Topological Graph Polynomials in Colored Group Field Theory
In this paper, we analyze the open Feynman graphs of the Colored Group Field Theory introduced in Gurau (Colored group field theory, arXiv:0907.2582 [hep-th]). We define the boundary graph of an open graph and prove it is a cellular complex. Using this structure we generalize the topological (Bollob...
Uloženo v:
| Vydáno v: | Annales Henri Poincaré Ročník 11; číslo 4; s. 565 - 584 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
SP Birkhäuser Verlag Basel
01.08.2010
Springer |
| Témata: | |
| ISSN: | 1424-0637, 1424-0661 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we analyze the open Feynman graphs of the Colored Group Field Theory introduced in Gurau (Colored group field theory, arXiv:0907.2582 [hep-th]). We define the boundary graph
of an open graph
and prove it is a cellular complex. Using this structure we generalize the topological (Bollobás–Riordan) Tutte polynomials associated to (ribbon) graphs to topological polynomials adapted to Colored Group Field Theory graphs in arbitrary dimension. |
|---|---|
| ISSN: | 1424-0637 1424-0661 |
| DOI: | 10.1007/s00023-010-0035-6 |