Vital marking of articular chondrocytes by retroviral infection using green fluorescence protein

Objective One of the main open questions in chondrocyte transplantation is the fate of the implanted cells in vivo. We intended to establish prerequisites for such studies in animal models and to show the feasibility of this approach in rabbits. Isolated articular chondrocytes were retrovirally mark...

Full description

Saved in:
Bibliographic Details
Published in:Osteoarthritis and cartilage Vol. 10; no. 2; pp. 109 - 118
Main Authors: Hirschmann, F., Verhoeyen, E., Wirth, D., Bauwens, S., Hauser, H., Rudert, M.
Format: Journal Article
Language:English
Published: England Elsevier Ltd 01.02.2002
Subjects:
ISSN:1063-4584, 1522-9653
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Objective One of the main open questions in chondrocyte transplantation is the fate of the implanted cells in vivo. We intended to establish prerequisites for such studies in animal models and to show the feasibility of this approach in rabbits. Isolated articular chondrocytes were retrovirally marked using green fluorescence protein (GFP) as a cell-specific marker in order to allow an in vivo follow-up of these cells. Methods Chondrocytes from rabbits, sheep, cattle and humans were isolated and infected with murine leukemia virus-derived retroviruses carrying the GFP gene. The influence of the host range of three packaging cell lines (PA317, PT67, PG13), start cell concentrations, number of cell passages and number of infection cycles on the efficiency of infection was investigated. Stability of GFP expression was followed by FACS analysis, confocal imaging and fluorescence microscopy. For in vivo follow-up of GFP expression we used marked allogeneic chondrocyte populations grown on scaffold material and implanted them into full-thickness defects in knee joints of rabbits. ResultsRetroviruses from all three packaging cell lines were able to infect rabbit and human chondrocytes, whereas only retroviruses released from PG13 cells were able to infect sheep and bovine chondrocytes efficiently. Optimization of the infection with these viruses resulted in efficiencies of 60–90% GFP-expressing chondrocytes. Populations of 100% marked chondrocytes were obtained by cell sorting. GFP expression stability of such marked chondrocyte populations was followed in monolayer culture and in 3-D culture on different scaffold materials. The expression of GFP was stable on all tested materials for at least 4 weeks. In monolayer culture GFP expression was stable for more than 8 months. In vivo, we observed stable GFP expression in the transplants during a four-week time course. Conclusion Retroviral GFP gene transfer led to long-term expression in chondrocytes from rabbits, sheep, cattle and humans. Transgene expression and the number of implanted chondrocytes remain stable for at least 4 weeks in vivo. This method permits a rapid monitoring of chondrocytes and provides a basis for following the fate of these cells in vivo.
AbstractList One of the main open questions in chondrocyte transplantation is the fate of the implanted cells in vivo. We intended to establish prerequisites for such studies in animal models and to show the feasibility of this approach in rabbits. Isolated articular chondrocytes were retrovirally marked using green fluorescence protein (GFP) as a cell-specific marker in order to allow an in vivo follow-up of these cells.OBJECTIVEOne of the main open questions in chondrocyte transplantation is the fate of the implanted cells in vivo. We intended to establish prerequisites for such studies in animal models and to show the feasibility of this approach in rabbits. Isolated articular chondrocytes were retrovirally marked using green fluorescence protein (GFP) as a cell-specific marker in order to allow an in vivo follow-up of these cells.Chondrocytes from rabbits, sheep, cattle and humans were isolated and infected with murine leukemia virus-derived retroviruses carrying the GFP gene. The influence of the host range of three packaging cell lines (PA317, PT67, PG13), start cell concentrations, number of cell passages and number of infection cycles on the efficiency of infection was investigated. Stability of GFP expression was followed by FACS analysis, confocal imaging and fluorescence microscopy. For in vivo follow-up of GFP expression we used marked allogeneic chondrocyte populations grown on scaffold material and implanted them into full-thickness defects in knee joints of rabbits.METHODSChondrocytes from rabbits, sheep, cattle and humans were isolated and infected with murine leukemia virus-derived retroviruses carrying the GFP gene. The influence of the host range of three packaging cell lines (PA317, PT67, PG13), start cell concentrations, number of cell passages and number of infection cycles on the efficiency of infection was investigated. Stability of GFP expression was followed by FACS analysis, confocal imaging and fluorescence microscopy. For in vivo follow-up of GFP expression we used marked allogeneic chondrocyte populations grown on scaffold material and implanted them into full-thickness defects in knee joints of rabbits.Retroviruses from all three packaging cell lines were able to infect rabbit and human chondrocytes, whereas only retroviruses released from PG13 cells were able to infect sheep and bovine chondrocytes efficiently. Optimization of the infection with these viruses resulted in efficiencies of 60-90% GFP-expressing chondrocytes. Populations of 100% marked chondrocytes were obtained by cell sorting. GFP expression stability of such marked chondrocyte populations was followed in monolayer culture and in 3-D culture on different scaffold materials. The expression of GFP was stable on all tested materials for at least 4 weeks. In monolayer culture GFP expression was stable for more than 8 months. In vivo, we observed stable GFP expression in the transplants during a four-week time course.RESULTSRetroviruses from all three packaging cell lines were able to infect rabbit and human chondrocytes, whereas only retroviruses released from PG13 cells were able to infect sheep and bovine chondrocytes efficiently. Optimization of the infection with these viruses resulted in efficiencies of 60-90% GFP-expressing chondrocytes. Populations of 100% marked chondrocytes were obtained by cell sorting. GFP expression stability of such marked chondrocyte populations was followed in monolayer culture and in 3-D culture on different scaffold materials. The expression of GFP was stable on all tested materials for at least 4 weeks. In monolayer culture GFP expression was stable for more than 8 months. In vivo, we observed stable GFP expression in the transplants during a four-week time course.Retroviral GFP gene transfer led to long-term expression in chondrocytes from rabbits, sheep, cattle and humans. Transgene expression and the number of implanted chondrocytes remain stable for at least 4 weeks in vivo. This method permits a rapid monitoring of chondrocytes and provides a basis for following the fate of these cells in vivo.CONCLUSIONRetroviral GFP gene transfer led to long-term expression in chondrocytes from rabbits, sheep, cattle and humans. Transgene expression and the number of implanted chondrocytes remain stable for at least 4 weeks in vivo. This method permits a rapid monitoring of chondrocytes and provides a basis for following the fate of these cells in vivo.
Objective One of the main open questions in chondrocyte transplantation is the fate of the implanted cells in vivo. We intended to establish prerequisites for such studies in animal models and to show the feasibility of this approach in rabbits. Isolated articular chondrocytes were retrovirally marked using green fluorescence protein (GFP) as a cell-specific marker in order to allow an in vivo follow-up of these cells. Methods Chondrocytes from rabbits, sheep, cattle and humans were isolated and infected with murine leukemia virus-derived retroviruses carrying the GFP gene. The influence of the host range of three packaging cell lines (PA317, PT67, PG13), start cell concentrations, number of cell passages and number of infection cycles on the efficiency of infection was investigated. Stability of GFP expression was followed by FACS analysis, confocal imaging and fluorescence microscopy. For in vivo follow-up of GFP expression we used marked allogeneic chondrocyte populations grown on scaffold material and implanted them into full-thickness defects in knee joints of rabbits. ResultsRetroviruses from all three packaging cell lines were able to infect rabbit and human chondrocytes, whereas only retroviruses released from PG13 cells were able to infect sheep and bovine chondrocytes efficiently. Optimization of the infection with these viruses resulted in efficiencies of 60–90% GFP-expressing chondrocytes. Populations of 100% marked chondrocytes were obtained by cell sorting. GFP expression stability of such marked chondrocyte populations was followed in monolayer culture and in 3-D culture on different scaffold materials. The expression of GFP was stable on all tested materials for at least 4 weeks. In monolayer culture GFP expression was stable for more than 8 months. In vivo, we observed stable GFP expression in the transplants during a four-week time course. Conclusion Retroviral GFP gene transfer led to long-term expression in chondrocytes from rabbits, sheep, cattle and humans. Transgene expression and the number of implanted chondrocytes remain stable for at least 4 weeks in vivo. This method permits a rapid monitoring of chondrocytes and provides a basis for following the fate of these cells in vivo.
One of the main open questions in chondrocyte transplantation is the fate of the implanted cells in vivo. We intended to establish prerequisites for such studies in animal models and to show the feasibility of this approach in rabbits. Isolated articular chondrocytes were retrovirally marked using green fluorescence protein (GFP) as a cell-specific marker in order to allow an in vivo follow-up of these cells. Chondrocytes from rabbits, sheep, cattle and humans were isolated and infected with murine leukemia virus-derived retroviruses carrying the GFP gene. The influence of the host range of three packaging cell lines (PA317, PT67, PG13), start cell concentrations, number of cell passages and number of infection cycles on the efficiency of infection was investigated. Stability of GFP expression was followed by FACS analysis, confocal imaging and fluorescence microscopy. For in vivo follow-up of GFP expression we used marked allogeneic chondrocyte populations grown on scaffold material and implanted them into full-thickness defects in knee joints of rabbits. Retroviruses from all three packaging cell lines were able to infect rabbit and human chondrocytes, whereas only retroviruses released from PG13 cells were able to infect sheep and bovine chondrocytes efficiently. Optimization of the infection with these viruses resulted in efficiencies of 60-90% GFP-expressing chondrocytes. Populations of 100% marked chondrocytes were obtained by cell sorting. GFP expression stability of such marked chondrocyte populations was followed in monolayer culture and in 3-D culture on different scaffold materials. The expression of GFP was stable on all tested materials for at least 4 weeks. In monolayer culture GFP expression was stable for more than 8 months. In vivo, we observed stable GFP expression in the transplants during a four-week time course. Retroviral GFP gene transfer led to long-term expression in chondrocytes from rabbits, sheep, cattle and humans. Transgene expression and the number of implanted chondrocytes remain stable for at least 4 weeks in vivo. This method permits a rapid monitoring of chondrocytes and provides a basis for following the fate of these cells in vivo.
Author Bauwens, S.
Wirth, D.
Hirschmann, F.
Verhoeyen, E.
Rudert, M.
Hauser, H.
Author_xml – sequence: 1
  givenname: F.
  surname: Hirschmann
  fullname: Hirschmann, F.
  organization: Medical School Hannover, Orthopedic Department, D-30625, Hannover, F.R.G
– sequence: 2
  givenname: E.
  surname: Verhoeyen
  fullname: Verhoeyen, E.
  organization: German Research Center for Biotechnology, Department of Molecular Biotechnology, D-38124, Braunschweig, F.R.G
– sequence: 3
  givenname: D.
  surname: Wirth
  fullname: Wirth, D.
  organization: German Research Center for Biotechnology, Department of Molecular Biotechnology, D-38124, Braunschweig, F.R.G
– sequence: 4
  givenname: S.
  surname: Bauwens
  fullname: Bauwens, S.
  organization: Universiteit Gent, Flanders Interuniversity Institute for Biotechnology, Department of Genetics, B-9000, Gent, Belgium
– sequence: 5
  givenname: H.
  surname: Hauser
  fullname: Hauser, H.
  organization: German Research Center for Biotechnology, Department of Molecular Biotechnology, D-38124, Braunschweig, F.R.G
– sequence: 6
  givenname: M.
  surname: Rudert
  fullname: Rudert, M.
  organization: Medical School Hannover, Orthopedic Department, D-30625, Hannover, F.R.G
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11869070$$D View this record in MEDLINE/PubMed
BookMark eNp9kLtvFDEQhy0URB7QUiJXdHvY68fulSjiJUWiAVrjG4-DE58dbG-k--_x6gJFpFCNpfl945nvnJyknJCQ15xtOFPi3U0GuxkZ4xsmZ_2MnHE1jsNWK3HS30yLQapZnpLzWm8YY4Jz9oKccj7rLZvYGfn5IzQb6d6W25CuafbUlhZgibZQ-JWTKxkODSvdHWjBVvJ9KD0fkkdoISe61JW7LoiJ-rjkghUwAdK7khuG9JI89zZWfPVQL8j3jx--XX4err5--nL5_moAOU5tkAwmrvhWudG6vqgG4ay3ik_zVls7Kj4KpS16BdpZDlb0lJdS-Z3D3hYX5O1xbv_394K1mX3om8RoE-almonLWTAx9-Cbh-Cy26MzdyX06w_mr5MekMcAlFxrQW-gO1qPbcWGaDgzq3qzqjererOq79jmEfZv8lPAfASwa7kPWEyFsKpzoXS5xuXwNKofoRBDCmDjLR7-B_4BFGmtIA
CitedBy_id crossref_primary_10_1097_00003086_200510000_00041
crossref_primary_10_5301_ijao_5000601
crossref_primary_10_1002_jgm_819
crossref_primary_10_1002_jor_20116
crossref_primary_10_1111_j_1582_4934_2009_00789_x
crossref_primary_10_1089_ten_tec_2008_0698
crossref_primary_10_1016_j_biomaterials_2007_11_013
crossref_primary_10_1016_j_arthro_2007_05_010
crossref_primary_10_2106_00004623_200309000_00015
crossref_primary_10_1002_jgm_368
crossref_primary_10_1002_jgm_488
crossref_primary_10_1007_s10039_008_1425_6
crossref_primary_10_1089_107632704323061933
crossref_primary_10_1007_s00132_007_1059_6
crossref_primary_10_1016_j_ymeth_2008_01_006
crossref_primary_10_2460_ajvr_67_7_1145
crossref_primary_10_1002_jgm_824
crossref_primary_10_1016_j_jviromet_2006_06_005
crossref_primary_10_1007_s00402_005_0008_2
crossref_primary_10_1016_j_proghi_2005_02_001
crossref_primary_10_1089_ten_2005_11_237
crossref_primary_10_1007_s00441_014_1982_x
crossref_primary_10_1177_2325967119868212
crossref_primary_10_1089_ten_teb_2015_0347
crossref_primary_10_1002_bit_20749
crossref_primary_10_1002_art_27461
crossref_primary_10_1097_BLO_0b013e3180dca05f
Cites_doi 10.2106/00004623-199710000-00001
10.1182/blood.V91.2.431
10.1053/joca.1998.0107
10.1007/s001320050237
10.1016/S0076-6879(99)02023-6
10.1093/protein/12.12.1035
10.1038/sj.gt.3300654
10.1002/1529-0131(199808)41:8<1331::AID-ART2>3.0.CO;2-J
10.1002/jor.1100160208
10.1292/jvms.61.843
10.1089/10430349950017572
10.1099/0022-1317-80-12-3049
10.1172/JCI118303
10.1016/S1063-4584(97)80023-4
10.1016/S0940-9602(99)80055-7
10.1006/excr.1999.4478
10.3109/17453679608996682
10.1053/joca.1997.0092
10.1002/jbm.820280808
10.1159/000016773
10.1002/(SICI)1097-4652(199808)176:2<303::AID-JCP8>3.0.CO;2-S
10.1128/jvi.70.8.5564-5571.1996
10.1038/nbt0597-458
10.1128/jvi.71.10.7533-7540.1997
10.1016/S1063-4584(97)80007-6
10.1056/NEJM199410063311401
10.1016/S0076-6879(99)02032-7
10.1006/excr.1998.4010
10.1038/sj.gt.3301086
10.1002/(SICI)1097-4636(19981205)42:3<347::AID-JBM2>3.0.CO;2-J
10.1146/annurev.biochem.67.1.509
10.1016/0378-1119(91)90134-W
ContentType Journal Article
Copyright 2002 OsteoArthritis Research Society International
Copyright 2002 OsteoArthritis Research Society International.
Copyright_xml – notice: 2002 OsteoArthritis Research Society International
– notice: Copyright 2002 OsteoArthritis Research Society International.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1053/joca.2001.0486
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-9653
EndPage 118
ExternalDocumentID 11869070
10_1053_joca_2001_0486
S1063458401904868
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
IHE
IXB
J1W
KOM
M27
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OI0
OK1
OV-
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
WUQ
Z5R
~G-
~HD
6I.
AACTN
AAFTH
AAIAV
ABLVK
ABVKL
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
NCXOZ
RIG
9DU
AAYXX
CITATION
AFCTW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c427t-40c715195d2ad0006c3dafa517896aa2512356aef5c6da1ca3d00f445fbdea253
ISICitedReferencesCount 44
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000173602700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-4584
IngestDate Thu Oct 02 11:52:48 EDT 2025
Wed Feb 19 01:31:48 EST 2025
Tue Nov 18 22:43:06 EST 2025
Sat Nov 29 07:08:19 EST 2025
Fri Feb 23 02:28:03 EST 2024
Tue Oct 14 19:30:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Articular chondrocytes, Retrovirus, GFP marking, Cell transplantation
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright 2002 OsteoArthritis Research Society International.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c427t-40c715195d2ad0006c3dafa517896aa2512356aef5c6da1ca3d00f445fbdea253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.clinicalkey.com/#!/content/1-s2.0-S1063458401904868
PMID 11869070
PQID 71483038
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_71483038
pubmed_primary_11869070
crossref_citationtrail_10_1053_joca_2001_0486
crossref_primary_10_1053_joca_2001_0486
elsevier_sciencedirect_doi_10_1053_joca_2001_0486
elsevier_clinicalkey_doi_10_1053_joca_2001_0486
PublicationCentury 2000
PublicationDate 2002-02-01
PublicationDateYYYYMMDD 2002-02-01
PublicationDate_xml – month: 02
  year: 2002
  text: 2002-02-01
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Osteoarthritis and cartilage
PublicationTitleAlternate Osteoarthritis Cartilage
PublicationYear 2002
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Corish, Tyler-Smith (RF15) 1999; 12
Rotter, Aigner, Naumann, Planck, Hammer, Burmester (RF32) 1998; 42
Artelt, Grannemann, Stocking, Friel, Bartsch, Hauser (RF36) 1991; 99
Rudert, Hirschmann, Wirth (RF31) 1999; 28
Sommerfelt (RF27) 1999; 80
Ehlers, Fuss, Rohwedel, Russlies, Kühnel, Behrens (RF26) 1999; 181
Fernex, Dubreuil, Mannoni, Bagnis (RF37) 1997; 71
Wildner, Condotti, Krecko, Xanthopoulos, Ramsey, Blaese (RF38) 1998; 5
Freed, Grande, Lingbin, Emmanual, Marquis, Langer (RF4) 1994; 28
Chu (RF34) 1995
Ikeda, Kubo, Arai, Nakanishi, Kobayashi, Takahashi (RF23) 1998; 25
Levy, Muldoon, Mazo, Kain, Link (RF18) 1999; 302
Spitzer, Hauser, Wirth (RF30) 1999; 10
Kang, Marui, Ghivizzani, Nita, Georgescu, Suh (RF10) 1997; 5
Binette, McQuaid, Haudenschild, Yaeger, McPherson, Tubo (RF8) 1998; 16
Freed, Hollander, Martin, Barry, Langer, Vunjak-Novakovic (RF9) 1998; 240
Brittberg, Lindahl, Nilsson, Ohlsson, Isaksson, Peterson (RF3) 1994; 331
Madry, Trippel (RF20) 2000; 7
Li (RF33) 1995
Robbins, Goldring (RF24) 1999
Lemare, Steimberg, Le Griel, Demignot, Adolphe (RF7) 1998; 176
Tsien (RF14) 1998; 67
Breinan, Minas, Hsu, Nehrer, Sledge, Spector (RF5) 1997; 79
Takada, Iida, Awaji, Itoh, Takahashi, Shibui (RF16) 1997; 15
Murakami, Fahrudin, Varisanga, Suzuki (RF19) 1999; 61
Baragi, Renkiewicz, Qiu, Brammer, Riley, Sigler (RF11) 1997; 5
Rahfoth, Weisser, Sternkopf, Aigner, von-der-Mark, Brauer (RF25) 1998; 6
Verhasselt, De Smedt, Verhelst, Naessens, Plum (RF29) 1998; 91
Steimberg, Viengchareun, Biehlmann, Guenal, Mignotte, Adolphe (RF21) 1999; 249
Baragi, Renkiewicz, Jordan, Bonadio, Hartman, Roessler (RF22) 1995; 96
Doherty, Zhang, Tremblay, Manolopoulos, Marshall (RF12) 1998; 6
Messner, Gillquist (RF6) 1996; 67
Buckwalter, Mankin (RF1) 1998; 41
Takada, Yoshida, Nakamura, Nakao, Tsujimoto, Katsuki (RF17) 1999; 302
Miller, Chen (RF28) 1996; 70
Goater, Müller, Kollias, Firestein, Sanz, O'Keefe (RF13) 2000; 27
Rudert, Wirth (RF2) 1998; 27
Rudert, Hirschmann, Schulze, Wirth (RF35) 2000; 167
Sommerfelt (10.1053/joca.2001.0486_RF27) 1999; 80
Miller (10.1053/joca.2001.0486_RF28) 1996; 70
Takada (10.1053/joca.2001.0486_RF17) 1999; 302
Spitzer (10.1053/joca.2001.0486_RF30) 1999; 10
Levy (10.1053/joca.2001.0486_RF18) 1999; 302
Chu (10.1053/joca.2001.0486_RF34) 1995
Kang (10.1053/joca.2001.0486_RF10) 1997; 5
Wildner (10.1053/joca.2001.0486_RF38) 1998; 5
Steimberg (10.1053/joca.2001.0486_RF21) 1999; 249
Baragi (10.1053/joca.2001.0486_RF11) 1997; 5
Li (10.1053/joca.2001.0486_RF33) 1995
Messner (10.1053/joca.2001.0486_RF6) 1996; 67
Fernex (10.1053/joca.2001.0486_RF37) 1997; 71
Rudert (10.1053/joca.2001.0486_RF2) 1998; 27
Freed (10.1053/joca.2001.0486_RF9) 1998; 240
Goater (10.1053/joca.2001.0486_RF13) 2000; 27
Takada (10.1053/joca.2001.0486_RF16) 1997; 15
Madry (10.1053/joca.2001.0486_RF20) 2000; 7
Binette (10.1053/joca.2001.0486_RF8) 1998; 16
Verhasselt (10.1053/joca.2001.0486_RF29) 1998; 91
Ikeda (10.1053/joca.2001.0486_RF23) 1998; 25
Artelt (10.1053/joca.2001.0486_RF36) 1991; 99
Freed (10.1053/joca.2001.0486_RF4) 1994; 28
Lemare (10.1053/joca.2001.0486_RF7) 1998; 176
Brittberg (10.1053/joca.2001.0486_RF3) 1994; 331
Baragi (10.1053/joca.2001.0486_RF22) 1995; 96
Doherty (10.1053/joca.2001.0486_RF12) 1998; 6
Rudert (10.1053/joca.2001.0486_RF35) 2000; 167
Corish (10.1053/joca.2001.0486_RF15) 1999; 12
Rotter (10.1053/joca.2001.0486_RF32) 1998; 42
Murakami (10.1053/joca.2001.0486_RF19) 1999; 61
Tsien (10.1053/joca.2001.0486_RF14) 1998; 67
Rahfoth (10.1053/joca.2001.0486_RF25) 1998; 6
Breinan (10.1053/joca.2001.0486_RF5) 1997; 79
Rudert (10.1053/joca.2001.0486_RF31) 1999; 28
Buckwalter (10.1053/joca.2001.0486_RF1) 1998; 41
Robbins (10.1053/joca.2001.0486_RF24) 1999
Ehlers (10.1053/joca.2001.0486_RF26) 1999; 181
References_xml – volume: 15
  start-page: 458
  year: 1997
  end-page: 461
  ident: RF16
  article-title: Selective production of transgenic mice using green fluorescent protein as a marker
  publication-title: Nature Biotech
– volume: 5
  start-page: 139, 43
  year: 1997
  ident: RF10
  article-title: Ex vivo gene transfer to chondrocytes in full-thickness articular cartilage defects: a feasibility study
  publication-title: Osteoarthritis Cart
– volume: 10
  start-page: 1893
  year: 1999
  end-page: 1902
  ident: RF30
  article-title: Complement-protected amphotropic retroviruses from murine packaging cells
  publication-title: Human Gene Therapy
– volume: 5
  start-page: 275
  year: 1997
  end-page: 282
  ident: RF11
  article-title: Transplantation of adenovirally transduced allogeneic chondrocytes into articular cartilage defects
  publication-title: Osteoarthritis Cart
– volume: 181
  start-page: 513
  year: 1999
  end-page: 518
  ident: RF26
  article-title: Development of a biocomposite to fill out articular cartilage lesions. Light, scanning and transmission electron microscopy of sheep chondrocytes cultured on a collagen I/III sponge
  publication-title: Anatomischer Anzeiger
– volume: 12
  start-page: 1035
  year: 1999
  end-page: 1040
  ident: RF15
  article-title: Attenuation of green fluorescent protein half-line in mammalian cells
  publication-title: Protein Engineering
– volume: 96
  start-page: 2454
  year: 1995
  end-page: 2460
  ident: RF22
  article-title: Transplantation of transduced chondrocytes protects articular cartilage from interleukin 1-induced extracellular matrix degradation
  publication-title: J Clin Invest
– volume: 79
  start-page: 1439
  year: 1997
  end-page: 1451
  ident: RF5
  article-title: Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model
  publication-title: J Bone and Joint Surg
– volume: 16
  start-page: 207
  year: 1998
  end-page: 216
  ident: RF8
  article-title: Expression of a stable articular cartilage phenotype without evidence of hypertrophy by adult human articular chondrocytes
  publication-title: J Orthopaedic Res
– volume: 99
  start-page: 249
  year: 1991
  end-page: 254
  ident: RF36
  article-title: The prokaryotic neomycin-resistance-encoding gene acts as a transcriptional silencer in eukaryotic cells
  publication-title: Gene
– volume: 71
  start-page: 7533
  year: 1997
  end-page: 7540
  ident: RF37
  article-title: Cre/loxP-mediated excision of a neomycin resistance expression unit from an integrated retroviral vector increases long terminal repeat-driven transcription in human hematopoietic cells
  publication-title: J Virol
– volume: 302
  start-page: 358
  year: 1999
  end-page: 369
  ident: RF18
  article-title: In vivo retroviral transduction and expression of green fluorescent protein
  publication-title: Methods in Enzymology
– volume: 61
  start-page: 843
  year: 1999
  end-page: 847
  ident: RF19
  article-title: Fluorescence expression by bovine embryos after pronuclear microinjection with the EGFP gene
  publication-title: J Veterinary Med Sci
– volume: 167
  start-page: 95
  year: 2000
  end-page: 105
  ident: RF35
  article-title: Bioartificial cartilage
  publication-title: Cells Tissues Organs
– start-page: 611
  year: 1995
  end-page: 626
  ident: RF34
  article-title: Biodegradable polymeric biomaterials: An overview
  publication-title: The Biomedical Engineering Handbook
– volume: 42
  start-page: 347
  year: 1998
  end-page: 356
  ident: RF32
  article-title: Cartilage reconstruction in head and neck surgery: comparison of resorbable polymer scaffolds for tissue engineering of human septal cartilage
  publication-title: J Biomed Mat Res
– volume: 28
  start-page: 68
  year: 1999
  end-page: 75
  ident: RF31
  article-title: Wachstumsverhalten von Chondrozyten auf unterschiedlichen Trägersubstanzen
  publication-title: Orthopäde
– volume: 67
  start-page: 509
  year: 1998
  end-page: 544
  ident: RF14
  article-title: The green fluorescent protein
  publication-title: Ann Rev Biochem
– volume: 91
  start-page: 431
  year: 1998
  end-page: 440
  ident: RF29
  article-title: Retrovirally transduced CD34
  publication-title: Blood
– volume: 5
  start-page: 684
  year: 1998
  end-page: 691
  ident: RF38
  article-title: Generation of a conditionally
  publication-title: Gene Therapy
– volume: 27
  start-page: 309
  year: 1998
  end-page: 321
  ident: RF2
  article-title: Knorpelregeneration und Knorpelersatz
  publication-title: Orthopäde
– volume: 7
  start-page: 286
  year: 2000
  end-page: 291
  ident: RF20
  article-title: Efficient lipid-mediated gene transfer to articular chondrocytes
  publication-title: Gene Therapy
– volume: 28
  start-page: 891
  year: 1994
  end-page: 899
  ident: RF4
  article-title: Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds
  publication-title: J Biomed Mat Res
– volume: 249
  start-page: 248
  year: 1999
  end-page: 259
  ident: RF21
  article-title: SV40 large T antigen expression driven by
  publication-title: Experimental Cell Research
– start-page: 173
  year: 1999
  end-page: 192
  ident: RF24
  article-title: Preparation of immortalized human chondrocyte cell lines
  publication-title: Tissue Engineering Methods and Protocols, Vol. 18
– start-page: 627
  year: 1995
  end-page: 647
  ident: RF33
  article-title: Biologic biomaterials: tissue-derived biomaterials (collagen)
  publication-title: The Biomedical Engineering Handbook
– volume: 41
  start-page: 1331
  year: 1998
  end-page: 1342
  ident: RF1
  article-title: Articular cartilage repair and transplantation
  publication-title: Arthritis Rheum
– volume: 6
  start-page: 50
  year: 1998
  end-page: 65
  ident: RF25
  article-title: Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits
  publication-title: Osteoarthritis Cart
– volume: 331
  start-page: 889
  year: 1994
  end-page: 895
  ident: RF3
  article-title: Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation
  publication-title: New Engl J Med
– volume: 176
  start-page: 303
  year: 1998
  end-page: 313
  ident: RF7
  article-title: Dedifferentiated chondrocytes cultured in alginate beads: restoration of the differentiated phenotype and of the metabolic responses to Interleukin-1β
  publication-title: J Cell Physiol
– volume: 27
  start-page: 983
  year: 2000
  end-page: 989
  ident: RF13
  article-title: Empirical advantages of adeno associated viral vectors for
  publication-title: J Rheumatol
– volume: 302
  start-page: 233
  year: 1999
  end-page: 250
  ident: RF17
  article-title: Expression of green fluorescent protein in transgenic mice
  publication-title: Methods in Enzymology
– volume: 6
  start-page: 153
  year: 1998
  end-page: 159
  ident: RF12
  article-title: Resurfacing of articular cartilage explants with genetically-modified human chondrocytes
  publication-title: Osteoarthritis Cart
– volume: 80
  start-page: 3049
  year: 1999
  end-page: 3064
  ident: RF27
  article-title: Retrovirus receptors
  publication-title: J Gen Virol
– volume: 67
  start-page: 523
  year: 1996
  end-page: 529
  ident: RF6
  article-title: Cartilage repair. A critical review
  publication-title: Acta Orthopaedica Scandinavica
– volume: 70
  start-page: 5564
  year: 1996
  end-page: 5571
  ident: RF28
  article-title: Retrovirus packaging cells based on 10A1 murine leukemia virus for production of vectors that use multiple receptors for cell entry
  publication-title: J Virol
– volume: 240
  start-page: 58
  year: 1998
  end-page: 65
  ident: RF9
  article-title: Chondrogenesis in a cell-polymer-bioreactor system
  publication-title: Experimental Cell Res
– volume: 25
  start-page: 1666
  year: 1998
  end-page: 1673
  ident: RF23
  article-title: Adenovirus mediated gene delivery to the joints of guinea pigs
  publication-title: J Rheumatol
– volume: 79
  start-page: 1439
  year: 1997
  ident: 10.1053/joca.2001.0486_RF5
  article-title: Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model
  publication-title: J Bone and Joint Surg
  doi: 10.2106/00004623-199710000-00001
– volume: 91
  start-page: 431
  year: 1998
  ident: 10.1053/joca.2001.0486_RF29
  article-title: Retrovirally transduced CD34++ human cord blood cells generate T cells expressing high levels of the retroviral encoded green fluorescent protein marker in vitro
  publication-title: Blood
  doi: 10.1182/blood.V91.2.431
– volume: 28
  start-page: 68
  year: 1999
  ident: 10.1053/joca.2001.0486_RF31
  article-title: Wachstumsverhalten von Chondrozyten auf unterschiedlichen Trägersubstanzen
  publication-title: Orthopäde
– volume: 6
  start-page: 153
  year: 1998
  ident: 10.1053/joca.2001.0486_RF12
  article-title: Resurfacing of articular cartilage explants with genetically-modified human chondrocytes in vitro
  publication-title: Osteoarthritis Cart
  doi: 10.1053/joca.1998.0107
– volume: 27
  start-page: 309
  year: 1998
  ident: 10.1053/joca.2001.0486_RF2
  article-title: Knorpelregeneration und Knorpelersatz
  publication-title: Orthopäde
  doi: 10.1007/s001320050237
– volume: 27
  start-page: 983
  year: 2000
  ident: 10.1053/joca.2001.0486_RF13
  article-title: Empirical advantages of adeno associated viral vectors for in vivo gene therapy for arthritis
  publication-title: J Rheumatol
– volume: 302
  start-page: 233
  year: 1999
  ident: 10.1053/joca.2001.0486_RF17
  article-title: Expression of green fluorescent protein in transgenic mice
  publication-title: Methods in Enzymology
  doi: 10.1016/S0076-6879(99)02023-6
– volume: 12
  start-page: 1035
  year: 1999
  ident: 10.1053/joca.2001.0486_RF15
  article-title: Attenuation of green fluorescent protein half-line in mammalian cells
  publication-title: Protein Engineering
  doi: 10.1093/protein/12.12.1035
– start-page: 611
  year: 1995
  ident: 10.1053/joca.2001.0486_RF34
  article-title: Biodegradable polymeric biomaterials: An overview
– volume: 5
  start-page: 684
  year: 1998
  ident: 10.1053/joca.2001.0486_RF38
  article-title: Generation of a conditionally neor containing retroviral producer cell line: effects ofneor on retroviral titer and transgene expression
  publication-title: Gene Therapy
  doi: 10.1038/sj.gt.3300654
– volume: 41
  start-page: 1331
  year: 1998
  ident: 10.1053/joca.2001.0486_RF1
  article-title: Articular cartilage repair and transplantation
  publication-title: Arthritis Rheum
  doi: 10.1002/1529-0131(199808)41:8<1331::AID-ART2>3.0.CO;2-J
– volume: 25
  start-page: 1666
  year: 1998
  ident: 10.1053/joca.2001.0486_RF23
  article-title: Adenovirus mediated gene delivery to the joints of guinea pigs
  publication-title: J Rheumatol
– volume: 16
  start-page: 207
  year: 1998
  ident: 10.1053/joca.2001.0486_RF8
  article-title: Expression of a stable articular cartilage phenotype without evidence of hypertrophy by adult human articular chondrocytes in vitro
  publication-title: J Orthopaedic Res
  doi: 10.1002/jor.1100160208
– volume: 61
  start-page: 843
  year: 1999
  ident: 10.1053/joca.2001.0486_RF19
  article-title: Fluorescence expression by bovine embryos after pronuclear microinjection with the EGFP gene
  publication-title: J Veterinary Med Sci
  doi: 10.1292/jvms.61.843
– start-page: 173
  year: 1999
  ident: 10.1053/joca.2001.0486_RF24
  article-title: Preparation of immortalized human chondrocyte cell lines
– volume: 10
  start-page: 1893
  year: 1999
  ident: 10.1053/joca.2001.0486_RF30
  article-title: Complement-protected amphotropic retroviruses from murine packaging cells
  publication-title: Human Gene Therapy
  doi: 10.1089/10430349950017572
– volume: 80
  start-page: 3049
  year: 1999
  ident: 10.1053/joca.2001.0486_RF27
  article-title: Retrovirus receptors
  publication-title: J Gen Virol
  doi: 10.1099/0022-1317-80-12-3049
– volume: 96
  start-page: 2454
  year: 1995
  ident: 10.1053/joca.2001.0486_RF22
  article-title: Transplantation of transduced chondrocytes protects articular cartilage from interleukin 1-induced extracellular matrix degradation
  publication-title: J Clin Invest
  doi: 10.1172/JCI118303
– volume: 5
  start-page: 275
  year: 1997
  ident: 10.1053/joca.2001.0486_RF11
  article-title: Transplantation of adenovirally transduced allogeneic chondrocytes into articular cartilage defects in vivo
  publication-title: Osteoarthritis Cart
  doi: 10.1016/S1063-4584(97)80023-4
– volume: 181
  start-page: 513
  year: 1999
  ident: 10.1053/joca.2001.0486_RF26
  article-title: Development of a biocomposite to fill out articular cartilage lesions. Light, scanning and transmission electron microscopy of sheep chondrocytes cultured on a collagen I/III sponge
  publication-title: Anatomischer Anzeiger
  doi: 10.1016/S0940-9602(99)80055-7
– volume: 249
  start-page: 248
  year: 1999
  ident: 10.1053/joca.2001.0486_RF21
  article-title: SV40 large T antigen expression driven by col2a1 regulatory sequences immortalizes articular chondrocytes but does not allow stabilization of type II collagen expression
  publication-title: Experimental Cell Research
  doi: 10.1006/excr.1999.4478
– volume: 67
  start-page: 523
  year: 1996
  ident: 10.1053/joca.2001.0486_RF6
  article-title: Cartilage repair. A critical review
  publication-title: Acta Orthopaedica Scandinavica
  doi: 10.3109/17453679608996682
– volume: 6
  start-page: 50
  year: 1998
  ident: 10.1053/joca.2001.0486_RF25
  article-title: Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits
  publication-title: Osteoarthritis Cart
  doi: 10.1053/joca.1997.0092
– volume: 28
  start-page: 891
  year: 1994
  ident: 10.1053/joca.2001.0486_RF4
  article-title: Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds
  publication-title: J Biomed Mat Res
  doi: 10.1002/jbm.820280808
– volume: 167
  start-page: 95
  year: 2000
  ident: 10.1053/joca.2001.0486_RF35
  article-title: Bioartificial cartilage
  publication-title: Cells Tissues Organs
  doi: 10.1159/000016773
– volume: 176
  start-page: 303
  year: 1998
  ident: 10.1053/joca.2001.0486_RF7
  article-title: Dedifferentiated chondrocytes cultured in alginate beads: restoration of the differentiated phenotype and of the metabolic responses to Interleukin-1β
  publication-title: J Cell Physiol
  doi: 10.1002/(SICI)1097-4652(199808)176:2<303::AID-JCP8>3.0.CO;2-S
– volume: 70
  start-page: 5564
  year: 1996
  ident: 10.1053/joca.2001.0486_RF28
  article-title: Retrovirus packaging cells based on 10A1 murine leukemia virus for production of vectors that use multiple receptors for cell entry
  publication-title: J Virol
  doi: 10.1128/jvi.70.8.5564-5571.1996
– volume: 15
  start-page: 458
  year: 1997
  ident: 10.1053/joca.2001.0486_RF16
  article-title: Selective production of transgenic mice using green fluorescent protein as a marker
  publication-title: Nature Biotech
  doi: 10.1038/nbt0597-458
– volume: 71
  start-page: 7533
  year: 1997
  ident: 10.1053/joca.2001.0486_RF37
  article-title: Cre/loxP-mediated excision of a neomycin resistance expression unit from an integrated retroviral vector increases long terminal repeat-driven transcription in human hematopoietic cells
  publication-title: J Virol
  doi: 10.1128/jvi.71.10.7533-7540.1997
– volume: 5
  start-page: 139, 43
  year: 1997
  ident: 10.1053/joca.2001.0486_RF10
  article-title: Ex vivo gene transfer to chondrocytes in full-thickness articular cartilage defects: a feasibility study
  publication-title: Osteoarthritis Cart
  doi: 10.1016/S1063-4584(97)80007-6
– volume: 331
  start-page: 889
  year: 1994
  ident: 10.1053/joca.2001.0486_RF3
  article-title: Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation
  publication-title: New Engl J Med
  doi: 10.1056/NEJM199410063311401
– volume: 302
  start-page: 358
  year: 1999
  ident: 10.1053/joca.2001.0486_RF18
  article-title: In vivo retroviral transduction and expression of green fluorescent protein
  publication-title: Methods in Enzymology
  doi: 10.1016/S0076-6879(99)02032-7
– volume: 240
  start-page: 58
  year: 1998
  ident: 10.1053/joca.2001.0486_RF9
  article-title: Chondrogenesis in a cell-polymer-bioreactor system
  publication-title: Experimental Cell Res
  doi: 10.1006/excr.1998.4010
– volume: 7
  start-page: 286
  year: 2000
  ident: 10.1053/joca.2001.0486_RF20
  article-title: Efficient lipid-mediated gene transfer to articular chondrocytes
  publication-title: Gene Therapy
  doi: 10.1038/sj.gt.3301086
– volume: 42
  start-page: 347
  year: 1998
  ident: 10.1053/joca.2001.0486_RF32
  article-title: Cartilage reconstruction in head and neck surgery: comparison of resorbable polymer scaffolds for tissue engineering of human septal cartilage
  publication-title: J Biomed Mat Res
  doi: 10.1002/(SICI)1097-4636(19981205)42:3<347::AID-JBM2>3.0.CO;2-J
– start-page: 627
  year: 1995
  ident: 10.1053/joca.2001.0486_RF33
  article-title: Biologic biomaterials: tissue-derived biomaterials (collagen)
– volume: 67
  start-page: 509
  year: 1998
  ident: 10.1053/joca.2001.0486_RF14
  article-title: The green fluorescent protein
  publication-title: Ann Rev Biochem
  doi: 10.1146/annurev.biochem.67.1.509
– volume: 99
  start-page: 249
  year: 1991
  ident: 10.1053/joca.2001.0486_RF36
  article-title: The prokaryotic neomycin-resistance-encoding gene acts as a transcriptional silencer in eukaryotic cells
  publication-title: Gene
  doi: 10.1016/0378-1119(91)90134-W
SSID ssj0003110
Score 1.8633969
Snippet Objective One of the main open questions in chondrocyte transplantation is the fate of the implanted cells in vivo. We intended to establish prerequisites for...
One of the main open questions in chondrocyte transplantation is the fate of the implanted cells in vivo. We intended to establish prerequisites for such...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 109
SubjectTerms Animals
Articular chondrocytes, Retrovirus, GFP marking, Cell transplantation
Cartilage, Articular - cytology
Cattle
Cell Separation
Cells, Cultured
Chondrocytes - physiology
Chondrocytes - transplantation
Feasibility Studies
Flow Cytometry
Gene Expression
Genetic Markers
Green Fluorescent Proteins
Humans
Leukemia Virus, Murine - genetics
Luminescent Proteins - genetics
Microscopy, Confocal
Microscopy, Fluorescence
Rabbits
Reverse Transcriptase Polymerase Chain Reaction
Sheep
Title Vital marking of articular chondrocytes by retroviral infection using green fluorescence protein
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1063458401904868
https://dx.doi.org/10.1053/joca.2001.0486
https://www.ncbi.nlm.nih.gov/pubmed/11869070
https://www.proquest.com/docview/71483038
Volume 10
WOSCitedRecordID wos000173602700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1522-9653
  dateEnd: 20201231
  omitProxy: false
  ssIdentifier: ssj0003110
  issn: 1063-4584
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELa2LUK9IN6UR_EBicMqdBM7r2NBRYCgIFGqvYWJ47Sg3WSV7pbuv2fGcR4LCoIDl2gVP5L1fBmPx-NvGHuW-hpkkGUOyEg6MlCpAyDAyXzp6TQFndUkSe_D4-NoOo0_jUaL5izM5SwsiujqKl78V1HjPRQ2HZ39B3G3neIN_I1CxyuKHa9_JfhTSgMynoNxgptt_soQbEA1RlVH_ARqTc5WtDsrvSSPQk28UQdlFeOV8R6cUTzOOJ-tysoQPik6UFVSasy-OfsRMVJi_-eGGqk-I0ePm8FZB5hvFa6g5zYZcxtIfKqr81Kvrf-nc__YiMU2EPklrH7o2tj_vOGi8Jqo5laroh3k0Ibshtqd9ODl9XSoa_gSftftE5Og4ztO8bSsd18QWWC_IophMTdCdU2erTohyS9s2k3RFtvxQj9GPbhz-PZo-q6dvYVrGSzsKzdEn7442Hw00c3azoZsmqE1i7FdTm6yG3bRwQ9rsNxiI13cZtc_2LCKO-yrwQy3mOFlzlvM8D5meLrmHWZ4ixluMMMNZngfM9xi5i778vro5NUbx6becJT0wqUjJyp0iXgo8yAjk0aJDHLw3TCKAwAyioUfgM59FWTgKhBYK5fSz9NMY7G4x7aLstAPGMcByrUO4zSPAgkiBpxhQsh0jupDxDLaY04zeImyvPSUHmWWmPgIXyQ07pQu1U1o3PfY87b-omZkGax50Mgiac4Z48yYIKAGW7htC2uB1pblH9s8bcScoGqm_TYodLm6SEJXRmgh4j-8X0u_e18LnIeDJY_YbvclPWbby2qln7Br6hK_5mqfbYXTaN9C9ycHtrdJ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vital+marking+of+articular+chondrocytes+by+retroviral+infection+using+green+fluorescence+protein&rft.jtitle=Osteoarthritis+and+cartilage&rft.au=Hirschmann%2C+F&rft.au=Verhoeyen%2C+E&rft.au=Wirth%2C+D&rft.au=Bauwens%2C+S&rft.date=2002-02-01&rft.issn=1063-4584&rft.volume=10&rft.issue=2&rft.spage=109&rft_id=info:doi/10.1053%2Fjoca.2001.0486&rft_id=info%3Apmid%2F11869070&rft.externalDocID=11869070
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-4584&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-4584&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-4584&client=summon