A Multilayer Improved RBM Network Based Image Compression Method in Wireless Sensor Networks

The processing capacity and power of nodes in a Wireless Sensor Network (WSN) are limited. And most image compression algorithms in WSN are subject to random image content changes or have low image qualities after the images are decoded. Therefore, an image compression method based on multilayer Res...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of distributed sensor networks Ročník 2016; číslo 3; s. 1851829
Hlavní autoři: Cheng, Chunling, Wang, Shu, Chen, Xingguo, Yang, Yanying
Médium: Journal Article
Jazyk:angličtina
Vydáno: London, England Hindawi Publishing Corporation 01.01.2016
SAGE Publications
John Wiley & Sons, Inc
Wiley
Témata:
ISSN:1550-1329, 1550-1477, 1550-1477
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The processing capacity and power of nodes in a Wireless Sensor Network (WSN) are limited. And most image compression algorithms in WSN are subject to random image content changes or have low image qualities after the images are decoded. Therefore, an image compression method based on multilayer Restricted Boltzmann Machine (RBM) network is proposed in this paper. The alternative iteration algorithm is also applied in RBM to optimize the training process. The proposed image compression method is compared with a region of interest (ROI) compression method in simulations. Under the same compression ratio, the qualities of reconstructed images are better than that of ROI. When the number of hidden units in top RBM layer is 8, the peak signal-to-noise ratio (PSNR) of the multilayer RBM network compression method is 74.2141, and it is much higher than that of ROI which is 60.2093. The multilayer RBM based image compression method has better compression performance and can effectively reduce the energy consumption during image transmission in WSN.
AbstractList The processing capacity and power of nodes in a Wireless Sensor Network (WSN) are limited. And most image compression algorithms in WSN are subject to random image content changes or have low image qualities after the images are decoded. Therefore, an image compression method based on multilayer Restricted Boltzmann Machine (RBM) network is proposed in this paper. The alternative iteration algorithm is also applied in RBM to optimize the training process. The proposed image compression method is compared with a region of interest (ROI) compression method in simulations. Under the same compression ratio, the qualities of reconstructed images are better than that of ROI. When the number of hidden units in top RBM layer is 8, the peak signal-to-noise ratio (PSNR) of the multilayer RBM network compression method is 74.2141, and it is much higher than that of ROI which is 60.2093. The multilayer RBM based image compression method has better compression performance and can effectively reduce the energy consumption during image transmission in WSN.
Author Wang, Shu
Chen, Xingguo
Yang, Yanying
Cheng, Chunling
Author_xml – sequence: 1
  givenname: Chunling
  surname: Cheng
  fullname: Cheng, Chunling
  organization: College of Computer Nanjing University of Posts and Telecommunications Nanjing 213001 China njupt.edu.cn
– sequence: 2
  givenname: Shu
  surname: Wang
  fullname: Wang, Shu
  organization: College of Computer Nanjing University of Posts and Telecommunications Nanjing 213001 China njupt.edu.cn
– sequence: 3
  givenname: Xingguo
  surname: Chen
  fullname: Chen, Xingguo
  organization: College of Computer Nanjing University of Posts and Telecommunications Nanjing 213001 China njupt.edu.cn
– sequence: 4
  givenname: Yanying
  surname: Yang
  fullname: Yang, Yanying
  organization: Department of Information and Technology Nanjing College of Forestry Police Nanjing 210023 China
BookMark eNp9kV1LHDEUhkNRqNre-QMCvWmpW5NMPmYudantgmuhH3gjhDPJWc06O7HJbMV_32xHRUR6lfDy5Ely3l2y1cceCdnn7BPnSh0KxvUhrxWvRfOK7JSITbg0ZuthX4nmNdnNeclYpYXmO-TiiM7X3RA6uMNEZ6ubFP-gp9-P5_QMh9uYrukx5JLMVnCJdBoLgTmH2NM5DlfR09DT85CwKyn9gX2O6eFkfkO2F9BlfHu_7pFfJ59_Tr9OTr99mU2PTidOCjNMNNNOe2W8ZEahXDgUQjStgaoCJVvWKM68qVvGhEPZIsdG6srXsvUImtfVHpmNXh9haW9SWEG6sxGC_RfEdGkhDcF1aKFlqqhd1UiQWC5wixqMMdzpSiK44no_usokfq8xD3YVssOugx7jOltes5ppobgp6Ltn6DKuU19-arkxmimjxIY6GCmXYs4JF48P5MxuarOb2ux9bQX_MOK5zPuJ8GX248hehd7Dbfi_-S8PrKNv
Cites_doi 10.1109/IFITA.2009.403
10.1109/IJCNN.2010.5596837
10.1109/5.726791
10.1360/jos180669
10.1016/j.patcog.2013.05.025
10.1162/089976602760128018
10.1016/j.neucom.2014.02.024
10.3724/SP.J.1146.2009.00704
10.1109/ijcnn.2014.6889634
10.1007/978-3-642-15825-4_26
ContentType Journal Article
Copyright Copyright © 2016 Chunling Cheng et al.
2016 Chunling Cheng et al.
Copyright © 2016 Chunling Cheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright_xml – notice: Copyright © 2016 Chunling Cheng et al.
– notice: 2016 Chunling Cheng et al.
– notice: Copyright © 2016 Chunling Cheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
DBID RHU
RHW
RHX
AFRWT
AAYXX
CITATION
3V.
7SC
7SP
7U5
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CWDGH
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.1155/2016/1851829
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
Sage Journals GOLD Open Access 2024
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central - New (Subscription)
Technology Collection
ProQuest One Community College
Middle East & Africa Database
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (subscription)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Middle East & Africa Database
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Technology Research Database
CrossRef



Publicly Available Content Database
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1550-1477
Editor Malekian, Reza
Editor_xml – sequence: 1
  givenname: Reza
  surname: Malekian
  fullname: Malekian, Reza
ExternalDocumentID oai_doaj_org_article_ab059b7c394a4e33acf8a7771c634eac
4000120741
10_1155_2016_1851829
10.1155_2016/1851829
GroupedDBID .4S
.DC
0R~
29J
31X
3V.
4.4
54M
5GY
5VS
AAJPV
AAKPC
AATBZ
ABAWP
ABJCF
ABQXT
ACGEJ
ACGFS
ACIWK
ACROE
ACSIQ
ADBBV
ADXPE
AEDFJ
AENEX
AEWDL
AEWHI
AFCOW
AFKRG
AFRWT
AIOMO
AJUZI
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AUTPY
AYAKG
BCNDV
BDDNI
BENPR
BPHCQ
CS3
CWDGH
DH.
DU5
DV7
EBS
EDO
EJD
GROUPED_DOAJ
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
HCIFZ
I-F
IAO
ICD
IEA
J8X
K.F
K7-
KQ8
M~E
O9-
OK1
P2P
RHU
RHW
RHX
RNS
ROL
SFC
SFK
SFT
SGV
SPP
TFW
TUS
TWF
TWQ
XH6
AASGM
ADMLS
H13
SAUOL
SCNPE
AAYXX
ACHEB
CITATION
7SC
7SP
7U5
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
AZQEC
BGLVJ
CCPQU
DWQXO
GNUQQ
ITC
JQ2
K6V
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
PTHSS
Q9U
AFFHD
ID FETCH-LOGICAL-c427t-606c6d57d4075e4fce2229b7a33a54b09510d78b002ce4be1e9463d84bdea6183
IEDL.DBID M7S
ISICitedReferencesCount 52
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000372985100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1550-1329
1550-1477
IngestDate Fri Oct 03 12:50:35 EDT 2025
Sun Nov 09 09:25:58 EST 2025
Fri Jul 25 12:14:21 EDT 2025
Sat Nov 29 06:19:34 EST 2025
Tue Jun 17 22:43:36 EDT 2025
Sun Jun 02 18:54:35 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-606c6d57d4075e4fce2229b7a33a54b09510d78b002ce4be1e9463d84bdea6183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/1776057527?pq-origsite=%requestingapplication%
PQID 1776057527
PQPubID 1096448
ParticipantIDs doaj_primary_oai_doaj_org_article_ab059b7c394a4e33acf8a7771c634eac
proquest_miscellaneous_1808062517
proquest_journals_1776057527
crossref_primary_10_1155_2016_1851829
sage_journals_10_1155_2016_1851829
hindawi_primary_10_1155_2016_1851829
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: Abingdon
PublicationTitle International journal of distributed sensor networks
PublicationYear 2016
Publisher Hindawi Publishing Corporation
SAGE Publications
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi Publishing Corporation
– name: SAGE Publications
– name: John Wiley & Sons, Inc
– name: Wiley
References Chatzis S. Echo-state conditional restricted boltzmann machines Proceedings of the 28th AAAI Conference on Artificial Intelligence 2014 1738 1744
(15) 2002; 14
Tieleman T. Training restricted Boltzmann machines using approximations to the likelihood gradient Proceedings of the 25th International Conference on Machine Learning July 2008 Helsinki, Finland ACM 1064 1071
Fischer A. Igel C. An Mpirical analysis of the divergence of Gibbs sampling based learning algorithms for restricted Boltzmann machines Artificial Neural Networks-ICANN 2010: 20th International Conference, Thessaloniki, Greece, September 15–18, 2010, Proceedings, Part III 2010 6354 Berlin, Germany Springer 208 217 Lecture Notes in Computer Science 10.1007/978-3-642-15825-4_26
(6) 2007; 34
Ding X. Zhang Y. Liu T. Duan J. Deep learning for event-driven stock prediction Proceedings of the 24th International Joint Conference on Artificial Intelligence (ICJAI '15) July 2015 Buenos Aires, Argentina ACM 2327 2333
Cai-xiang N. Study on Image Data Compression Processing in Wireless Multimedia Sensor Network 2014 Xi'an, China Chang'an University
Desjardins G. Courville A. Bengio Y. Adaptive parallel tempering for stochastic maximum likelihood learning of RBMs Neural Information Processing Systems (NIPS) 2010 MIT Press
Ji N. Zhang J. Parallel tempering with equi-energy moves for training of restricted boltzmann machines Proceedings of the International Joint Conference on Neural Networks (IJCNN '14) July 2014 Beijing, China 120 127 10.1109/ijcnn.2014.6889634 2-s2.0-84908472621
(20) 2014; 139
Osogami T. Otsuka M. Restricted Boltzmann machines modeling human choice Proceedings of the 28th Annual Conference on Neural Information Processing Systems (NIPS '14) December 2014 Montreal, Canada 73 81
(26) 2010; 9
(8) 2005; 25
(12) 2010; 36
Bengio Y. Courville A. C. Vincent P. Unsupervised Feature Learning and Deep Learning: A Review and New Perspectives 2012 Montreal, Canada Department of Computer Science and Operations Research, University of Montreal
(7) 2010; 32
Sadowski P. J. Whiteson D. Baldi P. Searching for Higgs Boson decay modes with deep learning Proceedings of the 28th Annual Conference on Neural Information Processing Systems (NIPS '14) December 2014 Montreal, Canada 2393 2401
(25) 1998; 86
Tieleman T. Hinton G. E. Using fast weights to improve persistent contrastive divergence Proceedings of the 26th Annual International Conference on Machine Learning (ICML '09) June 2009 ACM 1033 1040 2-s2.0-71149084943
(10) 2008; 30
(23) 2014; 47
(11) 2009; 46
Hu Y. Markov chain Monte Carlo based improvements to the learning algorithm of restricted Boltzmann machines [M.S. thesis] 2012 Shanghai, China Shanghai Jiao Tong University
(9) 2007; 18
(13) 2010; 18
(16) 2010; 9
Zhang C. Sun G.-L. Li W.-X. Gao Y. Lv L. Research on data compression algorithm based on prediction coding for wireless sensor network nodes 1 Proceedings of the International Forum on Information Technology and Applications (IFITA '09) May 2009 Chengdu, China IEEE 283 286 10.1109/IFITA.2009.403
Cho K. H. Raiko T. Ilin A. Parallel tempering is efficient for learning restricted Boltzmann machines Proceedings of the International Joint Conference on Neural Networks (IJCNN '10) July 2010 Barcelona, Spain 1 8 10.1109/IJCNN.2010.5596837
Wang, Zhou 2005; 25
Desjardins, Courville, Bengio 2010; 9
Fischer, Igel 2014; 47
Hinton 2002; 14
Zhou, Lin, Ye 2009; 46
Luo, Wang 2010; 36
Xiang-Hui, Shi-Ning, Peng-Lei 2010; 18
LeCun, Bottou, Bengio, Haffner 1998; 86
Tie-jun, Ya-ping, Si-wang 2008; 30
Wang, Ma 2010; 32
Xiang-Yu, Ya-Zhe, Xiao-Chun 2007; 34
Si-wang, Ya-ping, Jian-ming 2007; 18
Sutskever, Tieleman 2010; 9
Xu, Li, Zhou 2014; 139
B5-2016-1851829
B20-2016-1851829
B7-2016-1851829
Bengio Y. (B22-2016-1851829) 2012
B21-2016-1851829
Tie-jun Z. (B10-2016-1851829) 2008; 30
B25-2016-1851829
B23-2016-1851829
Osogami T. (B4-2016-1851829)
B9-2016-1851829
Xiang-Hui F. (B13-2016-1851829) 2010; 18
B24-2016-1851829
Cai-xiang N. (B14-2016-1851829) 2014
B27-2016-1851829
Xiang-Yu L. (B6-2016-1851829) 2007; 34
Luo W.-H. (B12-2016-1851829) 2010; 36
Tieleman T. (B18-2016-1851829)
B28-2016-1851829
Wang L. (B8-2016-1851829) 2005; 25
Chatzis S. (B3-2016-1851829)
Zhou S.-W. (B11-2016-1851829) 2009; 46
Ding X. (B2-2016-1851829)
Sutskever I. (B16-2016-1851829) 2010; 9
Desjardins G. (B19-2016-1851829) 2010
B15-2016-1851829
Sadowski P. J. (B1-2016-1851829)
Desjardins G. (B26-2016-1851829) 2010; 9
Tieleman T. (B17-2016-1851829)
References_xml – reference: Cai-xiang N. Study on Image Data Compression Processing in Wireless Multimedia Sensor Network 2014 Xi'an, China Chang'an University
– reference: Ji N. Zhang J. Parallel tempering with equi-energy moves for training of restricted boltzmann machines Proceedings of the International Joint Conference on Neural Networks (IJCNN '14) July 2014 Beijing, China 120 127 10.1109/ijcnn.2014.6889634 2-s2.0-84908472621
– reference: Hu Y. Markov chain Monte Carlo based improvements to the learning algorithm of restricted Boltzmann machines [M.S. thesis] 2012 Shanghai, China Shanghai Jiao Tong University
– volume: 18
  start-page: 669
  issue: 3
  year: 2007
  end-page: 680
  ident: 9
  article-title: Based on ring model of wavelet compression algorithm in sensor networks
– reference: Ding X. Zhang Y. Liu T. Duan J. Deep learning for event-driven stock prediction Proceedings of the 24th International Joint Conference on Artificial Intelligence (ICJAI '15) July 2015 Buenos Aires, Argentina ACM 2327 2333
– reference: Bengio Y. Courville A. C. Vincent P. Unsupervised Feature Learning and Deep Learning: A Review and New Perspectives 2012 Montreal, Canada Department of Computer Science and Operations Research, University of Montreal
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  end-page: 2324
  ident: 25
  article-title: Gradient-based learning applied to document recognition
– volume: 34
  start-page: 141
  issue: 2
  year: 2007
  end-page: 143
  ident: 6
  article-title: Facing the wireless sensor network streaming data compression technology
– reference: Tieleman T. Hinton G. E. Using fast weights to improve persistent contrastive divergence Proceedings of the 26th Annual International Conference on Machine Learning (ICML '09) June 2009 ACM 1033 1040 2-s2.0-71149084943
– reference: Desjardins G. Courville A. Bengio Y. Adaptive parallel tempering for stochastic maximum likelihood learning of RBMs Neural Information Processing Systems (NIPS) 2010 MIT Press
– volume: 47
  start-page: 25
  issue: 1
  year: 2014
  end-page: 39
  ident: 23
  article-title: Training restricted Boltzmann machines: an introduction
– volume: 139
  start-page: 328
  year: 2014
  end-page: 335
  ident: 20
  article-title: Improving mixing rate with tempered transition for learning restricted Boltzmann machines
– reference: Chatzis S. Echo-state conditional restricted boltzmann machines Proceedings of the 28th AAAI Conference on Artificial Intelligence 2014 1738 1744
– volume: 36
  start-page: 74
  issue: 16
  year: 2010
  end-page: 76
  ident: 12
  article-title: Based on chain model of distributed wavelet compression algorithm
– volume: 9
  start-page: 789
  year: 2010
  end-page: 795
  ident: 16
  article-title: On the convergence properties of contrastive divergence
– reference: Cho K. H. Raiko T. Ilin A. Parallel tempering is efficient for learning restricted Boltzmann machines Proceedings of the International Joint Conference on Neural Networks (IJCNN '10) July 2010 Barcelona, Spain 1 8 10.1109/IJCNN.2010.5596837
– volume: 25
  start-page: 1676
  issue: 11
  year: 2005
  end-page: 1678
  ident: 8
  article-title: Based on interval wavelet transform in hybrid entropy data compression algorithm in sensor network
– volume: 46
  start-page: 2085
  issue: 12
  year: 2009
  end-page: 2092
  ident: 11
  article-title: A kind of sensor network storage effective wavelet incremental data compression algorithm
– reference: Sadowski P. J. Whiteson D. Baldi P. Searching for Higgs Boson decay modes with deep learning Proceedings of the 28th Annual Conference on Neural Information Processing Systems (NIPS '14) December 2014 Montreal, Canada 2393 2401
– reference: Zhang C. Sun G.-L. Li W.-X. Gao Y. Lv L. Research on data compression algorithm based on prediction coding for wireless sensor network nodes 1 Proceedings of the International Forum on Information Technology and Applications (IFITA '09) May 2009 Chengdu, China IEEE 283 286 10.1109/IFITA.2009.403
– reference: Fischer A. Igel C. An Mpirical analysis of the divergence of Gibbs sampling based learning algorithms for restricted Boltzmann machines Artificial Neural Networks-ICANN 2010: 20th International Conference, Thessaloniki, Greece, September 15–18, 2010, Proceedings, Part III 2010 6354 Berlin, Germany Springer 208 217 Lecture Notes in Computer Science 10.1007/978-3-642-15825-4_26
– volume: 18
  start-page: 463
  issue: 2
  year: 2010
  end-page: 465
  ident: 13
  article-title: Adaptive nondestructive data compression system of WSN
– volume: 30
  start-page: 48
  issue: 3
  year: 2008
  end-page: 53
  ident: 10
  article-title: Based on adaptive multiple modules data compression algorithm of wavelet in wireless sensor networks
– volume: 14
  start-page: 1771
  issue: 8
  year: 2002
  end-page: 1800
  ident: 15
  article-title: Training products of experts by minimizing contrastive divergence
– volume: 9
  start-page: 145
  year: 2010
  end-page: 152
  ident: 26
  article-title: Parallel tempering for training of restricted Boltzmann machines
– volume: 32
  start-page: 755
  issue: 3
  year: 2010
  end-page: 758
  ident: 7
  article-title: Based on a linear model of the space-time data compression algorithm in sensor networks
– reference: Osogami T. Otsuka M. Restricted Boltzmann machines modeling human choice Proceedings of the 28th Annual Conference on Neural Information Processing Systems (NIPS '14) December 2014 Montreal, Canada 73 81
– reference: Tieleman T. Training restricted Boltzmann machines using approximations to the likelihood gradient Proceedings of the 25th International Conference on Machine Learning July 2008 Helsinki, Finland ACM 1064 1071
– volume: 9
  start-page: 145
  year: 2010
  end-page: 152
  article-title: Parallel tempering for training of restricted Boltzmann machines
– volume: 30
  start-page: 48
  issue: 3
  year: 2008
  end-page: 53
  article-title: Based on adaptive multiple modules data compression algorithm of wavelet in wireless sensor networks
– volume: 139
  start-page: 328
  year: 2014
  end-page: 335
  article-title: Improving mixing rate with tempered transition for learning restricted Boltzmann machines
– volume: 36
  start-page: 74
  issue: 16
  year: 2010
  end-page: 76
  article-title: Based on chain model of distributed wavelet compression algorithm
– volume: 46
  start-page: 2085
  issue: 12
  year: 2009
  end-page: 2092
  article-title: A kind of sensor network storage effective wavelet incremental data compression algorithm
– volume: 18
  start-page: 463
  issue: 2
  year: 2010
  end-page: 465
  article-title: Adaptive nondestructive data compression system of WSN
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  end-page: 2324
  article-title: Gradient-based learning applied to document recognition
– volume: 14
  start-page: 1771
  issue: 8
  year: 2002
  end-page: 1800
  article-title: Training products of experts by minimizing contrastive divergence
– volume: 32
  start-page: 755
  issue: 3
  year: 2010
  end-page: 758
  article-title: Based on a linear model of the space-time data compression algorithm in sensor networks
– volume: 18
  start-page: 669
  issue: 3
  year: 2007
  end-page: 680
  article-title: Based on ring model of wavelet compression algorithm in sensor networks
– volume: 34
  start-page: 141
  issue: 2
  year: 2007
  end-page: 143
  article-title: Facing the wireless sensor network streaming data compression technology
– volume: 25
  start-page: 1676
  issue: 11
  year: 2005
  end-page: 1678
  article-title: Based on interval wavelet transform in hybrid entropy data compression algorithm in sensor network
– volume: 9
  start-page: 789
  year: 2010
  end-page: 795
  article-title: On the convergence properties of contrastive divergence
– volume: 47
  start-page: 25
  issue: 1
  year: 2014
  end-page: 39
  article-title: Training restricted Boltzmann machines: an introduction
– start-page: 1033
  volume-title: Proceedings of the 26th Annual International Conference on Machine Learning (ICML '09)
  ident: B18-2016-1851829
– volume: 36
  start-page: 74
  issue: 16
  year: 2010
  ident: B12-2016-1851829
  publication-title: Computer Engineering
– ident: B5-2016-1851829
  doi: 10.1109/IFITA.2009.403
– ident: B21-2016-1851829
– volume: 34
  start-page: 141
  issue: 2
  year: 2007
  ident: B6-2016-1851829
  publication-title: Computer Science
– volume: 18
  start-page: 463
  issue: 2
  year: 2010
  ident: B13-2016-1851829
  publication-title: Computer Measurement and Control
– ident: B27-2016-1851829
  doi: 10.1109/IJCNN.2010.5596837
– start-page: 1064
  volume-title: Proceedings of the 25th International Conference on Machine Learning
  ident: B17-2016-1851829
– ident: B25-2016-1851829
  doi: 10.1109/5.726791
– volume: 30
  start-page: 48
  issue: 3
  year: 2008
  ident: B10-2016-1851829
  publication-title: Journal of Communication
– volume-title: Unsupervised Feature Learning and Deep Learning: A Review and New Perspectives
  year: 2012
  ident: B22-2016-1851829
– ident: B9-2016-1851829
  doi: 10.1360/jos180669
– volume: 9
  start-page: 789
  year: 2010
  ident: B16-2016-1851829
  publication-title: Journal of Machine Learning Research—Proceedings Track
– ident: B23-2016-1851829
  doi: 10.1016/j.patcog.2013.05.025
– ident: B15-2016-1851829
  doi: 10.1162/089976602760128018
– ident: B20-2016-1851829
  doi: 10.1016/j.neucom.2014.02.024
– start-page: 73
  volume-title: Proceedings of the 28th Annual Conference on Neural Information Processing Systems (NIPS '14)
  ident: B4-2016-1851829
– ident: B7-2016-1851829
  doi: 10.3724/SP.J.1146.2009.00704
– volume: 25
  start-page: 1676
  issue: 11
  year: 2005
  ident: B8-2016-1851829
  publication-title: Computer Applications
– start-page: 2393
  volume-title: Proceedings of the 28th Annual Conference on Neural Information Processing Systems (NIPS '14)
  ident: B1-2016-1851829
– volume: 46
  start-page: 2085
  issue: 12
  year: 2009
  ident: B11-2016-1851829
  publication-title: Journal of Computer Research and Development
– ident: B28-2016-1851829
  doi: 10.1109/ijcnn.2014.6889634
– volume-title: Study on Image Data Compression Processing in Wireless Multimedia Sensor Network
  year: 2014
  ident: B14-2016-1851829
– volume: 9
  start-page: 145
  year: 2010
  ident: B26-2016-1851829
  publication-title: Journal of Machine Learning Research Workshop & Conference Proceedings
– start-page: 2327
  volume-title: Proceedings of the 24th International Joint Conference on Artificial Intelligence (ICJAI '15)
  ident: B2-2016-1851829
– volume-title: Neural Information Processing Systems (NIPS)
  year: 2010
  ident: B19-2016-1851829
– start-page: 1738
  volume-title: Proceedings of the 28th AAAI Conference on Artificial Intelligence
  ident: B3-2016-1851829
– ident: B24-2016-1851829
  doi: 10.1007/978-3-642-15825-4_26
SSID ssj0036261
Score 2.261857
Snippet The processing capacity and power of nodes in a Wireless Sensor Network (WSN) are limited. And most image compression algorithms in WSN are subject to random...
SourceID doaj
proquest
crossref
sage
hindawi
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 1851829
SubjectTerms Algorithms
Image compression
Multilayers
Networks
Remote sensors
Signal to noise ratio
Wireless networks
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5K6KGX9JGUuE2LGtKjSbR62cdsaeglS2lSyCFg9JilC8Ebdjft3--MZIcNFHLp0XraM5bm--TxDMCxdBIdqlMiOdLUGoOpWyVT7bT2Shs2SvOcbMLNZs31dft9K9UX-4SV8MBFcCc-EAAILqpWe41K-ThvvHNORqs07Rq8-566diRTZQ_mGCtydHM3hhi-tCdkmQhMt48MUI7TT9D3FxPgP4tHMHPLsysbm_NXsDugRHFW7u41PMP-DbwcMzCIYUHuwc2ZyH_Q3npCzqIcEGASP6YXYlb8u8WUzFSiKppF8ADF77UXFzl1tFj0gh1gb6lUXBKlXa7Gnut9-Hn-9erLt3rIl1BHPXGbmrhItMm4RCTNoJ5H5GTdwXmSmtEhg6nkGrbLEXVAia22KjU6JPSW1vZb2OmXPR6AkG2waeJTE6LVaGzbTIKKdGnlHLU3FXwehdjdlbAYXaYTxnQs7G4QdgVTlvBDGw5mnQtIxd2g4u4pFVdwPOjnibkOR-V1w0Jcd9I5y5B04ir49FBNS4i_i_gel_fUhmNrWo7dVsERK32r-z_mefc_nuk9vOAxy2HOIexsVvf4AZ7H35vFevUxv8x_Afof9IU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4B4tBLS6FV00JlKnqMitev5MgiEBdWFQVpD0iRH7PqSiiLdpf273fGSRC0ldqjX7HlyeSbsSffABxJJ9GhOiYnR5pSYzBlrWQqndZeacOgNMvJJtxkUk2n9deeJGn15xU-oR2559J-IVghS7jehM3KcOTW1cV0-OAyoUpHi2qOS86bPsS3_zb2GfJkgn6yeb-z5_tz_sy-fBLSlVHmfAde9uahOOnk-Ro2sN2FV0PqBdFr4h7cnoj86-ydJ5NZdCcDmMTV-FJMusBuMSZ8StREswh-QBfw2orLnDNazFvBka93VCu-kS-7WA4jV2_g5vzs-vSi7BMllFGP3LokJyTaZFwi78ygnkXkLN3BeaW80SFbUclVDMgRdUCJtbYqVTok9JaU-i1stYsW34GQdbBp5FMVotVobF2NgopUtHKG2psCPg-b2Nx3fBhN9iOMaXizm36zCxjzDj_2YRbrXEGSbXqlaHwg4y64qGrtNdJi46zyzjkZrdKECAUc9fL5x1z7g_CaXgNXjXTOsi06cgUcPjaT7vCFiG9x8UB9mFTTMmlbAZ9Y6E-G_2We9_-3nA_wgovdOc0-bK2XD3gA2_HHer5afsyv7i_CVOLQ
  priority: 102
  providerName: Hindawi Publishing
Title A Multilayer Improved RBM Network Based Image Compression Method in Wireless Sensor Networks
URI https://dx.doi.org/10.1155/2016/1851829
https://journals.sagepub.com/doi/full/10.1155/2016/1851829
https://www.proquest.com/docview/1776057527
https://www.proquest.com/docview/1808062517
https://doaj.org/article/ab059b7c394a4e33acf8a7771c634eac
Volume 2016
WOSCitedRecordID wos000372985100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1550-1477
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036261
  issn: 1550-1329
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1550-1477
  dateEnd: 20160131
  omitProxy: false
  ssIdentifier: ssj0036261
  issn: 1550-1329
  databaseCode: P5Z
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1550-1477
  dateEnd: 20160131
  omitProxy: false
  ssIdentifier: ssj0036261
  issn: 1550-1329
  databaseCode: K7-
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 1550-1477
  dateEnd: 20160131
  omitProxy: false
  ssIdentifier: ssj0036261
  issn: 1550-1329
  databaseCode: M7S
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database
  customDbUrl:
  eissn: 1550-1477
  dateEnd: 20160131
  omitProxy: false
  ssIdentifier: ssj0036261
  issn: 1550-1329
  databaseCode: CWDGH
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1550-1477
  dateEnd: 20160131
  omitProxy: false
  ssIdentifier: ssj0036261
  issn: 1550-1329
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1550-1477
  dateEnd: 20160131
  omitProxy: false
  ssIdentifier: ssj0036261
  issn: 1550-1329
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxRBEC408eDF-MSJcWklHoekd_oxc5KsJERkl2WjsIow9Gt1Icwkuxv9-1b19MQERA9eGvo13VBdXY-u-Qpgn2sedCgO0cjhMhfByrwquM-1EKYQkoTSIiab0JNJOZ9X0-RwW6ewyv5OjBe1bx35yA-41op0i6F-e3GZU9Yoel1NKTTuwjahJPAYunfW38SEtNLhpcrDnBKq94HvUqLNz9UByipUr6tbIiki96My_J1M4p_LW4rnjVivKH5Odv534w_hQVI82VF3Uh7BndA8hp0-qQNLPP4Evh6x-FPuuUFlnHU-h-DZbDRmky5knI1Q8nnswm0y-kAXStuwccxGzZYNo5jac2xlZ2glt6t-5vopfDo5_vjuNE8pGHInhnqTo3njlJfao90ng1i4QPm_rTZFYaSwUT_zuiRR74KwgYdKqMKXwvpgFF4Xz2CraZvwHBivrPJD40vrlAhSVeXQFg6rii-CMDKDNz0V6osOaaOOFoqUNVGrTtTKYEQkuh5D-NixoV19qxO71cai2mi1KyphRMDNukVptNbcqUKgrMlgPxH4H2vt9TStE2-v698EzeDVdTdyJT21mCa0VziG4DoVwcFl8JpOzY3pf1hn9-_rvID7NLrz_OzB1mZ1FV7CPfdjs1yvBrA9Op5MZ4PoTsDyg84HkQ-wnMov2D99P55-xtrsdP4L9rEK4A
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9RAFD5BNNEX8RqrqKOBxwbaubUPxrAqgSy7MYoJDyZlbiubkBZ2F4l_yt_oOdMWITH6xIOPnc50evnObeb0fABrmc6CDnwTg5xMpiJYmZY886kWwnAhyShNItmEHo-Lg4Py4xL87P-FobTKXidGRe0bR2vkG5nWinyLXL89OU2JNYp2V3sKjRYWw_DjHEO2-Zvd9_h91_N8-8P-u520YxVIncj1IkWP3SkvtcdQRgYxcYEora02nBspbHQ5vC7IerkgbMhCKRT3hbA-GIUSgNe9ATcFLzTJ1VCnveanyi5tfVa5mRKBe59oL-VGTkllaBvRnS-vmMDIFIDO9xGF4OfTK47updyyaO62V_63F3UP7naONdtqJeE-LIX6Aaz0pBWs02EP4esWiz8dHxsMNli7phI8-zQYsXGbEs8GaNk9nsLXwugCbapwzUaRbZtNa0Y5w8fYyj6Het7M-pHzR_DlWp7xMSzXTR2eAMtKq3xufGGdEkGqssgtd3ioskkQRiaw3n_16qStJFLFCEzKitBRdehIYECQuOhD9b9jQzP7VnXqpDIW3WKrHS-FEQFv1k0Ko7XOnOICbWkCax2g_jHXao-hqtNd8-o3gBJ4dXEatQ5tJZk6NGfYh8qRKip3l8BrQuml4X-Y5-nf53kJt3f2R3vV3u54-Azu0Mh2lWsVlhezs_Acbrnvi-l89iLKG4PD68btL_2lX2k
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Za9VAFD7UKuKLdcVo1VHax9AmmSV5EOm1Xiy1l4sLFBHS2WIvlKS9ubX41_x1njNJaguiT33wMctksnxzlpkv5wNYS1Tilc82MclJRMy9EXGRJS5WnOuMC3JKVRCbUJNJvr9fTJfg5_AvDNEqB5sYDLVrLM2RbyRKSYotMFWvelrEdHv8-vgkJgUpWmkd5DQ6iOz6H2eYvrWvdrbxW6-n6fjtpzfv4l5hILY8VYsYo3crnVAO0xrheWU9yVsbpbNMC25C-OFUTp7Mem584gsuM5dz47yWOBrwutfgusIck-iEU_Fl8AJU5aWr1So2YxJzH0j3QmykRDBDP4mhfXHJHQbVAAzEDykdP5tdCnov8MyC6xuv_M8v7Q7c7gNuttWNkLuw5Ot7sDKIWbDett2Hr1ss_Ix8pDEJYd1ci3fsw2iPTTqqPBuhx3d4CF8Rowt0FOKa7QUVbjarGXGJj3Av--jrtpkPLdsH8PlKnvEhLNdN7R8BSwojXapdbqzkXsgiT01mcVMmledaRLA-IKA87iqMlCEzE6IkpJQ9UiIYETzOz6G64GFHM_9W9mam1AbDZaNsVnDNPd6srXKtlEqszDj62AjWenD9o6_VAU9lb9Pa8jeYInhxfhitES0x6do3p3gOlSmVVAYvgpeE2AvN_9DP47_38xxuIlzL9zuT3Sdwixp2k1-rsLyYn_qncMN-X8za-bMw9BgcXDVsfwHLsmiN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multilayer+Improved+RBM+Network+Based+Image+Compression+Method+in+Wireless+Sensor+Networks&rft.jtitle=International+journal+of+distributed+sensor+networks&rft.au=Cheng%2C+Chunling&rft.au=Wang%2C+Shu&rft.au=Chen%2C+Xingguo&rft.au=Yang%2C+Yanying&rft.date=2016-01-01&rft.issn=1550-1477&rft.eissn=1550-1477&rft.volume=12&rft.issue=3&rft.spage=1851829&rft_id=info:doi/10.1155%2F2016%2F1851829&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2016_1851829
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-1329&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-1329&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-1329&client=summon