Singular solutions for a class of traveling wave equations arising in hydrodynamics

We give an exhaustive characterization of singular weak solutions for ordinary differential equations of the form üu+12u̇2+F′(u)=0, where F is an analytic function. Our motivation stems from the fact that in the context of hydrodynamics several prominent equations are reducible to an equation of th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nonlinear analysis: real world applications Ročník 31; s. 57 - 76
Hlavní autori: Geyer, Anna, Mañosa, Víctor
Médium: Journal Article Publikácia
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.10.2016
Predmet:
ISSN:1468-1218, 1878-5719
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We give an exhaustive characterization of singular weak solutions for ordinary differential equations of the form üu+12u̇2+F′(u)=0, where F is an analytic function. Our motivation stems from the fact that in the context of hydrodynamics several prominent equations are reducible to an equation of this form upon passing to a moving frame. We construct peaked and cusped waves, fronts with finite-time decay and compact solitary waves. We prove that one cannot obtain peaked and compactly supported traveling waves for the same equation. In particular, a peaked traveling wave cannot have compact support and vice versa. To exemplify the approach we apply our results to the Camassa–Holm equation and the equation for surface waves of moderate amplitude, and show how the different types of singular solutions can be obtained varying the energy level of the corresponding planar Hamiltonian systems.
AbstractList We give an exhaustive characterization of singular weak solutions for some singular ordinary differential equations. Our motivation stems from the fact that in the context of hydrodynamics several prominent equations are reducible to an equation of this form upon passing to a moving frame. We construct peaked and cusped waves, fronts with finite-time decay and compact solitary waves. We prove that one cannot obtain peaked and compactly supported traveling waves for the same equation. In particular, a peaked traveling wave cannot have compact support and vice versa. To exemplify the approach we apply our results to the Camassa-Holm equation and the equation for surface waves of moderate amplitude, and show how the different types of singular solutions can be obtained varying the energy level of the corresponding planar Hamiltonian systems. Peer Reviewed
We give an exhaustive characterization of singular weak solutions for ordinary differential equations of the form üu+12u̇2+F′(u)=0, where F is an analytic function. Our motivation stems from the fact that in the context of hydrodynamics several prominent equations are reducible to an equation of this form upon passing to a moving frame. We construct peaked and cusped waves, fronts with finite-time decay and compact solitary waves. We prove that one cannot obtain peaked and compactly supported traveling waves for the same equation. In particular, a peaked traveling wave cannot have compact support and vice versa. To exemplify the approach we apply our results to the Camassa–Holm equation and the equation for surface waves of moderate amplitude, and show how the different types of singular solutions can be obtained varying the energy level of the corresponding planar Hamiltonian systems.
We give an exhaustive characterization of singular weak solutions for ordinary differential equations of the form View the MathML sourceuu+12u2+F'(u)=0, where FF is an analytic function. Our motivation stems from the fact that in the context of hydrodynamics several prominent equations are reducible to an equation of this form upon passing to a moving frame. We construct peaked and cusped waves, fronts with finite-time decay and compact solitary waves. We prove that one cannot obtain peaked and compactly supported traveling waves for the same equation. In particular, a peaked traveling wave cannot have compact support and vice versa. To exemplify the approach we apply our results to the Camassa-Holm equation and the equation for surface waves of moderate amplitude, and show how the different types of singular solutions can be obtained varying the energy level of the corresponding planar Hamiltonian systems.
Author Geyer, Anna
Mañosa, Víctor
Author_xml – sequence: 1
  givenname: Anna
  surname: Geyer
  fullname: Geyer, Anna
  email: anna.geyer@univie.ac.at
  organization: Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
– sequence: 2
  givenname: Víctor
  surname: Mañosa
  fullname: Mañosa, Víctor
  email: victor.manosa@upc.edu
  organization: Departament de Matemàtiques, Control, Dynamics and Applications Group (CoDALab), Universitat Politècnica de Catalunya, Colom 1, 08222 Terrassa, Spain
BookMark eNqFkE1LJDEQhsPiwo6z-w_2kKOXbpN0Ot3tQRDxCwY86J5DplLRDD0dTbqV-fdmtgXBgx5Cqop6XqjnkBwMYUBC_nJWcsbV8abMg_hqSpG7kvGSse4HWfC2aYu64d1BrqVqCy54-4scprRhjDe84gtyd-eHh6k3kabQT6MPQ6IuRGoo9CYlGhwdo3nBPq_R11xQfJ7MvGeiT_uxH-jjzsZgd4PZeki_yU9n-oR_3v8l-Xd5cX9-Xaxur27Oz1YFSNGMRQWgOlQA9VoqVzWCKdMIi1Y6y2oUa9ZwWDtlKyuccuvKWAZCKqNEi6Cqakn4nAtpAh0RMIIZdTD-o9k_wRqhRd11dZeZo5l5iuF5wjTqrU-AfW8GDFPSvBW1lJ1oZV49eY-PIaWIToMf_5-ejfhec6b39vVGz_b13r5mXGf7GZaf4KfotybuvsNOZwyztxePUSfwOABan08atQ3-64A3Q3qlOw
CitedBy_id crossref_primary_10_1007_s00021_022_00752_w
crossref_primary_10_1016_j_chaos_2023_113566
crossref_primary_10_1016_j_nonrwa_2018_10_012
crossref_primary_10_1007_s44198_025_00301_9
crossref_primary_10_1080_14029251_2020_1700632
Cites_doi 10.1016/j.nonrwa.2013.02.006
10.1016/j.na.2013.11.021
10.1103/PhysRevLett.71.1661
10.1016/j.jde.2004.09.007
10.1017/S0022112001007224
10.1016/j.nonrwa.2013.12.007
10.1007/s00205-008-0128-2
10.3934/dcds.1997.3.419
10.1016/j.na.2014.02.005
10.1016/S0065-2156(08)70254-0
10.1016/0167-2789(81)90004-X
10.1016/S0960-0779(03)00082-1
10.1007/s10884-006-9009-2
10.2991/jnmp.2004.11.4.7
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. CoDAlab - Control, Modelització, Identificació i Aplicacions
Universitat Politècnica de Catalunya. Departament de Matemàtiques
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Departament de Matemàtiques
– sequence: 2
  fullname: Universitat Politècnica de Catalunya. CoDAlab - Control, Modelització, Identificació i Aplicacions
Copyright 2016 The Authors
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/3.0/es
Copyright_xml – notice: 2016 The Authors
– notice: info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by/3.0/es/">http://creativecommons.org/licenses/by/3.0/es/</a>
DBID 6I.
AAFTH
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
XX2
DOI 10.1016/j.nonrwa.2016.01.009
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Recercat
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1878-5719
EndPage 76
ExternalDocumentID oai_recercat_cat_2072_259959
10_1016_j_nonrwa_2016_01_009
S1468121816000109
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29N
4.4
457
4G.
5VS
6I.
6OB
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
J9A
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
XPP
YQT
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
XX2
ID FETCH-LOGICAL-c427t-3cc69e6cc5b46f37206a72ded4fd05e2b071cbf6d3d2f6fb3ad0c246a628ec633
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000376213400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1468-1218
IngestDate Fri Nov 07 13:44:34 EST 2025
Sun Sep 28 09:56:29 EDT 2025
Tue Nov 18 21:39:44 EST 2025
Sat Nov 29 06:12:34 EST 2025
Fri Feb 23 02:27:10 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Camassa–Holm equation
Traveling waves
Integrable vector fields
Singular ordinary differential equations
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c427t-3cc69e6cc5b46f37206a72ded4fd05e2b071cbf6d3d2f6fb3ad0c246a628ec633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://recercat.cat/handle/2072/259959
PQID 1825449284
PQPubID 23500
PageCount 20
ParticipantIDs csuc_recercat_oai_recercat_cat_2072_259959
proquest_miscellaneous_1825449284
crossref_citationtrail_10_1016_j_nonrwa_2016_01_009
crossref_primary_10_1016_j_nonrwa_2016_01_009
elsevier_sciencedirect_doi_10_1016_j_nonrwa_2016_01_009
PublicationCentury 2000
PublicationDate October 2016
2016-10-00
20161001
2016-10
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: October 2016
PublicationDecade 2010
PublicationTitle Nonlinear analysis: real world applications
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Duruk Mutlubaş, Geyer, Matioc (br000035) 2014; 17
Ehrnström, Holden, Raynaud (br000045) 2009; 2009
Arnol’d (br000055) 1992
Geyer (br000080) 2012; 19
Lenells (br000050) 2005; 217
Constantin, Lannes (br000020) 2009; 192
Camassa, Holm (br000005) 1993; 71
Li, Olver (br000065) 1997; 3
Johnson (br000075) 2002; 455
Lenells (br000085) 2004; 11
Gasull, Geyer (br000040) 2014; 102
Fuchssteiner, Fokas (br000015) 1981; 4
Duruk Mutlubaş (br000030) 2014; 97
Lenells (br000060) 2006; 18
Camassa, Holm, Hyman (br000010) 1994; 31
Duruk Mutlubaş (br000025) 2013; 14
Liu, Wang, Jing (br000070) 2004; 19
Duruk Mutlubaş (10.1016/j.nonrwa.2016.01.009_br000025) 2013; 14
Ehrnström (10.1016/j.nonrwa.2016.01.009_br000045) 2009; 2009
Lenells (10.1016/j.nonrwa.2016.01.009_br000085) 2004; 11
Lenells (10.1016/j.nonrwa.2016.01.009_br000050) 2005; 217
Lenells (10.1016/j.nonrwa.2016.01.009_br000060) 2006; 18
Arnol’d (10.1016/j.nonrwa.2016.01.009_br000055) 1992
Johnson (10.1016/j.nonrwa.2016.01.009_br000075) 2002; 455
Liu (10.1016/j.nonrwa.2016.01.009_br000070) 2004; 19
Constantin (10.1016/j.nonrwa.2016.01.009_br000020) 2009; 192
Camassa (10.1016/j.nonrwa.2016.01.009_br000010) 1994; 31
Duruk Mutlubaş (10.1016/j.nonrwa.2016.01.009_br000030) 2014; 97
Fuchssteiner (10.1016/j.nonrwa.2016.01.009_br000015) 1981; 4
Geyer (10.1016/j.nonrwa.2016.01.009_br000080) 2012; 19
Gasull (10.1016/j.nonrwa.2016.01.009_br000040) 2014; 102
Li (10.1016/j.nonrwa.2016.01.009_br000065) 1997; 3
Duruk Mutlubaş (10.1016/j.nonrwa.2016.01.009_br000035) 2014; 17
Camassa (10.1016/j.nonrwa.2016.01.009_br000005) 1993; 71
References_xml – volume: 17
  start-page: 322
  year: 2014
  end-page: 331
  ident: br000035
  article-title: Non-uniform continuity of the flow map for an evolution equation modeling shallow water waves of moderate amplitude
  publication-title: Nonlinear Anal. RWA
– volume: 18
  start-page: 381
  year: 2006
  end-page: 391
  ident: br000060
  article-title: Classification of traveling waves for a class of nonlinear wave equations
  publication-title: J. Dynam. Differential Equations
– volume: 2009
  start-page: 4578
  year: 2009
  end-page: 4596
  ident: br000045
  article-title: Symmetric waves are traveling waves
  publication-title: Int. Math. Res. Not.
– volume: 217
  start-page: 393
  year: 2005
  end-page: 430
  ident: br000050
  article-title: Traveling wave solutions of the Camassa–Holm equation
  publication-title: J. Differential Equations
– volume: 102
  start-page: 105
  year: 2014
  end-page: 119
  ident: br000040
  article-title: Traveling surface waves of moderate amplitude in shallow water
  publication-title: Nonlinear Anal. Theory Methods Appl.
– volume: 3
  start-page: 419
  year: 1997
  end-page: 432
  ident: br000065
  article-title: Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system. I. Compactons and peakons
  publication-title: Discrete Contin. Dyn. Syst.
– volume: 192
  start-page: 165
  year: 2009
  end-page: 186
  ident: br000020
  article-title: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations
  publication-title: Arch. Ration. Mech. Anal.
– volume: 97
  start-page: 145
  year: 2014
  end-page: 154
  ident: br000030
  article-title: Local well-posedness and wave breaking results for periodic solutions of a shallow water equation for waves of moderate amplitude
  publication-title: Nonlinear Anal. Theory Methods Appl.
– volume: 31
  start-page: 1
  year: 1994
  end-page: 33
  ident: br000010
  article-title: A new integrable shallow water equation
  publication-title: Adv. Appl. Mech.
– year: 1992
  ident: br000055
  article-title: Ordinary Differential Equations
– volume: 455
  start-page: 63
  year: 2002
  end-page: 82
  ident: br000075
  article-title: Camassa–Holm, Korteweg–de Vries and related models for water waves
  publication-title: J. Fluid Mech.
– volume: 11
  start-page: 508
  year: 2004
  end-page: 520
  ident: br000085
  article-title: Traveling wave solutions of the Camassa–Holm and Korteweg–de Vries equations
  publication-title: J. Nonlinear Math. Phys.
– volume: 71
  start-page: 1661
  year: 1993
  end-page: 1664
  ident: br000005
  article-title: An integrable shallow water equation with peaked solitons
  publication-title: Phys. Rev. Lett.
– volume: 14
  start-page: 2022
  year: 2013
  end-page: 2026
  ident: br000025
  article-title: On the Cauchy problem for a model equation for shallow water waves of moderate amplitude
  publication-title: Nonlinear Anal. RWA
– volume: 19
  start-page: 77
  year: 2004
  end-page: 92
  ident: br000070
  article-title: Peaked wave solutions of Camassa–Holm equation
  publication-title: Chaos Solitons Fractals
– volume: 19
  start-page: 1240010
  year: 2012
  ident: br000080
  article-title: Solitary traveling water waves of moderate amplitude
  publication-title: J. Nonlinear Math. Phys.
– volume: 4
  start-page: 821
  year: 1981
  end-page: 831
  ident: br000015
  article-title: Symplectic structures, their Bäcklund transformations and hereditary symmetries
  publication-title: Physica D
– volume: 14
  start-page: 2022
  issue: 5
  year: 2013
  ident: 10.1016/j.nonrwa.2016.01.009_br000025
  article-title: On the Cauchy problem for a model equation for shallow water waves of moderate amplitude
  publication-title: Nonlinear Anal. RWA
  doi: 10.1016/j.nonrwa.2013.02.006
– volume: 97
  start-page: 145
  year: 2014
  ident: 10.1016/j.nonrwa.2016.01.009_br000030
  article-title: Local well-posedness and wave breaking results for periodic solutions of a shallow water equation for waves of moderate amplitude
  publication-title: Nonlinear Anal. Theory Methods Appl.
  doi: 10.1016/j.na.2013.11.021
– volume: 71
  start-page: 1661
  issue: 11
  year: 1993
  ident: 10.1016/j.nonrwa.2016.01.009_br000005
  article-title: An integrable shallow water equation with peaked solitons
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.71.1661
– volume: 217
  start-page: 393
  issue: 2
  year: 2005
  ident: 10.1016/j.nonrwa.2016.01.009_br000050
  article-title: Traveling wave solutions of the Camassa–Holm equation
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2004.09.007
– volume: 455
  start-page: 63
  year: 2002
  ident: 10.1016/j.nonrwa.2016.01.009_br000075
  article-title: Camassa–Holm, Korteweg–de Vries and related models for water waves
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112001007224
– volume: 17
  start-page: 322
  year: 2014
  ident: 10.1016/j.nonrwa.2016.01.009_br000035
  article-title: Non-uniform continuity of the flow map for an evolution equation modeling shallow water waves of moderate amplitude
  publication-title: Nonlinear Anal. RWA
  doi: 10.1016/j.nonrwa.2013.12.007
– volume: 192
  start-page: 165
  year: 2009
  ident: 10.1016/j.nonrwa.2016.01.009_br000020
  article-title: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-008-0128-2
– volume: 19
  start-page: 1240010
  issue: supp.01
  year: 2012
  ident: 10.1016/j.nonrwa.2016.01.009_br000080
  article-title: Solitary traveling water waves of moderate amplitude
  publication-title: J. Nonlinear Math. Phys.
– volume: 2009
  start-page: 4578
  issue: 24
  year: 2009
  ident: 10.1016/j.nonrwa.2016.01.009_br000045
  article-title: Symmetric waves are traveling waves
  publication-title: Int. Math. Res. Not.
– year: 1992
  ident: 10.1016/j.nonrwa.2016.01.009_br000055
– volume: 3
  start-page: 419
  issue: 3
  year: 1997
  ident: 10.1016/j.nonrwa.2016.01.009_br000065
  article-title: Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system. I. Compactons and peakons
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.1997.3.419
– volume: 102
  start-page: 105
  year: 2014
  ident: 10.1016/j.nonrwa.2016.01.009_br000040
  article-title: Traveling surface waves of moderate amplitude in shallow water
  publication-title: Nonlinear Anal. Theory Methods Appl.
  doi: 10.1016/j.na.2014.02.005
– volume: 31
  start-page: 1
  issue: 31
  year: 1994
  ident: 10.1016/j.nonrwa.2016.01.009_br000010
  article-title: A new integrable shallow water equation
  publication-title: Adv. Appl. Mech.
  doi: 10.1016/S0065-2156(08)70254-0
– volume: 4
  start-page: 821
  year: 1981
  ident: 10.1016/j.nonrwa.2016.01.009_br000015
  article-title: Symplectic structures, their Bäcklund transformations and hereditary symmetries
  publication-title: Physica D
  doi: 10.1016/0167-2789(81)90004-X
– volume: 19
  start-page: 77
  year: 2004
  ident: 10.1016/j.nonrwa.2016.01.009_br000070
  article-title: Peaked wave solutions of Camassa–Holm equation
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/S0960-0779(03)00082-1
– volume: 18
  start-page: 381
  issue: 2
  year: 2006
  ident: 10.1016/j.nonrwa.2016.01.009_br000060
  article-title: Classification of traveling waves for a class of nonlinear wave equations
  publication-title: J. Dynam. Differential Equations
  doi: 10.1007/s10884-006-9009-2
– volume: 11
  start-page: 508
  issue: 4
  year: 2004
  ident: 10.1016/j.nonrwa.2016.01.009_br000085
  article-title: Traveling wave solutions of the Camassa–Holm and Korteweg–de Vries equations
  publication-title: J. Nonlinear Math. Phys.
  doi: 10.2991/jnmp.2004.11.4.7
SSID ssj0017131
Score 2.1698766
Snippet We give an exhaustive characterization of singular weak solutions for ordinary differential equations of the form üu+12u̇2+F′(u)=0, where F is an analytic...
We give an exhaustive characterization of singular weak solutions for ordinary differential equations of the form View the MathML sourceuu+12u2+F'(u)=0, where...
We give an exhaustive characterization of singular weak solutions for some singular ordinary differential equations. Our motivation stems from the fact that in...
SourceID csuc
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 57
SubjectTerms 35 Partial differential equations
35Q Equations of mathematical physics and other areas of application
37 Dynamical systems and ergodic theory
37C Smooth dynamical systems: general theory
37N Applications
76 Fluid mechanics
76B Incompressible inviscid fluids
Camassa-Holm equations
Camassa–Holm equation
Classificació AMS
Differential equations
Differential equations, Partial
Equacions diferencials i integrals
Equacions diferencials parcials
Equacions diferencials singulars
Fluid dynamics
Fluid flow
Hidrodinàmica
Hydrodinamics
Hydrodynamics
Integrable vector fields
Matemàtiques i estadística
Mathematical analysis
Periodic solutions
Singular ordinary differential equations
Stems
Surface waves
Traveling waves
Àrees temàtiques de la UPC
Title Singular solutions for a class of traveling wave equations arising in hydrodynamics
URI https://dx.doi.org/10.1016/j.nonrwa.2016.01.009
https://www.proquest.com/docview/1825449284
https://recercat.cat/handle/2072/259959
Volume 31
WOSCitedRecordID wos000376213400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-5719
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017131
  issn: 1468-1218
  databaseCode: AIEXJ
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELeg4wEeEJ-ifMlIPDEFOU7iJI8DhgBpFVIH6psVf0RsQulIWrb999zZjruyhwESD42aqIkj3_XuZ9_d7wh5yZq0KRTu2mhmkpw3aVJlbZ3wWrVtIaxhlXbNJsrZrFos6s8hXDC4dgJl11VnZ_XJfxU1XANhY-nsX4g7PhQuwHcQOhxB7HD8I8HPwRm53NI4jM-U3NUIlF1OALYccmXop9h7yP5Yh3w4bEgYaly-nRswrb5d_XARwc48t0aDuZeezwQ3FXrkJ3bsq7sXQ-Ixu8eeh67ZXRf9wEGDUfo36XJwAPari9m_057-OG5FpCImtYX9sbFGZpOQhCYVa7tSHqys9dcqWLsWZTCWwQ4Hb-ANqWetDi7Zd4i5ZOz9vsPx627Z9afIIZUKR8HK6o1ziymHc3wPfI1UMBcPvE52eFnUYMx39j7uLz7F2BMs29OxJg1vGAsuXVbg5bG2AM1ED2u9hWt-8_AOthzeIbfDeoPueT25S67Z7h65dRDJeof7ZD5qDI0aQ0FjaEOdxtBlS6PGUNQYGjWGBo2hRx3d0pgH5Mv7_cO3H5LQayPROS9XSaa1qK3QulC5aLF1kWhKbqzJW8MKyxVAUa1aYTLDW9GqrDFM81w0gldWiyx7SCYwN_YRoUoInSlmTAXwvOSZMuDcTa2sqSsAiHpKsnHCpA5E9NgP5bscMw6PpZ9midMsWSphmqckiXedeCKWK37_CmUhATfYHpReIo96PMEPZyWX3BHuTUk5SkwG5OkRpQRdu2KYF6OAJRhmjLY1nV2uB5ni3kteA_x7_M9Pf0Jubv5nT8lk1a_tM3JD_1wdDf3zoLi_ACiJuYQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Singular+solutions+for+a+class+of+traveling+wave+equations+arising+in+hydrodynamics&rft.jtitle=Nonlinear+analysis%3A+real+world+applications&rft.au=Geyer%2C+Anna&rft.au=Ma%C3%B1osa%2C+V%C3%ADctor&rft.date=2016-10-01&rft.pub=Elsevier+Ltd&rft.issn=1468-1218&rft.eissn=1878-5719&rft.volume=31&rft.spage=57&rft.epage=76&rft_id=info:doi/10.1016%2Fj.nonrwa.2016.01.009&rft.externalDocID=S1468121816000109
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-1218&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-1218&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-1218&client=summon