type the and Hermite–Hadamard–Mercer type for an extremely rich class of geometrically arithmetically-h-convex functions (GA-h-CFs) via generalized Hadamard–Fractional integral operators (HFIOs). The two generalized fractional integral operators (FIOs) are Hadamard proportional fractional integral operators (HPFIOs) and Hadamard k-fractional integral operators (HKFIOs). Moreover, we also present the results for subclasses of GA-h-CFs and show that the inequalities proved in this paper unify the results from the recent related literature. Furthermore, we compare the two generalizations in view of the fractional operator parameters that contribute to the generalizations of the results and assess the better approximation via graphical tools. Finally, we present applications of the new inequalities via HPFIOs and HKFIOs by establishing interpolation relations between arithmetic mean and geometric mean and by proving the new upper bounds for the Tsallis relative operator entropy.
AbstractList We prove the inequalities of the weighted Hermite–Hadamard type the and Hermite–Hadamard–Mercer type for an extremely rich class of geometrically arithmetically-h-convex functions (GA-h-CFs) via generalized Hadamard–Fractional integral operators (HFIOs). The two generalized fractional integral operators (FIOs) are Hadamard proportional fractional integral operators (HPFIOs) and Hadamard k-fractional integral operators (HKFIOs). Moreover, we also present the results for subclasses of GA-h-CFs and show that the inequalities proved in this paper unify the results from the recent related literature. Furthermore, we compare the two generalizations in view of the fractional operator parameters that contribute to the generalizations of the results and assess the better approximation via graphical tools. Finally, we present applications of the new inequalities via HPFIOs and HKFIOs by establishing interpolation relations between arithmetic mean and geometric mean and by proving the new upper bounds for the Tsallis relative operator entropy.
Audience Academic
Author Ayesha, Ayesha
Fahad, Asfand
Furuichi, Shigeru
Ali, Zammad
Butt, Saad Ihsan
Wang, Yuanheng
Author_xml – sequence: 1
  givenname: Asfand
  surname: Fahad
  fullname: Fahad, Asfand
– sequence: 2
  givenname: Zammad
  orcidid: 0009-0008-2338-0380
  surname: Ali
  fullname: Ali, Zammad
– sequence: 3
  givenname: Shigeru
  orcidid: 0000-0002-9929-0954
  surname: Furuichi
  fullname: Furuichi, Shigeru
– sequence: 4
  givenname: Saad Ihsan
  orcidid: 0000-0001-7192-8269
  surname: Butt
  fullname: Butt, Saad Ihsan
– sequence: 5
  givenname: Ayesha
  orcidid: 0009-0001-5252-1612
  surname: Ayesha
  fullname: Ayesha, Ayesha
– sequence: 6
  givenname: Yuanheng
  orcidid: 0000-0003-4079-2850
  surname: Wang
  fullname: Wang, Yuanheng
BookMark eNp9UU1v1DAQjVCRKKW_gIslzlv8kdjxcbXqLisVeqHnaOJMtl6ldmp7W9oTf4AT_5BfgneDUKkq5MNYb957M3rztjhy3mFRvGf0TAhNP_YBTILhUGrGqeL1q-KYV7ScCcbo0ZP_m-I0xi2llCstKqqOix9f8J6sHd7uYLDJYiS9D2Q1__X95zVZeHeH38hy50yy3kVyZ4Gs0GHI5EfsyHI_M3dgyB4JNxknl2NuJx8iubfpmszHcbAGJn3y5Nyl4McHAq4jnxHcP8PfFa97GCKe_qknxdXy_Ovi0-zicrVezC9mpuQqzSTrKoRKA_aomKAtg7LFWoGUrNWlMJ2sBBNcAheMc2SK1aznjEPXCwAUJ8V68u08bJsx2BsID40H2xwAHzYNhGTNgI1mykhJhallW7ai1FyqSulO0NqYsmXZ68PkNQZ_u8OYmq3fhRxJbAQrdVULXenMOptYG8im1vU-5ezy6_DGmnzQ3mZ8XnNWcy35XiAmgQk-xoD93zUZbfZ3b164e1bpZypj0yH8PM4O_9X-Br3puy4
CitedBy_id crossref_primary_10_1007_s40065_025_00556_6
crossref_primary_10_3934_math_2025626
Cites_doi 10.1016/j.jmaa.2023.127731
10.1142/S0218348X22501067
10.3390/math11020278
10.3390/e24121852
10.1186/s13660-020-02478-7
10.1016/j.seppur.2024.126310
10.1016/j.chaos.2021.110860
10.1016/j.ins.2023.119520
10.1007/s44196-021-00061-6
10.37193/CMI.2014.01.14
10.1515/9783110643473
10.2298/FIL1806193L
10.1016/j.cam.2023.115582
10.1186/s13662-019-2381-0
10.1090/S0002-9904-1948-08994-7
10.1016/S0252-9602(13)60081-8
10.1016/j.jmaa.2006.02.086
10.1016/j.ins.2023.119631
10.1016/j.aej.2024.11.034
10.3390/sym13020201
10.1186/s13662-021-03290-3
10.1016/j.ins.2024.120219
10.1109/TR.2023.3315662
10.1007/978-3-030-72563-1_15
10.15446/recolma.v50n2.62207
10.1016/j.laa.2004.06.025
10.1155/2024/8814585
10.1142/S1793557123502169
10.1186/1029-242X-2013-491
10.1002/mma.6319
10.1002/mma.7081
10.1016/j.aej.2023.11.026
10.1186/1687-1847-2014-10
10.1016/j.chaos.2019.109547
10.1016/S0304-0208(06)80018-6
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/fractalfract8120728
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2504-3110
ExternalDocumentID oai_doaj_org_article_917c6603c86b4b349267579d308cc4b1
A821829629
10_3390_fractalfract8120728
GroupedDBID 8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c427t-61d5ea59aefe7130b1a4be87a661b943cd6531326a23122e17181f212adf3aae3
IEDL.DBID M7S
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001384319100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2504-3110
IngestDate Fri Oct 03 12:52:10 EDT 2025
Fri Jul 25 11:48:16 EDT 2025
Tue Nov 04 18:12:55 EST 2025
Sat Nov 29 07:19:24 EST 2025
Tue Nov 18 20:51:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-61d5ea59aefe7130b1a4be87a661b943cd6531326a23122e17181f212adf3aae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-5252-1612
0000-0001-7192-8269
0000-0002-9929-0954
0000-0003-4079-2850
0009-0008-2338-0380
OpenAccessLink https://www.proquest.com/docview/3149583959?pq-origsite=%requestingapplication%
PQID 3149583959
PQPubID 2055410
ParticipantIDs doaj_primary_oai_doaj_org_article_917c6603c86b4b349267579d308cc4b1
proquest_journals_3149583959
gale_infotracacademiconefile_A821829629
crossref_primary_10_3390_fractalfract8120728
crossref_citationtrail_10_3390_fractalfract8120728
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Fractal and fractional
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Sun (ref_33) 2021; 44
Latif (ref_26) 2018; 32
Niculescu (ref_25) 2000; 3
Ferrari (ref_3) 2024; 337
Mohammed (ref_17) 2021; 2021
Yang (ref_20) 2022; 30
ref_11
ref_30
Aydin (ref_14) 2023; 647
Vivas (ref_34) 2016; 50
Chen (ref_35) 2024; 530
Gambo (ref_9) 2014; 2014
Kunt (ref_38) 2018; 2
ref_39
Todinov (ref_12) 2023; 73
ref_15
Fahad (ref_29) 2025; 113
ref_37
Mihai (ref_24) 2015; 252
Du (ref_36) 2024; 440
Fahad (ref_28) 2024; 662
Srivastava (ref_18) 2022; 15
Alshammari (ref_2) 2024; 86
Ozdemir (ref_31) 2013; 33
Varosanec (ref_40) 2007; 326
Rahman (ref_8) 2019; 2019
Luo (ref_23) 2020; 131
Iqbal (ref_10) 2018; 9
Huy (ref_19) 2023; 16
Khan (ref_16) 2024; 2024
Beckenbach (ref_21) 1948; 54
ref_22
Yanagi (ref_42) 2005; 394
ref_44
ref_43
ref_1
Sun (ref_32) 2020; 43
Iscan (ref_7) 2020; 212
Set (ref_4) 2021; 146
Noor (ref_27) 2014; 23
Huang (ref_13) 2023; 648
Fujii (ref_41) 1990; 35
ref_5
ref_6
References_xml – ident: ref_30
– volume: 530
  start-page: 127731
  year: 2024
  ident: ref_35
  article-title: Certain generalized Riemann–Liouville fractional integrals inequalities based on exponentially (h, m)-preinvexity
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2023.127731
– volume: 2
  start-page: 1
  year: 2018
  ident: ref_38
  article-title: Fractional Hermite–Hadamard–Fejér type inequalities for GA-convex functions
  publication-title: Turk. J. Inequal.
– volume: 30
  start-page: 2250106
  year: 2022
  ident: ref_20
  article-title: Certain new weighted Young and Polya Szego-type inequalities for unified fractional inegral operators via an extended generalized Mittag-Leffler function with applications
  publication-title: Fractals
  doi: 10.1142/S0218348X22501067
– ident: ref_6
  doi: 10.3390/math11020278
– ident: ref_5
– volume: 252
  start-page: 257
  year: 2015
  ident: ref_24
  article-title: Some integral inequalities for harmonic h-convex functions involving hypergeometric functions
  publication-title: Appl. Math. Comput.
– ident: ref_11
  doi: 10.3390/e24121852
– volume: 212
  start-page: 212
  year: 2020
  ident: ref_7
  article-title: Jensen—Mercer inequality for GA-convex functions and some related inequalities
  publication-title: J. Inequalities Appl.
  doi: 10.1186/s13660-020-02478-7
– volume: 337
  start-page: 126310
  year: 2024
  ident: ref_3
  article-title: Mathematical modeling by fractional calculus applied to separation processes
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2024.126310
– volume: 146
  start-page: 110860
  year: 2021
  ident: ref_4
  article-title: Chebyshev type inequalities by using generalized proportional Hadamard fractional integrals via Polya–Szegö inequality with applications
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.110860
– volume: 647
  start-page: 119520
  year: 2023
  ident: ref_14
  article-title: Boundary-aware local Density-based outlier detection
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2023.119520
– volume: 15
  start-page: 8
  year: 2022
  ident: ref_18
  article-title: Hermite–Hadamard type inequalities for interval-valued preinvex functions via fractional integral operators
  publication-title: Int. J. Comput. Intell. Syst.
  doi: 10.1007/s44196-021-00061-6
– volume: 23
  start-page: 91
  year: 2014
  ident: ref_27
  article-title: Some inequalities for geometricallyarithmetically h-convex functions
  publication-title: Creat. Math. Inform
  doi: 10.37193/CMI.2014.01.14
– volume: 9
  start-page: 255
  year: 2018
  ident: ref_10
  article-title: On Hadamard k-fractional integrals
  publication-title: J. Fract. Calc. Appl.
– ident: ref_1
– ident: ref_44
– volume: 3
  start-page: 155
  year: 2000
  ident: ref_25
  article-title: Convexity according to the geometric mean
  publication-title: Math. Inequal. Appl.
– ident: ref_43
  doi: 10.1515/9783110643473
– volume: 32
  start-page: 2193
  year: 2018
  ident: ref_26
  article-title: Some Fejér type integral inequalities for geometrically-arithmetically-convex functions with applications
  publication-title: Filomat
  doi: 10.2298/FIL1806193L
– volume: 440
  start-page: 115582
  year: 2024
  ident: ref_36
  article-title: Hermite–Hadamard type inequalities for multiplicative Riemann–Liouville fractional integrals
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2023.115582
– volume: 2019
  start-page: 454
  year: 2019
  ident: ref_8
  article-title: Certain inequalities via generalized proportional Hadamard fractional integral operators
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-019-2381-0
– volume: 54
  start-page: 439
  year: 1948
  ident: ref_21
  article-title: Convex functions
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0002-9904-1948-08994-7
– volume: 33
  start-page: 1293
  year: 2013
  ident: ref_31
  article-title: The Hadamard inequality for convex function via fractional integrals
  publication-title: Acta Math. Sci.
  doi: 10.1016/S0252-9602(13)60081-8
– volume: 326
  start-page: 303
  year: 2007
  ident: ref_40
  article-title: On h-convexity
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2006.02.086
– volume: 648
  start-page: 119631
  year: 2023
  ident: ref_13
  article-title: Relatively exact controllability for higher-order fractional stochastic delay differential equations
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2023.119631
– volume: 113
  start-page: 509
  year: 2025
  ident: ref_29
  article-title: Novel fractional integral inequalities for GA-Cr-convex functions and connections with information systems
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2024.11.034
– volume: 35
  start-page: 387
  year: 1990
  ident: ref_41
  article-title: Relative operator entropy in noncommutative information theory
  publication-title: Math. Jpn.
– ident: ref_15
  doi: 10.3390/sym13020201
– volume: 2021
  start-page: 122
  year: 2021
  ident: ref_17
  article-title: New discrete inequalities of Hermite–Hadamard type for convex functions
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-021-03290-3
– volume: 662
  start-page: 120219
  year: 2024
  ident: ref_28
  article-title: Exploring properties and inequalities for geometrically arithmetically-Cr-convex functions with Cr-order relative entropy
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2024.120219
– volume: 73
  start-page: 902
  year: 2023
  ident: ref_12
  article-title: Reverse Engineering of Algebraic Inequalities for System Reliability Predictions and Enhancing Processes in Engineering
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2023.3315662
– ident: ref_22
  doi: 10.1007/978-3-030-72563-1_15
– volume: 50
  start-page: 145
  year: 2016
  ident: ref_34
  article-title: New Hermite–Hadamard and Jensen type inequalities for h-convex functions on fractal sets
  publication-title: Rev. Colomb. MatemáTicas
  doi: 10.15446/recolma.v50n2.62207
– volume: 394
  start-page: 109
  year: 2005
  ident: ref_42
  article-title: Generalized Shannon inequalities based on Tsallis relative operator entropy
  publication-title: Linear Algebra Its Appl.
  doi: 10.1016/j.laa.2004.06.025
– volume: 2024
  start-page: 8814585
  year: 2024
  ident: ref_16
  article-title: Some New Variants of Hermite–Hadamard and Fejér-Type Inequalities for Godunova–Levin Preinvex Class of Interval-Valued Functions
  publication-title: J. Math.
  doi: 10.1155/2024/8814585
– volume: 16
  start-page: 2350216
  year: 2023
  ident: ref_19
  article-title: Some inequalities for convex functions and applications to operator inequalities
  publication-title: Asian-Eur. J. Math.
  doi: 10.1142/S1793557123502169
– ident: ref_37
  doi: 10.1186/1029-242X-2013-491
– volume: 43
  start-page: 5776
  year: 2020
  ident: ref_32
  article-title: Hadamard type local fractional integral inequalities for generalized harmonically convex functions and applications
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.6319
– volume: 44
  start-page: 4985
  year: 2021
  ident: ref_33
  article-title: Some new inequalities for generalized h-convex functions involving local fractional integral operators with Mittag-Leffler kernel
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.7081
– volume: 86
  start-page: 525
  year: 2024
  ident: ref_2
  article-title: Numerical investigation of a fractional model of a tumor-immune surveillance via Caputo operator
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2023.11.026
– volume: 2014
  start-page: 10
  year: 2014
  ident: ref_9
  article-title: On Caputo modification of the Hadamard fractional derivatives
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/1687-1847-2014-10
– volume: 131
  start-page: 109547
  year: 2020
  ident: ref_23
  article-title: Fejér—Hermite—Hadamard type inequalities involving generalized h-convexity on fractal sets and their applications
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2019.109547
– ident: ref_39
  doi: 10.1016/S0304-0208(06)80018-6
SSID ssj0002793507
Score 2.289714
Snippet We prove the inequalities of the weighted Hermite–Hadamard type the and Hermite–Hadamard–Mercer type for an extremely rich class of geometrically...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 728
SubjectTerms arithmetic mean
Convex analysis
Entropy
Fractals
Fractional calculus
GA-h-convex functions
generalized Hadamard fractional integral operators
h-convex functions
Hermite–Hadamard inequality
Inequalities
Inequality
Investigations
Mathematical functions
Mercer inequality
Operators (mathematics)
Upper bounds
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOqLzEloLmgMSFqEnsPHzcVl2oRAsHQL1Z40fEolW62l2qtif-AKf-Q34JM3a6WiQeF06REkdxPGPP9_nxjRAvfNuRH9k886rwmSraPEPFc_A5NgXSsyZmnvv0tjk5aU9P9fuNVF-8JyzJA6eG2yM64eo6l66trbKspUcQt9Fe5q1zykbiQ6hng0x9ictpWhLSSTJDknj9XseHjnAWLxTU8obzr2-EoqjY_6dxOQabyba4N6BEGKfa3Re3Qv9A3D1eS6wuH4rvNDzBUR_SqUjiu0DwE16Pf3y7_gwHvJf8AiYUtKJfwfkUYVCYnl4FD5NFOtBAHzlKghEzeDcPcc19CTw5C-ONpW1YncEh72mfXwL2Ho4D9r98_JH4ODn8cPAmG3IrZE6VzYoYo68CVhpDF4in5rZAZUPbIMVrq5V0vq5Y1bFGAoBlGQqKYUVHcQ59JxGDfCy2-rM-PBHQVMGibZ3slCI4ErArlC-cVh05gqzVSJQ3zWzcIDzO-S9mhggI28b8xjYj8Wr90jzpbvy9-D7bb12URbPjDXIlM7iS-ZcrjcRLtr7hrk0VdDicUKDfZJEsM25Z7l7XpR6J3RsHMUOfXxrJZJPwZqV3_kdtnoo7JQGotHVmV2ytFl_DM3Hbna-my8Xz6O4_AU-VB5A
  priority: 102
  providerName: Directory of Open Access Journals
Title New Inequalities for GA–h Convex Functions via Generalized Fractional Integral Operators with Applications to Entropy and Mean Inequalities
URI https://www.proquest.com/docview/3149583959
https://doaj.org/article/917c6603c86b4b349267579d308cc4b1
Volume 8
WOSCitedRecordID wos001384319100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2504-3110
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793507
  issn: 2504-3110
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2504-3110
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793507
  issn: 2504-3110
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2504-3110
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793507
  issn: 2504-3110
  databaseCode: M7S
  dateStart: 20171201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2504-3110
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793507
  issn: 2504-3110
  databaseCode: BENPR
  dateStart: 20171201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2504-3110
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793507
  issn: 2504-3110
  databaseCode: PIMPY
  dateStart: 20171201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZglwMceCMKS-UDEheiTWLndULdVQuVaKl4aTlZ40egUpWWpqyAE3-AE_-QX8KM45ZFgr1wiuQ4siN_npfH3zD20JY14kjHkZWJjWRSxhFIisHHUCSA7wpfee7t82I6LU9OqlkIuLUhrXIrE72gtktDMfJDQaY8avOserL6GFHVKDpdDSU0LrJ9YklIfereq12MJUXwob3TkQ0J9O4Pa7p6BAv_QNUWF1SF_YxC8rz9_5LOXuWMrv3vZK-zq8HY5IMOHTfYBdfcZFcmO6bW9hb7jlKOjxvXXa5Et5mjFcufDn5--_GBH1NK-mc-Qt3n4clP58ADUfX8q7N8tO7uReAg4453YsFfrJw_um85xXj54MwJOd8s-ZBS41dfODSWTxw0fwx-m70ZDV8fP4tCiYbIyLTYoONpMwdZBa526O7GOgGpXVkAqn1dSWFsnhE5ZA5oR6apS1AVJjWqS7C1AHDiDttrlo27y3iROQ26NKKWEq0aB3UibWIqWSOeRC57LN2ukzKBv5zKaCwU-jG0uOovi9tjj3cfrTr6jvO7HxEAdl2Je9s3LNfvVdjKCh1ck-exMGWupSZ2R3S6isqKuDRG6qTHHhF8FEkInKCBcNEBf5O4ttSgJNb8Kk-rHjvYwkcF0dGq39i5d_7r--xyihZWl1tzwPY260_uAbtkTjfzdt1n-0fD6exl3wcZ-n5fYNtsPJm9-wX24xtt
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQ98EYECuwBxAWrtnf9OiCUloZGTQISBfW2Xe-uIVLkpHEolBN_gBP_oz-KX8LM2g5Fgt564GTJ78e338ysZ74BeGzSAnGU-54RgfFEkPqeEjQH76skULgtcZ3n3g-S0Sjd38_erMBJWwtDaZUtJzqiNlNNc-QbnFx5tOZR9mJ26FHXKPq72rbQqGGxa48_Y8hWPe-_xO_7JAx723tbO17TVcDTIkwWGCuZyKooU7awGKH5eaBEbtNEoaXKM8G1iSPSM4wVuj5haANk76BAhlem4EpZjue9ABcFsb9LFXy7nNMJEezoX9XiRpxn_kZBpU5q4hZoSv2Eur6fMoCuT8C_rIEzcb1r_9vLuQ5XG2eadWv034AVW96EteFSiba6Bd-RxVm_tHXx6NhWDL109qr789uPj2yLUu6_sB7adjf82NFYsUaIe_zVGtab13UfeJF-rasxYa9n1qUmVIzmsFn3VAYAW0zZNqX-z46ZKg0bWlX-cfHb8O5c3scdWC2npb0LLIlsrvJU80II9NqsKgJhAp2JAscLj0UHwhYXUjf67NQmZCIxTiMwyb-AqQPPlgfNanmSs3ffJMAtdyVtcbdiOv8gG6qSGMDrOPa5TuNc5KReiUFlkhnup1qLPOjAU4KrJAbEG9SqKeTAxyQtMdlNqStAFodZB9ZbuMqGGiv5G6v3zt78CC7v7A0HctAf7d6HKyF6k3Ue0TqsLuaf7AO4pI8W42r-0I1CBgfnjexfwqdzXQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXYTgwBtRWMAHEBeiJrHzOiBUdjcQ7bb0AGg5Gcd2oFKVlqYsLCf-ACf-DT-HX8JMHmWRYG974BQpduLE-TwPZ-YbgPsmLhBHuesY4RlHeLHrKEF78K6KPIVtUV157vV-NB7HBwfJZAN-dLkwFFbZycRaUJu5pj3yASdTHrV5kAyKNixispM-WXxwqIIU_Wntymk0ENmzR5_QfaseZzv4rR_4frr7cvu501YYcLTwoxX6TSawKkiULSx6a27uKZHbOFKotfJEcG3CgLgNQ4VmkO9bDyW5V6C0V6bgSlmO9z0Dm2iSC9GDzUk2mrxZ7_D4CH20thqqI84Td1BQ4pOa1QdUrG5ENeCPqcO6asC_dEOt8NJL__NUXYaLrZnNhs26uAIbtrwKF0ZrjtrqGnxD-c6y0jZppVNbMbTf2bPhz6_f37NtCsb_zFLU-vXCZIdTxVqK7ukXa1i6bDJCcJCsYdyYsRcLWwctVIx2t9nwWGwAW83ZLiUFLI6YKg0bWVX-Mfh1eHUq83EDeuW8tDeBRYHNVR5rXgiB9pxVhSeMpxNR4ErioeiD32FE6pa5nQqIzCR6cAQs-Rdg9eHR-qJFQ1xycvenBL51V2Idr0_Ml-9kK8QkuvY6DF2u4zAXOfFaorsZJYa7sdYi9_rwkKArSTbiA2rVpnjgaxLLmBzGVC8gCf2kD1sddGUrNCv5G7e3Tm6-B-cQ0HI_G-_dhvM-mplNgNEW9FbLj_YOnNWHq2m1vNsuSQZvTxvavwBZyn2d
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Inequalities+for+GA%E2%80%93h+Convex+Functions+via+Generalized+Fractional+Integral+Operators+with+Applications+to+Entropy+and+Mean+Inequalities&rft.jtitle=Fractal+and+fractional&rft.au=Fahad%2C+Asfand&rft.au=Ali%2C+Zammad&rft.au=Furuichi%2C+Shigeru&rft.au=Butt%2C+Saad+Ihsan&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.issn=2504-3110&rft.eissn=2504-3110&rft.volume=8&rft.issue=12&rft_id=info:doi/10.3390%2Ffractalfract8120728&rft.externalDocID=A821829629
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-3110&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-3110&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-3110&client=summon