RDTIDS: Rules and Decision Tree-Based Intrusion Detection System for Internet-of-Things Networks

This paper proposes a novel intrusion detection system (IDS), named RDTIDS, for Internet-of-Things (IoT) networks. The RDTIDS combines different classifier approaches which are based on decision tree and rules-based concepts, namely, REP Tree, JRip algorithm and Forest PA. Specifically, the first an...

Full description

Saved in:
Bibliographic Details
Published in:Future internet Vol. 12; no. 3; p. 44
Main Authors: Ferrag, Mohamed Amine, Maglaras, Leandros, Ahmim, Ahmed, Derdour, Makhlouf, Janicke, Helge
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.03.2020
Subjects:
ISSN:1999-5903, 1999-5903
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper proposes a novel intrusion detection system (IDS), named RDTIDS, for Internet-of-Things (IoT) networks. The RDTIDS combines different classifier approaches which are based on decision tree and rules-based concepts, namely, REP Tree, JRip algorithm and Forest PA. Specifically, the first and second method take as inputs features of the data set, and classify the network traffic as Attack/Benign. The third classifier uses features of the initial data set in addition to the outputs of the first and the second classifier as inputs. The experimental results obtained by analyzing the proposed IDS using the CICIDS2017 dataset and BoT-IoT dataset, attest their superiority in terms of accuracy, detection rate, false alarm rate and time overhead as compared to state of the art existing schemes.
AbstractList This paper proposes a novel intrusion detection system (IDS), named RDTIDS, for Internet-of-Things (IoT) networks. The RDTIDS combines different classifier approaches which are based on decision tree and rules-based concepts, namely, REP Tree, JRip algorithm and Forest PA. Specifically, the first and second method take as inputs features of the data set, and classify the network traffic as Attack/Benign. The third classifier uses features of the initial data set in addition to the outputs of the first and the second classifier as inputs. The experimental results obtained by analyzing the proposed IDS using the CICIDS2017 dataset and BoT-IoT dataset, attest their superiority in terms of accuracy, detection rate, false alarm rate and time overhead as compared to state of the art existing schemes.
Author Derdour, Makhlouf
Janicke, Helge
Ferrag, Mohamed Amine
Ahmim, Ahmed
Maglaras, Leandros
Author_xml – sequence: 1
  givenname: Mohamed Amine
  orcidid: 0000-0002-0632-3172
  surname: Ferrag
  fullname: Ferrag, Mohamed Amine
– sequence: 2
  givenname: Leandros
  orcidid: 0000-0001-5360-9782
  surname: Maglaras
  fullname: Maglaras, Leandros
– sequence: 3
  givenname: Ahmed
  orcidid: 0000-0001-5519-8868
  surname: Ahmim
  fullname: Ahmim, Ahmed
– sequence: 4
  givenname: Makhlouf
  orcidid: 0000-0001-6622-4355
  surname: Derdour
  fullname: Derdour, Makhlouf
– sequence: 5
  givenname: Helge
  orcidid: 0000-0002-1345-2829
  surname: Janicke
  fullname: Janicke, Helge
BookMark eNptUcFOHDEMjRBIpcClXzBSb5WmJHFmMuHWsi2shKgE23PqyTiQZZnQJKuKv2eHRaVC9cXW8_Oz5fee7Y5xJMY-CP4ZwPBjH4TkwLlSO2xfGGPqxnDY_ad-x45yXvJNgJFtq_fZr6vZYj67Pqmu1ivKFY5DNSMXcohjtUhE9VfMNFTzsaT1MzijQq5M1fVjLnRf-ZimNqWRSh19vbgN402uLqn8iekuH7I9j6tMRy_5gP38_m1xel5f_Dibn365qJ2SutSqaRQhb1G6pgNC0K5p-0Z2ZJzAQRktvDCNQe5Bcd540FJ606FUPXIEOGDzre4QcWkfUrjH9GgjBvsMxHRjMZXgVmShM5xTr1oQWqmh79sOdN8Z0MYTObnR-rjVekjx95pyscu4TuPmfCtBA1etkBPr05blUsw5kf-7VXA7GWJfDdmQ-RuyCwWnP5aEYfW_kSd2yoyj
CitedBy_id crossref_primary_10_3390_s22239416
crossref_primary_10_1002_int_22397
crossref_primary_10_1109_TNSM_2024_3490181
crossref_primary_10_1016_j_jisa_2022_103364
crossref_primary_10_1007_s11042_024_18558_5
crossref_primary_10_1109_ACCESS_2024_3407029
crossref_primary_10_1016_j_procs_2023_01_153
crossref_primary_10_1109_ACCESS_2024_3365140
crossref_primary_10_1016_j_future_2023_09_035
crossref_primary_10_1016_j_adhoc_2024_103404
crossref_primary_10_1155_2022_4151168
crossref_primary_10_12720_jait_16_8_1083_1099
crossref_primary_10_1007_s13369_022_07412_1
crossref_primary_10_1109_ACCESS_2022_3172304
crossref_primary_10_3390_iot1020011
crossref_primary_10_1109_TFUZZ_2022_3165390
crossref_primary_10_1016_j_jisa_2022_103196
crossref_primary_10_1155_2021_5564354
crossref_primary_10_32604_cmes_2024_052112
crossref_primary_10_1016_j_cose_2023_103210
crossref_primary_10_1007_s11227_022_04392_9
crossref_primary_10_1007_s11227_022_04568_3
crossref_primary_10_1002_acs_3771
crossref_primary_10_1016_j_procs_2024_05_048
crossref_primary_10_1007_s11227_024_06345_w
crossref_primary_10_4018_IJOSSP_287613
crossref_primary_10_3390_app11041809
crossref_primary_10_1016_j_future_2021_03_024
crossref_primary_10_3390_en16124573
crossref_primary_10_1016_j_aej_2025_06_030
crossref_primary_10_1155_2021_9530274
crossref_primary_10_3390_app13042479
crossref_primary_10_1109_ACCESS_2023_3333666
crossref_primary_10_1155_int_8884584
crossref_primary_10_1007_s10922_021_09621_9
crossref_primary_10_1016_j_compeleceng_2021_107039
crossref_primary_10_1007_s12652_023_04666_x
crossref_primary_10_1016_j_iotcps_2022_12_003
crossref_primary_10_1016_j_compeleceng_2023_108600
crossref_primary_10_3390_app12157679
crossref_primary_10_1109_ACCESS_2020_3035967
crossref_primary_10_1109_ACCESS_2025_3569312
crossref_primary_10_3390_electronics12040930
crossref_primary_10_3390_fi16060200
crossref_primary_10_3390_s24206547
crossref_primary_10_3389_fcomp_2023_997159
crossref_primary_10_3390_s22134926
crossref_primary_10_1016_j_jpdc_2022_03_003
crossref_primary_10_1007_s10207_024_00935_8
crossref_primary_10_1016_j_cose_2021_102588
crossref_primary_10_1007_s10462_023_10437_z
crossref_primary_10_1016_j_compeleceng_2024_109725
crossref_primary_10_1016_j_future_2024_07_051
crossref_primary_10_1002_cpe_7197
crossref_primary_10_1007_s10665_023_10309_z
crossref_primary_10_1007_s13369_024_09805_w
crossref_primary_10_1016_j_cose_2021_102344
crossref_primary_10_1016_j_iot_2023_100780
crossref_primary_10_1007_s43926_025_00169_7
crossref_primary_10_3390_app13095427
crossref_primary_10_3233_JIFS_236285
crossref_primary_10_3390_iot5040040
crossref_primary_10_1145_3689627
crossref_primary_10_1177_15501329221133765
crossref_primary_10_1016_j_cose_2024_103702
crossref_primary_10_1007_s11042_024_20281_0
crossref_primary_10_3390_s21092985
crossref_primary_10_1016_j_sciaf_2023_e01817
crossref_primary_10_1007_s13369_023_07900_y
crossref_primary_10_1016_j_cose_2025_104511
crossref_primary_10_1007_s11042_021_10640_6
crossref_primary_10_1109_ACCESS_2023_3347619
crossref_primary_10_1016_j_eswa_2023_121758
crossref_primary_10_1007_s13369_021_06484_9
crossref_primary_10_1007_s43926_025_00152_2
crossref_primary_10_1109_JAS_2020_1003536
crossref_primary_10_1109_ACCESS_2022_3220622
crossref_primary_10_3390_app13137774
crossref_primary_10_1007_s00521_025_11154_0
crossref_primary_10_1109_ACCESS_2021_3118642
crossref_primary_10_32604_cmc_2023_032430
crossref_primary_10_1016_j_compeleceng_2024_109949
crossref_primary_10_1080_23742917_2024_2430037
crossref_primary_10_1155_2022_8951961
crossref_primary_10_1155_2022_9173291
crossref_primary_10_1109_ACCESS_2021_3129775
crossref_primary_10_1016_j_iot_2024_101394
crossref_primary_10_1109_ACCESS_2024_3402446
crossref_primary_10_3390_jsan13060073
crossref_primary_10_3390_s22010185
crossref_primary_10_3390_computers11120170
crossref_primary_10_3390_s22207726
crossref_primary_10_3390_s23229247
crossref_primary_10_32604_cmc_2023_032220
crossref_primary_10_3390_systems11080436
crossref_primary_10_1016_j_fss_2024_109015
crossref_primary_10_32604_cmc_2022_031734
crossref_primary_10_1108_IJPCC_10_2021_0259
crossref_primary_10_4018_JGIM_332815
crossref_primary_10_7717_peerj_cs_1975
crossref_primary_10_1007_s12652_022_04449_w
crossref_primary_10_1186_s13635_025_00201_x
crossref_primary_10_1109_JAS_2021_1004344
crossref_primary_10_3390_electronics10091104
crossref_primary_10_1007_s40860_020_00126_x
crossref_primary_10_1016_j_nanoen_2023_108656
crossref_primary_10_3390_s21237835
crossref_primary_10_1016_j_iot_2023_100999
crossref_primary_10_3390_sym14061095
crossref_primary_10_32604_csse_2024_057702
crossref_primary_10_1007_s10586_022_03607_1
crossref_primary_10_3390_s23125562
crossref_primary_10_3233_JIFS_222120
crossref_primary_10_1007_s10586_024_04365_y
crossref_primary_10_3390_app14104170
crossref_primary_10_1109_ACCESS_2023_3251354
crossref_primary_10_1109_JBHI_2022_3181823
crossref_primary_10_1177_14727978251366506
crossref_primary_10_1109_ACCESS_2022_3171660
crossref_primary_10_1155_2023_5881769
crossref_primary_10_1109_JIOT_2023_3289206
Cites_doi 10.1016/j.knosys.2014.12.023
10.1109/JIOT.2018.2882794
10.1016/j.icte.2018.02.001
10.1016/j.asej.2013.01.003
10.1016/j.jocs.2017.03.006
10.1109/TII.2016.2599841
10.1007/978-3-540-30115-8_43
10.1016/j.eswa.2017.08.002
10.1016/j.future.2019.05.041
10.1145/1961189.1961199
10.1016/j.asoc.2018.07.052
10.1007/11893028_93
10.1002/dac.3547
10.1109/ICISSEC.2016.7885840
10.1177/1550147718794615
10.1016/j.eswa.2013.08.066
10.1016/j.asoc.2016.05.044
10.1016/j.knosys.2015.01.009
10.5220/0006639801080116
10.3390/s19143119
10.1016/j.eswa.2016.09.041
10.1007/s11235-017-0315-2
10.1109/DCOSS.2019.00059
10.1002/itl2.132
10.1016/j.eswa.2010.02.102
10.14236/ewic/icscsr19.16
10.1016/j.ijcip.2014.12.002
10.1007/s00521-015-1964-2
10.1016/j.comnet.2010.12.008
10.1007/s00521-016-2418-1
10.3390/computers8030058
10.1016/j.compeleceng.2008.12.005
10.1016/j.asoc.2012.04.020
10.1007/s10618-009-0131-8
10.1504/IJSN.2016.078390
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.3390/fi12030044
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1999-5903
ExternalDocumentID oai_doaj_org_article_38900eb4631744dbb6837b89379feec2
10_3390_fi12030044
GroupedDBID -DT
.4I
5VS
7WY
8FE
8FG
8FL
AADQD
AAFWJ
AAKPC
AAYXX
ABDBF
ABUWG
ACIHN
ADBBV
ADMLS
AEAQA
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BEZIV
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
EAP
EBS
EJD
ESX
FRNLG
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
K60
K6V
K6~
K7-
KQ8
M0C
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
RNS
TR2
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c427t-4554ea06a2c583ea37c56b528e9c1ad4971f1959a0f34005f3722f98a24ba0a33
IEDL.DBID BENPR
ISICitedReferencesCount 149
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524337000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1999-5903
IngestDate Fri Oct 03 12:51:59 EDT 2025
Sun Nov 09 05:38:10 EST 2025
Sat Nov 29 07:10:39 EST 2025
Tue Nov 18 22:38:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-4554ea06a2c583ea37c56b528e9c1ad4971f1959a0f34005f3722f98a24ba0a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5360-9782
0000-0002-1345-2829
0000-0002-0632-3172
0000-0001-5519-8868
0000-0001-6622-4355
OpenAccessLink https://www.proquest.com/docview/2373046122?pq-origsite=%requestingapplication%
PQID 2373046122
PQPubID 2032396
ParticipantIDs doaj_primary_oai_doaj_org_article_38900eb4631744dbb6837b89379feec2
proquest_journals_2373046122
crossref_primary_10_3390_fi12030044
crossref_citationtrail_10_3390_fi12030044
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Future internet
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Kevric (ref_17) 2017; 28
Zaim (ref_9) 2009; 35
Ferrag (ref_27) 2020; 50
Adnan (ref_29) 2017; 89
Giordano (ref_28) 2018; 72
Kim (ref_14) 2014; 41
ref_36
Cruz (ref_7) 2016; 12
ref_34
ref_33
Elbasiony (ref_13) 2013; 4
Ibarguren (ref_30) 2015; 79
Chung (ref_12) 2012; 12
Chang (ref_31) 2011; 2
Folino (ref_35) 2016; 47
Ahmim (ref_19) 2018; 31
Koroniotis (ref_40) 2019; 100
ref_39
Lin (ref_15) 2015; 78
ref_38
ref_37
Ferrag (ref_2) 2017; 66
Rahmani (ref_16) 2016; 27
Ferrag (ref_25) 2018; 6
Maglaras (ref_1) 2018; 4
ref_24
Othman (ref_18) 2017; 67
ref_23
Huehn (ref_32) 2009; 19
ref_22
Wang (ref_10) 2010; 37
ref_21
Govindarajan (ref_11) 2011; 55
Ferrag (ref_3) 2016; 11
Hu (ref_6) 2018; 14
Aljawarneh (ref_20) 2018; 25
Maglaras (ref_5) 2020; 3
ref_26
ref_8
Alcaraz (ref_4) 2015; 8
References_xml – volume: 79
  start-page: 51
  year: 2015
  ident: ref_30
  article-title: Coverage-based resampling: Building robust consolidated decision trees
  publication-title: Knowl. Syst.
  doi: 10.1016/j.knosys.2014.12.023
– volume: 6
  start-page: 2188
  year: 2018
  ident: ref_25
  article-title: Blockchain technologies for the internet of things: Research issues and challenges
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2882794
– volume: 4
  start-page: 42
  year: 2018
  ident: ref_1
  article-title: Cyber security of critical infrastructures
  publication-title: ICT Express
  doi: 10.1016/j.icte.2018.02.001
– volume: 4
  start-page: 753
  year: 2013
  ident: ref_13
  article-title: A hybrid network intrusion detection framework based on random forests and weighted k-means
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2013.01.003
– volume: 25
  start-page: 152
  year: 2018
  ident: ref_20
  article-title: Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2017.03.006
– volume: 12
  start-page: 2236
  year: 2016
  ident: ref_7
  article-title: A cybersecurity detection framework for supervisory control and data acquisition systems
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2016.2599841
– ident: ref_34
  doi: 10.1007/978-3-540-30115-8_43
– volume: 89
  start-page: 389
  year: 2017
  ident: ref_29
  article-title: Forest PA: Constructing a decision forest by penalizing attributes used in previous trees
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.08.002
– volume: 100
  start-page: 779
  year: 2019
  ident: ref_40
  article-title: Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.05.041
– volume: 2
  start-page: 27
  year: 2011
  ident: ref_31
  article-title: LIBSVM: A library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– volume: 72
  start-page: 338
  year: 2018
  ident: ref_28
  article-title: An experimental evaluation of weightless neural networks for multi-class classification
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.07.052
– ident: ref_37
– ident: ref_33
  doi: 10.1007/11893028_93
– volume: 31
  start-page: e3547
  year: 2018
  ident: ref_19
  article-title: An intrusion detection system based on combining probability predictions of a tree of classifiers
  publication-title: Int. J. Commun. Syst.
  doi: 10.1002/dac.3547
– ident: ref_21
– ident: ref_39
  doi: 10.1109/ICISSEC.2016.7885840
– volume: 14
  start-page: 1550147718794615
  year: 2018
  ident: ref_6
  article-title: A survey of intrusion detection on industrial control systems
  publication-title: Int. J. Distrib. Sens. Netw.
  doi: 10.1177/1550147718794615
– volume: 41
  start-page: 1690
  year: 2014
  ident: ref_14
  article-title: A novel hybrid intrusion detection method integrating anomaly detection with misuse detection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.08.066
– volume: 47
  start-page: 179
  year: 2016
  ident: ref_35
  article-title: Evolving meta-ensemble of classifiers for handling incomplete and unbalanced datasets in the cyber security domain
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.05.044
– volume: 78
  start-page: 13
  year: 2015
  ident: ref_15
  article-title: CANN: An intrusion detection system based on combining cluster centers and nearest neighbors
  publication-title: Knowl. Syst.
  doi: 10.1016/j.knosys.2015.01.009
– ident: ref_24
  doi: 10.5220/0006639801080116
– ident: ref_22
  doi: 10.3390/s19143119
– volume: 67
  start-page: 296
  year: 2017
  ident: ref_18
  article-title: Multi-level hybrid support vector machine and extreme learning machine based on modified K-means for intrusion detection system
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.09.041
– volume: 66
  start-page: 671
  year: 2017
  ident: ref_2
  article-title: EPEC: An efficient privacy-preserving energy consumption scheme for smart grid communications
  publication-title: Telecommun. Syst.
  doi: 10.1007/s11235-017-0315-2
– volume: 50
  start-page: 102419
  year: 2020
  ident: ref_27
  article-title: Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study
  publication-title: J. Inf. Secur. Appl.
– ident: ref_8
  doi: 10.1109/DCOSS.2019.00059
– volume: 3
  start-page: e132
  year: 2020
  ident: ref_5
  article-title: Teaching the process of building an Intrusion Detection System using data from a small-scale SCADA testbed
  publication-title: Internet Technol. Lett.
  doi: 10.1002/itl2.132
– volume: 37
  start-page: 6225
  year: 2010
  ident: ref_10
  article-title: A new approach to intrusion detection using Artificial Neural Networks and fuzzy clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.02.102
– ident: ref_26
  doi: 10.14236/ewic/icscsr19.16
– ident: ref_38
– volume: 8
  start-page: 53
  year: 2015
  ident: ref_4
  article-title: Critical infrastructure protection: Requirements and challenges for the 21st century
  publication-title: Int. J. Crit. Infrastruct. Prot.
  doi: 10.1016/j.ijcip.2014.12.002
– volume: 27
  start-page: 1669
  year: 2016
  ident: ref_16
  article-title: A hybrid method consisting of GA and SVM for intrusion detection system
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1964-2
– ident: ref_36
– volume: 55
  start-page: 1662
  year: 2011
  ident: ref_11
  article-title: Intrusion detection using neural based hybrid classification methods
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2010.12.008
– volume: 28
  start-page: 1051
  year: 2017
  ident: ref_17
  article-title: An effective combining classifier approach using tree algorithms for network intrusion detection
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2418-1
– ident: ref_23
  doi: 10.3390/computers8030058
– volume: 35
  start-page: 517
  year: 2009
  ident: ref_9
  article-title: A hybrid intrusion detection system design for computer network security
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2008.12.005
– volume: 12
  start-page: 3014
  year: 2012
  ident: ref_12
  article-title: A hybrid network intrusion detection system using simplified swarm optimization (SSO)
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.04.020
– volume: 19
  start-page: 293
  year: 2009
  ident: ref_32
  article-title: FURIA: An Algorithm for Unordered Fuzzy Rule Induction
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-009-0131-8
– volume: 11
  start-page: 107
  year: 2016
  ident: ref_3
  article-title: EPSA: An efficient and privacy-preserving scheme against wormhole attack on reactive routing for mobile ad hoc social networks
  publication-title: Int. J. Secur. Netw.
  doi: 10.1504/IJSN.2016.078390
SSID ssj0000392667
Score 2.5632212
Snippet This paper proposes a novel intrusion detection system (IDS), named RDTIDS, for Internet-of-Things (IoT) networks. The RDTIDS combines different classifier...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 44
SubjectTerms Access control
Accuracy
Algorithms
Classification
Classifiers
Clustering
Communications traffic
Data mining
Datasets
Decision trees
False alarms
hierarchical
hybrid ids
ids
Internet of Things
intrusion detection
Intrusion detection systems
learning machine
Machine learning
network security
Neural networks
Performance evaluation
Support vector machines
Taxonomy
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA1SPOhB_MRqlYBePITuJtndxJu1FnspUiv0tuYTCmUrbfX3m49trSh48RoGNrzZ5M0ss-8BcC2o0lZJgjTJGKKWUSSZtsjmNncFQsqUlcFsohgM2HjMnzasvvxMWJQHjsC1HaEmiZE0d0RHqZYydy2V9CzLrTEq3L5JwTeaqXAHO9rP8yLqkRLX17ftJMWJl5ei3xgoCPX_uIcDufT2wV5dFcK7uJsDsGWqQ7C7oRV4BF6H3VG_-3wLh-9Ts4Ci0rBb--PA0dwY1HF8pGG_8n9R-MWuWYYxqwpGVXLoylMYPwCaJZpZFC074SAOgi-OwUvvYXT_iGp7BKQoLpaIukrAiCQXWGWMGEEKleUyw8xwlQpNeZFaLx0jEkvcSc0sKTC2nAlMpUgEISegUc0qcwogx8o1dsQhhCWl3DKNhRY8tYlxDM9UE9ysICtVrR3uLSympeshPLzlF7xNcLWOfYuKGb9GdTzy6wivch0WXO7LOvflX7lvgtYqb2V99BYlJkVQkcf47D-ecQ52sG-xw9hZCzRcEs0F2FYfy8lifhneuk8eBtpF
  priority: 102
  providerName: Directory of Open Access Journals
Title RDTIDS: Rules and Decision Tree-Based Intrusion Detection System for Internet-of-Things Networks
URI https://www.proquest.com/docview/2373046122
https://doaj.org/article/38900eb4631744dbb6837b89379feec2
Volume 12
WOSCitedRecordID wos000524337000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest ABI/INFORM Collection
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: 7WY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest ABI/INFORM Global
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: M0C
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NbxMxELVoywEOfCPSlsgSXDhY3bW9a28vqGlaEaFGqxBEy2XxJ6pUbdps6O9n7HVSEIgLFx9sH1Ye2_NmdvweQm8VN9YbzYhlhSTcS060tJ740pcAEHJpvI5iE2I6lefnVZ0Sbl0qq1zfifGitgsTcuQHlIlIDk7p--sbElSjwt_VJKGxhXYCUxns853RybSebbIsGbj_shQ9LymD-P7AX-Y0CzRT_DdPFAn7_7iPo5M5ffy_n_cEPUrwEh_1--EpuufaZ-jhL6SDz9G32Xg-GX86xLMfV67DqrV4nIR28HzpHBmBY7N40obnGKFz7FaxXqvFPb05BpyL-0yiW5GFJ732J572FeXdC_T59GR-_IEknQViOBUrwgFSOJWVippCMqeYMEWpCypdZXJleSVyHzhoVOYZHPnCM0Gpr6SiXKtMMfYSbbeL1r1CuKIGIkQGS0w155WXliqrqtxnDqCCNAP0br3mjUkk5EEL46qBYCTYp7mzzwC92cy97qk3_jprFEy3mRHosmPHYvm9SaevAVSWZU7zEtAS51brEuJyHaBa5Z0zdID211Zt0hnumjuT7v57eA89oCEKj5Vp-2gbzONeo_vmdnXZLYdoS3y5GKaNOYwxP7QfBYH2LDuGti6-wng9OasvfgLwF_Bm
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VBQk48F2xUMAScOBg1bGdxK5UIdpQddV2hcoi9Zb6E1WqsmWzgPhT_Y21nWQLAnHrgavjSzLPM28m4zcArxU31hvNsGW5wNwLjrWwHvvCF4EgZMJ4nYZNlJOJOD6WH1fgYrgLE9sqB5-YHLWdmVgj36CsTOLglL47_4rj1Kj4d3UYodHBYt_9_BFStnZrXAX7vqF098N0Zw_3UwWw4bRcYB4CqFOkUNTkgjnFSpMXOqfCSZMpy2WZ-ai4oohnAeC5ZyWlXgpFuVZExQJocPk3eEi84rk6JDvLmg4JZKMoyk4FlTFJNvxpRkkUteK_xb00HuAP759C2u69_-1j3Ie7PXlG7zu0P4AV1zyEO79IKj6Ck6NqOq4-baKjb2euRaqxqOrHCKHp3Dm8HcK2ReMmXjaJi5VbpG60BnXi7SiweNTVSd0CzzzuJpuiSdcv3z6Gz9fyimuw2swa9wSQpCbkvyyYlGrOpReWKqtk5okLREiYEbwdbFybXmI9Tvo4q0OqFfFQX-FhBK-We887YZG_7tqOUFnuiGLgaWE2_1L3vqUOnJMQp3kRuCDnVutCsFJHIiq9c4aOYH1AUd17qLa-gtDTfz9-Cbf2pocH9cF4sv8MbtNYb0g9eOuwGkzlnsNN831x2s5fpMOA4OS6AXcJBbtDaA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1daxQxFA2liuiD3-LWqgH1wYewmSSTD0HEOi4ulWWpKxRfpvmUQpltd1bFv-avM8nMbBXFtz74msnLTE7uPblzcw4ATzWzLlhDkaOlRCxIhox0AQUeeCQIhbTBZLMJMZvJw0M13wI_hrswqa1yiIk5ULulTTXyMaEii4MTMg59W8S8mrw6PUPJQSr9aR3sNDqI7Pvv3-LxrX05reJaPyNk8nbx5h3qHQaQZUSsEYvJ1GvMNbGlpF5TYUtuSiK9soV2TIkiJPUVjQONYC8DFYQEJTVhRmOdiqEx_F8SjMvUTjYvP23qOzgSD85Fp4hKqcLjcFwQnASu2G85MFsF_JEJcnqb3PifP8xNcL0n1fB1twtugS3f3AbXfpFavAOODqrFtPrwAh58OfEt1I2DVW8vBBcr79FeTOcOTpt0CSUNVn6du9Qa2Im6w8juYVc_9Wu0DKhzPIWzro--vQs-Xsgr3gPbzbLx9wFUxMZzMY3LSwxjKkhHtNOqCNhHgiTtCDwf1ru2vfR6cgA5qeMRLGGjPsfGCDzZzD3tBEf-OmsvwWYzI4mE54Hl6nPdx5w6clGMvWE8ckTGnDFcUmESQVXBe0tGYHdAVN1HrrY-h9POvx8_Blcizur309n-A3CVpDJEbs3bBdtxpfxDcNl-XR-3q0d5X0BwdNF4-wmgdEx4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RDTIDS%3A+Rules+and+Decision+Tree-Based+Intrusion+Detection+System+for+Internet-of-Things+Networks&rft.jtitle=Future+internet&rft.au=Ferrag%2C+Mohamed+Amine&rft.au=Maglaras%2C+Leandros&rft.au=Ahmim%2C+Ahmed&rft.au=Derdour%2C+Makhlouf&rft.date=2020-03-01&rft.issn=1999-5903&rft.eissn=1999-5903&rft.volume=12&rft.issue=3&rft.spage=44&rft_id=info:doi/10.3390%2Ffi12030044&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_fi12030044
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-5903&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-5903&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-5903&client=summon