Deep Model Poisoning Attack on Federated Learning

Federated learning is a novel distributed learning framework, which enables thousands of participants to collaboratively construct a deep learning model. In order to protect confidentiality of the training data, the shared information between server and participants are only limited to model paramet...

Full description

Saved in:
Bibliographic Details
Published in:Future internet Vol. 13; no. 3; p. 73
Main Authors: Zhou, Xingchen, Xu, Ming, Wu, Yiming, Zheng, Ning
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.03.2021
Subjects:
ISSN:1999-5903, 1999-5903
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Federated learning is a novel distributed learning framework, which enables thousands of participants to collaboratively construct a deep learning model. In order to protect confidentiality of the training data, the shared information between server and participants are only limited to model parameters. However, this setting is vulnerable to model poisoning attack, since the participants have permission to modify the model parameters. In this paper, we perform systematic investigation for such threats in federated learning and propose a novel optimization-based model poisoning attack. Different from existing methods, we primarily focus on the effectiveness, persistence and stealth of attacks. Numerical experiments demonstrate that the proposed method can not only achieve high attack success rate, but it is also stealthy enough to bypass two existing defense methods.
AbstractList Federated learning is a novel distributed learning framework, which enables thousands of participants to collaboratively construct a deep learning model. In order to protect confidentiality of the training data, the shared information between server and participants are only limited to model parameters. However, this setting is vulnerable to model poisoning attack, since the participants have permission to modify the model parameters. In this paper, we perform systematic investigation for such threats in federated learning and propose a novel optimization-based model poisoning attack. Different from existing methods, we primarily focus on the effectiveness, persistence and stealth of attacks. Numerical experiments demonstrate that the proposed method can not only achieve high attack success rate, but it is also stealthy enough to bypass two existing defense methods.
Author Zhou, Xingchen
Xu, Ming
Zheng, Ning
Wu, Yiming
Author_xml – sequence: 1
  givenname: Xingchen
  surname: Zhou
  fullname: Zhou, Xingchen
– sequence: 2
  givenname: Ming
  orcidid: 0000-0001-9332-5258
  surname: Xu
  fullname: Xu, Ming
– sequence: 3
  givenname: Yiming
  surname: Wu
  fullname: Wu, Yiming
– sequence: 4
  givenname: Ning
  surname: Zheng
  fullname: Zheng, Ning
BookMark eNptUE1LAzEQDVLBqr34Cxa8CavJZvN1LNVqoaIHPYdsMimp66Zm04P_3q1VFHEuM8y893jzjtGoix0gdEbwJaUKX_lAKKYYC3qAxkQpVTKF6ejXfIQmfb_GQ1FVcS7GiFwDbIr76KAtHmPoYxe6VTHN2diXInbFHBwkk8EVSzBpdzxFh960PUy--gl6nt88ze7K5cPtYjZdlrauRC4ZqY2TsqkcFdw61wjPHK89ExwsZ4xW1vuGs0Yy5YFTSxtcM0m54LVSuKEnaLHXddGs9SaFV5PedTRBfy5iWmmTcrAt6OE_ajn2nipfGyalwjXBVggDDWFgBq3zvdYmxbct9Fmv4zZ1g31dMVxJSYXkAwrvUTbFvk_gtQ3Z5BC7nExoNcF6l7P-yXmgXPyhfBv9B_wBJzV8UA
CitedBy_id crossref_primary_10_1109_TAI_2023_3280155
crossref_primary_10_1016_j_cosrev_2024_100685
crossref_primary_10_1007_s40747_024_01664_0
crossref_primary_10_1007_s40747_025_02009_1
crossref_primary_10_3390_s21113922
crossref_primary_10_1016_j_compeleceng_2024_109233
crossref_primary_10_3390_app14188490
crossref_primary_10_1016_j_comcom_2023_05_004
crossref_primary_10_1002_widm_70034
crossref_primary_10_1016_j_comnet_2024_110841
crossref_primary_10_1007_s11227_025_07619_7
crossref_primary_10_3390_sym17060969
crossref_primary_10_3390_electronics14010129
crossref_primary_10_1016_j_engappai_2023_105888
crossref_primary_10_1007_s10115_025_02339_z
crossref_primary_10_3390_electronics12143182
crossref_primary_10_1109_TII_2021_3116037
crossref_primary_10_1109_TNNLS_2025_3563537
crossref_primary_10_1049_stg2_12191
crossref_primary_10_3390_s22020450
crossref_primary_10_1016_j_comnet_2023_109712
crossref_primary_10_1109_ACCESS_2025_3584948
crossref_primary_10_1016_j_softx_2024_101765
crossref_primary_10_3390_electronics12122703
crossref_primary_10_1016_j_future_2022_03_003
crossref_primary_10_1007_s11277_024_11372_0
crossref_primary_10_1016_j_neucom_2025_129424
crossref_primary_10_1145_3703631
crossref_primary_10_1080_08839514_2022_2037254
crossref_primary_10_1109_ACCESS_2021_3118926
crossref_primary_10_3390_fi16100374
crossref_primary_10_1007_s12083_024_01794_9
crossref_primary_10_1016_j_asoc_2024_111519
crossref_primary_10_3390_electronics12051190
crossref_primary_10_1016_j_heliyon_2024_e38137
crossref_primary_10_1007_s10586_024_04810_y
crossref_primary_10_1080_17445760_2025_2521662
crossref_primary_10_1109_TAI_2023_3314398
crossref_primary_10_1016_j_cose_2024_103801
crossref_primary_10_1016_j_iotcps_2023_04_001
crossref_primary_10_3390_bdcc6040127
crossref_primary_10_1016_j_future_2022_12_032
crossref_primary_10_1016_j_jnca_2025_104165
crossref_primary_10_1109_ACCESS_2023_3304541
crossref_primary_10_3390_math12233751
crossref_primary_10_1016_j_cose_2023_103205
crossref_primary_10_1016_j_jisa_2024_103744
crossref_primary_10_1080_08839514_2024_2410504
crossref_primary_10_1186_s42400_024_00295_9
crossref_primary_10_1016_j_comnet_2024_110383
crossref_primary_10_1109_JIOT_2025_3531117
crossref_primary_10_1109_JIOT_2024_3452549
crossref_primary_10_1109_MNET_2024_3486228
crossref_primary_10_1109_TIFS_2024_3379852
crossref_primary_10_1016_j_compeleceng_2024_109893
crossref_primary_10_1007_s10462_021_10098_w
crossref_primary_10_1109_ACCESS_2024_3380167
crossref_primary_10_1016_j_engappai_2023_107166
crossref_primary_10_1109_TIFS_2024_3516567
crossref_primary_10_1007_s11042_023_16050_0
crossref_primary_10_3390_bioengineering10080965
crossref_primary_10_1016_j_jisa_2025_104127
crossref_primary_10_1016_j_knosys_2022_108588
crossref_primary_10_1109_ACCESS_2023_3269980
crossref_primary_10_1145_3678571
crossref_primary_10_3390_app122111053
crossref_primary_10_1007_s10462_024_10796_1
crossref_primary_10_1049_cmu2_12686
crossref_primary_10_1016_j_inffus_2025_103292
crossref_primary_10_1109_TVT_2024_3456852
crossref_primary_10_1109_COMST_2023_3317242
crossref_primary_10_1145_3691625
crossref_primary_10_1109_TSC_2025_3536312
crossref_primary_10_1016_j_csi_2023_103723
crossref_primary_10_1109_ACCESS_2023_3238823
crossref_primary_10_1002_int_22777
crossref_primary_10_26599_BDMA_2024_9020035
crossref_primary_10_1016_j_rineng_2024_103295
crossref_primary_10_1109_OJCOMS_2024_3449563
Cites_doi 10.1109/SP.2018.00057
10.1145/2810103.2813687
10.1145/3128572.3140451
10.1109/TSP.2020.3012952
10.1109/ICCV.2017.368
10.1109/CVPR.2016.90
10.1109/ICASSP40776.2020.9053448
10.1109/CVPR.2019.01151
10.1073/pnas.1611835114
10.1609/aaai.v29i1.9569
10.1145/3219617.3219655
10.1145/3366423.3380072
10.1016/1049-9660(92)90003-L
10.14722/ndss.2021.24434
10.1145/3394486.3403298
10.1145/3298981
10.1609/aaai.v35i8.16849
10.1109/ACCESS.2019.2909068
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOA
DOI 10.3390/fi13030073
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1999-5903
ExternalDocumentID oai_doaj_org_article_1993c60ff39f4a58890410c77aeb15ea
10_3390_fi13030073
GroupedDBID -DT
.4I
5VS
7WY
8FE
8FG
8FL
AADQD
AAFWJ
AAKPC
AAYXX
ABDBF
ABUWG
ACIHN
ADBBV
ADMLS
AEAQA
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BEZIV
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
EAP
EBS
EJD
ESX
FRNLG
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
K60
K6V
K6~
K7-
KQ8
M0C
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
RNS
TR2
3V.
7SC
7XB
8AL
8FD
8FK
ACUHS
JQ2
L.-
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c427t-514ad88b2d376cddb7f5d64f576ec65532cffb65b859fe63c3b045836764990b3
IEDL.DBID DOA
ISICitedReferencesCount 108
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000633689600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1999-5903
IngestDate Tue Oct 14 18:42:30 EDT 2025
Fri Jul 25 22:53:00 EDT 2025
Tue Nov 18 21:16:55 EST 2025
Sat Nov 29 07:14:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-514ad88b2d376cddb7f5d64f576ec65532cffb65b859fe63c3b045836764990b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9332-5258
OpenAccessLink https://doaj.org/article/1993c60ff39f4a58890410c77aeb15ea
PQID 2502883786
PQPubID 2032396
ParticipantIDs doaj_primary_oai_doaj_org_article_1993c60ff39f4a58890410c77aeb15ea
proquest_journals_2502883786
crossref_citationtrail_10_3390_fi13030073
crossref_primary_10_3390_fi13030073
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Future internet
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_14
ref_36
ref_35
ref_12
ref_34
Zbontar (ref_42) 2016; 17
ref_11
ref_33
ref_10
ref_32
ref_31
ref_30
ref_18
ref_17
ref_16
ref_38
ref_37
ref_25
ref_24
Wu (ref_19) 2020; 68
ref_23
ref_45
Li (ref_15) 2020; 37
ref_22
Kirkpatrick (ref_40) 2017; 114
ref_44
ref_21
ref_43
ref_20
ref_41
Yang (ref_13) 2019; 10
Williams (ref_39) 1992; 55
ref_1
ref_3
ref_2
ref_29
ref_28
ref_27
ref_26
ref_9
ref_8
ref_5
ref_4
ref_7
Gu (ref_6) 2019; 7
References_xml – ident: ref_7
– ident: ref_11
  doi: 10.1109/SP.2018.00057
– ident: ref_9
– ident: ref_5
– ident: ref_23
  doi: 10.1145/2810103.2813687
– ident: ref_3
– ident: ref_10
  doi: 10.1145/3128572.3140451
– ident: ref_24
– ident: ref_26
– ident: ref_34
– volume: 68
  start-page: 4583
  year: 2020
  ident: ref_19
  article-title: Federated variance-reduced stochastic gradient descent with robustness to byzantine attacks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2020.3012952
– ident: ref_35
  doi: 10.1109/ICCV.2017.368
– ident: ref_43
  doi: 10.1109/CVPR.2016.90
– ident: ref_27
  doi: 10.1109/ICASSP40776.2020.9053448
– ident: ref_16
– ident: ref_37
– ident: ref_14
– ident: ref_1
– ident: ref_18
– ident: ref_38
  doi: 10.1109/CVPR.2019.01151
– volume: 114
  start-page: 3521
  year: 2017
  ident: ref_40
  article-title: Overcoming catastrophic forgetting in neural networks
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1611835114
– ident: ref_30
  doi: 10.1609/aaai.v29i1.9569
– ident: ref_21
– ident: ref_12
  doi: 10.1145/3219617.3219655
– volume: 37
  start-page: 50
  year: 2020
  ident: ref_15
  article-title: Federated learning: Challenges, methods, and future directions
  publication-title: IEEE Signal Process. Mag.
– ident: ref_8
– ident: ref_25
– ident: ref_4
– ident: ref_31
– ident: ref_29
– ident: ref_33
– ident: ref_2
– ident: ref_32
  doi: 10.1145/3366423.3380072
– volume: 55
  start-page: 14
  year: 1992
  ident: ref_39
  article-title: A fast algorithm for active contours and curvature estimation
  publication-title: CVGIP Image Underst.
  doi: 10.1016/1049-9660(92)90003-L
– ident: ref_44
  doi: 10.14722/ndss.2021.24434
– ident: ref_28
  doi: 10.1145/3394486.3403298
– ident: ref_41
– volume: 10
  start-page: 12:1
  year: 2019
  ident: ref_13
  article-title: Federated Machine Learning: Concept and Applications
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/3298981
– ident: ref_17
– ident: ref_36
– ident: ref_22
– ident: ref_20
– volume: 17
  start-page: 2287
  year: 2016
  ident: ref_42
  article-title: Stereo matching by training a convolutional neural network to compare image patches
  publication-title: J. Mach. Learn. Res.
– ident: ref_45
  doi: 10.1609/aaai.v35i8.16849
– volume: 7
  start-page: 47230
  year: 2019
  ident: ref_6
  article-title: BadNets: Evaluating Backdooring Attacks on Deep Neural Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2909068
SSID ssj0000392667
Score 2.554143
Snippet Federated learning is a novel distributed learning framework, which enables thousands of participants to collaboratively construct a deep learning model. In...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 73
SubjectTerms Algorithms
Collaborative learning
Data processing
Datasets
decentralized approach
Deep learning
Federated learning
Internet
Machine learning
Mathematical models
model poisoning attack
Neural networks
Optimization
Parameter modification
Poisoning
Poisons
Privacy
Stealth technology
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aPejBt1itsqAXD6H7yGtPUh9FUEoPCr0t2TyKWHZru_r7zWzTVlG8eM0OYZlJ5pEZvg-hi9BSQyy1WLpwgAlTGrvkSOPESCJiDbwoNWT-I-_1xGCQ9v2D29SPVc59Yu2odangjbztQjUQ43LBrsZvGFijoLvqKTRW0VoUxxGc8weOF28soQv-jPEZKmniqvu2fQGfDe2pb3Gohuv_4Y3rENPd_u_P7aAtn1wGndlp2EUrpthDm18gB_dRdGvMOAAGtFHQL2GUyC0HnaqS6jUoi6AL4BIu_9SBR14dHqDn7t3TzT32tAlYkZhX2KVAUguRg6ad7nXOLdXMGYQzoxilSayszRnNBU2tYYlK8rp7yjhz5U-YJ4eoUZSFOUIBsNDnmsaSy4i4zVyxFmuqEsJzolKhmuhyrsRMeUxxoLYYZa62AIVnS4U30flCdjxD0vhV6hpssZAA9Ot6oZwMM3-ZMhg6VCy0NkktkVSINCRRqDiXLvJQI5uoNTdT5q_kNFva6PjvzydoI4bBlXrQrIUa1eTdnKJ19VG9TCdn9Qn7BEOp144
  priority: 102
  providerName: ProQuest
Title Deep Model Poisoning Attack on Federated Learning
URI https://www.proquest.com/docview/2502883786
https://doaj.org/article/1993c60ff39f4a58890410c77aeb15ea
Volume 13
WOSCitedRecordID wos000633689600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: M0C
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest ABI/INFORM Collection
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: 7WY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60etCD-MT6KAG9eAimyb5y9NGiqCWIYuslJPuQYknFRn-_s5tUKwpevOxhMyThm2TmG3b4BuAwMFQTQ42fYTrwCZPKR3Kk_EhnRITKzkVxkvnXvNcT_X6czIz6sj1hlTxwBdyxbTCTLDAmig3JqBBxQNqB5DzDKEO1o0bIemaKKReDMe0zxis90gjr-mMztNHaHkx9y0BOqP9HHHbJpbsKKzUr9E6qt1mDOV2sw_KMVuAGtM-1fvHs6LKRl4xtDxBueydlmclnb1x4XasKgcRRebVk6tMm3Hc7d2cXfj3vwJck5KWP3CVTQuQWIgRN5dxQxRBJzrRklEahNCZnNBc0NppFMsrdsSfjDOuWII-2oFGMC70Nnh0fnysaZjxrE7wZVlmhojIiPCcyFrIJR1MMUlmLgduZFKMUiwKLV_qFVxMOPm1fKgmMX61OLZSfFla22m2gM9PamelfzmzC3tQRaf0vTVIkaXYkMhds5z-esQtLoe1LcX1ke9AoX9_0PizK93I4eW3BPH8YtGDhtNNLblvuo8L1ivu43gRnuCb0Ea8nlzfJ4AOEsNB6
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxRBEK4gmIgH8YFhFbQT9eBhwuz0cw7GILiBsG44YMJt7OkHIZKddXeU8Kf8jVbNziwQiTcOXnsqncpUTT26a74P4G0aZRBRxsRiOkiEcj7B4sgnPFhhMk-8KA1k_lCPRubkJD9agt_dvzA0VtnFxCZQ-8rRGfk2pmoixtVGfZz8SIg1im5XOwqNuVschssLbNlmHw720L7vsmzw-Xh3P2lZBRInMl0nWCFYb0xJiqBqvtRReoX6ahWckpJnLsZSydLIPAbFHS-by0WlFXYHaclx33uwIgR-DjQqmO4uznRSLDaU0nMUVM7zdDueUY6g67Abea-hB_gr-jcpbbD2v72Mx_CoLZ7Zztzbn8BSGD-Fh9cgFZ9Bfy-ECSOGt3N2VNGoFC6znbq27jurxmxA4BlYX3vWIsuersPXO9H5OSyPq3HYAIateF56mVlt-wI3w2Y089JxoUvhcuN68L4zWuFazHSi7jgvsHciAxdXBu7Bm4XsZI4UcqvUJ7L9QoLQvZuFanpatMGioKFKp9IYeR6FlcbkqeinTmuLmVUG24PNzi2KNuTMiiufePHvx6_hwf7xl2ExPBgdvoTVjIZ0mqG6TViupz_DFtx3v-qz2fRV490Mvt21B_0B0s40Nw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghAceBYRKLAScOCwiuN9-oBQIURUqaIcQOrNrPdRVVRxSAyIv8avY8axUxCIWw9c7dVq5J2db2Z3_H0Az7KkokwqcYdwwKX2gWNyFLiITto8kC5KS5l_ZGYze3xczHfgR_8vDLVV9jGxDdSh9nRGPkSoJmFcY_UwdW0R8_Hk1fIzJwUpumnt5TQ2LjKN379h-bZ-eTjGtX6e55O379-8453CAPcyNw3HbMEFaysyCs0MlUkqaLTd6Oi1UiL3KVVaVVYVKWrhRdVeNGqjsVLIKoHzXoLLiMKK9tjU8O35ToaJh9Zmw4gqRJEN0ynhBV2N_YaBrVTAH0jQwtvk5v_8YW7BjS6pZgebXXAbduLiDlz_hWrxLozGMS4ZKb-dsXlNLVT4mB00jfOfWL1gEyLVwLw7sI5x9mQPPlyIzfdgd1Ev4n1gWKIXVVC5M24kcTIsUvOgvJCmkr6wfgAv-gUsfcelTpIeZyXWVLTY5fliD-DpduxywyDy11GvyQ-2I4j1u31Qr07KLoiU1GzpdZaSKJJ0ytoik6PMG-MQcVV0A9jvXaTsQtG6PPePB_9-_QSuouOUR4ez6UO4llPvTttrtw-7zepLfARX_NfmdL163Do6g48X7UA_AetfPN0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Model+Poisoning+Attack+on+Federated+Learning&rft.jtitle=Future+internet&rft.au=Xingchen+Zhou&rft.au=Ming+Xu&rft.au=Yiming+Wu&rft.au=Ning+Zheng&rft.date=2021-03-01&rft.pub=MDPI+AG&rft.eissn=1999-5903&rft.volume=13&rft.issue=3&rft.spage=73&rft_id=info:doi/10.3390%2Ffi13030073&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1993c60ff39f4a58890410c77aeb15ea
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-5903&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-5903&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-5903&client=summon