Topological Graph Polynomials in Colored Group Field Theory

In this paper, we analyze the open Feynman graphs of the Colored Group Field Theory introduced in Gurau (Colored group field theory, arXiv:0907.2582 [hep-th]). We define the boundary graph of an open graph and prove it is a cellular complex. Using this structure we generalize the topological (Bollob...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Annales Henri Poincaré Ročník 11; číslo 4; s. 565 - 584
Hlavní autor: Gurau, Razvan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel SP Birkhäuser Verlag Basel 01.08.2010
Springer
Témata:
ISSN:1424-0637, 1424-0661
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we analyze the open Feynman graphs of the Colored Group Field Theory introduced in Gurau (Colored group field theory, arXiv:0907.2582 [hep-th]). We define the boundary graph of an open graph and prove it is a cellular complex. Using this structure we generalize the topological (Bollobás–Riordan) Tutte polynomials associated to (ribbon) graphs to topological polynomials adapted to Colored Group Field Theory graphs in arbitrary dimension.
ISSN:1424-0637
1424-0661
DOI:10.1007/s00023-010-0035-6