Singular solutions for a class of traveling wave equations arising in hydrodynamics
We give an exhaustive characterization of singular weak solutions for ordinary differential equations of the form üu+12u̇2+F′(u)=0, where F is an analytic function. Our motivation stems from the fact that in the context of hydrodynamics several prominent equations are reducible to an equation of th...
Uložené v:
| Vydané v: | Nonlinear analysis: real world applications Ročník 31; s. 57 - 76 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article Publikácia |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.10.2016
|
| Predmet: | |
| ISSN: | 1468-1218, 1878-5719 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We give an exhaustive characterization of singular weak solutions for ordinary differential equations of the form üu+12u̇2+F′(u)=0, where F is an analytic function. Our motivation stems from the fact that in the context of hydrodynamics several prominent equations are reducible to an equation of this form upon passing to a moving frame. We construct peaked and cusped waves, fronts with finite-time decay and compact solitary waves. We prove that one cannot obtain peaked and compactly supported traveling waves for the same equation. In particular, a peaked traveling wave cannot have compact support and vice versa. To exemplify the approach we apply our results to the Camassa–Holm equation and the equation for surface waves of moderate amplitude, and show how the different types of singular solutions can be obtained varying the energy level of the corresponding planar Hamiltonian systems. |
|---|---|
| AbstractList | We give an exhaustive characterization of singular weak solutions for some singular ordinary differential equations. Our motivation stems from the fact that in the context of hydrodynamics several prominent equations are reducible to an equation of this form upon passing to a moving frame. We construct peaked and cusped waves, fronts with finite-time decay and compact solitary waves. We prove that one cannot obtain peaked and compactly supported traveling waves for the same equation. In particular, a peaked traveling wave cannot have compact
support and vice versa. To exemplify the approach we apply our results to the Camassa-Holm equation and the equation for surface waves of moderate amplitude, and show how the different types of singular solutions
can be obtained varying the energy level of the corresponding planar Hamiltonian systems.
Peer Reviewed We give an exhaustive characterization of singular weak solutions for ordinary differential equations of the form üu+12u̇2+F′(u)=0, where F is an analytic function. Our motivation stems from the fact that in the context of hydrodynamics several prominent equations are reducible to an equation of this form upon passing to a moving frame. We construct peaked and cusped waves, fronts with finite-time decay and compact solitary waves. We prove that one cannot obtain peaked and compactly supported traveling waves for the same equation. In particular, a peaked traveling wave cannot have compact support and vice versa. To exemplify the approach we apply our results to the Camassa–Holm equation and the equation for surface waves of moderate amplitude, and show how the different types of singular solutions can be obtained varying the energy level of the corresponding planar Hamiltonian systems. We give an exhaustive characterization of singular weak solutions for ordinary differential equations of the form View the MathML sourceuu+12u2+F'(u)=0, where FF is an analytic function. Our motivation stems from the fact that in the context of hydrodynamics several prominent equations are reducible to an equation of this form upon passing to a moving frame. We construct peaked and cusped waves, fronts with finite-time decay and compact solitary waves. We prove that one cannot obtain peaked and compactly supported traveling waves for the same equation. In particular, a peaked traveling wave cannot have compact support and vice versa. To exemplify the approach we apply our results to the Camassa-Holm equation and the equation for surface waves of moderate amplitude, and show how the different types of singular solutions can be obtained varying the energy level of the corresponding planar Hamiltonian systems. |
| Author | Geyer, Anna Mañosa, Víctor |
| Author_xml | – sequence: 1 givenname: Anna surname: Geyer fullname: Geyer, Anna email: anna.geyer@univie.ac.at organization: Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria – sequence: 2 givenname: Víctor surname: Mañosa fullname: Mañosa, Víctor email: victor.manosa@upc.edu organization: Departament de Matemàtiques, Control, Dynamics and Applications Group (CoDALab), Universitat Politècnica de Catalunya, Colom 1, 08222 Terrassa, Spain |
| BookMark | eNqFkE1LJDEQhsPiwo6z-w_2kKOXbpN0Ot3tQRDxCwY86J5DplLRDD0dTbqV-fdmtgXBgx5Cqop6XqjnkBwMYUBC_nJWcsbV8abMg_hqSpG7kvGSse4HWfC2aYu64d1BrqVqCy54-4scprRhjDe84gtyd-eHh6k3kabQT6MPQ6IuRGoo9CYlGhwdo3nBPq_R11xQfJ7MvGeiT_uxH-jjzsZgd4PZeki_yU9n-oR_3v8l-Xd5cX9-Xaxur27Oz1YFSNGMRQWgOlQA9VoqVzWCKdMIi1Y6y2oUa9ZwWDtlKyuccuvKWAZCKqNEi6Cqakn4nAtpAh0RMIIZdTD-o9k_wRqhRd11dZeZo5l5iuF5wjTqrU-AfW8GDFPSvBW1lJ1oZV49eY-PIaWIToMf_5-ejfhec6b39vVGz_b13r5mXGf7GZaf4KfotybuvsNOZwyztxePUSfwOABan08atQ3-64A3Q3qlOw |
| CitedBy_id | crossref_primary_10_1007_s00021_022_00752_w crossref_primary_10_1016_j_chaos_2023_113566 crossref_primary_10_1016_j_nonrwa_2018_10_012 crossref_primary_10_1007_s44198_025_00301_9 crossref_primary_10_1080_14029251_2020_1700632 |
| Cites_doi | 10.1016/j.nonrwa.2013.02.006 10.1016/j.na.2013.11.021 10.1103/PhysRevLett.71.1661 10.1016/j.jde.2004.09.007 10.1017/S0022112001007224 10.1016/j.nonrwa.2013.12.007 10.1007/s00205-008-0128-2 10.3934/dcds.1997.3.419 10.1016/j.na.2014.02.005 10.1016/S0065-2156(08)70254-0 10.1016/0167-2789(81)90004-X 10.1016/S0960-0779(03)00082-1 10.1007/s10884-006-9009-2 10.2991/jnmp.2004.11.4.7 |
| ContentType | Journal Article Publication |
| Contributor | Universitat Politècnica de Catalunya. CoDAlab - Control, Modelització, Identificació i Aplicacions Universitat Politècnica de Catalunya. Departament de Matemàtiques |
| Contributor_xml | – sequence: 1 fullname: Universitat Politècnica de Catalunya. Departament de Matemàtiques – sequence: 2 fullname: Universitat Politècnica de Catalunya. CoDAlab - Control, Modelització, Identificació i Aplicacions |
| Copyright | 2016 The Authors info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/3.0/es |
| Copyright_xml | – notice: 2016 The Authors – notice: info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by/3.0/es/">http://creativecommons.org/licenses/by/3.0/es/</a> |
| DBID | 6I. AAFTH AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D XX2 |
| DOI | 10.1016/j.nonrwa.2016.01.009 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Recercat |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1878-5719 |
| EndPage | 76 |
| ExternalDocumentID | oai_recercat_cat_2072_259959 10_1016_j_nonrwa_2016_01_009 S1468121816000109 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29N 4.4 457 4G. 5VS 6I. 6OB 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W J9A JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSW SSZ T5K XPP YQT ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D XX2 |
| ID | FETCH-LOGICAL-c427t-3cc69e6cc5b46f37206a72ded4fd05e2b071cbf6d3d2f6fb3ad0c246a628ec633 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000376213400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1468-1218 |
| IngestDate | Fri Nov 07 13:44:34 EST 2025 Sun Sep 28 09:56:29 EDT 2025 Tue Nov 18 21:39:44 EST 2025 Sat Nov 29 06:12:34 EST 2025 Fri Feb 23 02:27:10 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Camassa–Holm equation Traveling waves Integrable vector fields Singular ordinary differential equations |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c427t-3cc69e6cc5b46f37206a72ded4fd05e2b071cbf6d3d2f6fb3ad0c246a628ec633 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://recercat.cat/handle/2072/259959 |
| PQID | 1825449284 |
| PQPubID | 23500 |
| PageCount | 20 |
| ParticipantIDs | csuc_recercat_oai_recercat_cat_2072_259959 proquest_miscellaneous_1825449284 crossref_citationtrail_10_1016_j_nonrwa_2016_01_009 crossref_primary_10_1016_j_nonrwa_2016_01_009 elsevier_sciencedirect_doi_10_1016_j_nonrwa_2016_01_009 |
| PublicationCentury | 2000 |
| PublicationDate | October 2016 2016-10-00 20161001 2016-10 |
| PublicationDateYYYYMMDD | 2016-10-01 |
| PublicationDate_xml | – month: 10 year: 2016 text: October 2016 |
| PublicationDecade | 2010 |
| PublicationTitle | Nonlinear analysis: real world applications |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Duruk Mutlubaş, Geyer, Matioc (br000035) 2014; 17 Ehrnström, Holden, Raynaud (br000045) 2009; 2009 Arnol’d (br000055) 1992 Geyer (br000080) 2012; 19 Lenells (br000050) 2005; 217 Constantin, Lannes (br000020) 2009; 192 Camassa, Holm (br000005) 1993; 71 Li, Olver (br000065) 1997; 3 Johnson (br000075) 2002; 455 Lenells (br000085) 2004; 11 Gasull, Geyer (br000040) 2014; 102 Fuchssteiner, Fokas (br000015) 1981; 4 Duruk Mutlubaş (br000030) 2014; 97 Lenells (br000060) 2006; 18 Camassa, Holm, Hyman (br000010) 1994; 31 Duruk Mutlubaş (br000025) 2013; 14 Liu, Wang, Jing (br000070) 2004; 19 Duruk Mutlubaş (10.1016/j.nonrwa.2016.01.009_br000025) 2013; 14 Ehrnström (10.1016/j.nonrwa.2016.01.009_br000045) 2009; 2009 Lenells (10.1016/j.nonrwa.2016.01.009_br000085) 2004; 11 Lenells (10.1016/j.nonrwa.2016.01.009_br000050) 2005; 217 Lenells (10.1016/j.nonrwa.2016.01.009_br000060) 2006; 18 Arnol’d (10.1016/j.nonrwa.2016.01.009_br000055) 1992 Johnson (10.1016/j.nonrwa.2016.01.009_br000075) 2002; 455 Liu (10.1016/j.nonrwa.2016.01.009_br000070) 2004; 19 Constantin (10.1016/j.nonrwa.2016.01.009_br000020) 2009; 192 Camassa (10.1016/j.nonrwa.2016.01.009_br000010) 1994; 31 Duruk Mutlubaş (10.1016/j.nonrwa.2016.01.009_br000030) 2014; 97 Fuchssteiner (10.1016/j.nonrwa.2016.01.009_br000015) 1981; 4 Geyer (10.1016/j.nonrwa.2016.01.009_br000080) 2012; 19 Gasull (10.1016/j.nonrwa.2016.01.009_br000040) 2014; 102 Li (10.1016/j.nonrwa.2016.01.009_br000065) 1997; 3 Duruk Mutlubaş (10.1016/j.nonrwa.2016.01.009_br000035) 2014; 17 Camassa (10.1016/j.nonrwa.2016.01.009_br000005) 1993; 71 |
| References_xml | – volume: 17 start-page: 322 year: 2014 end-page: 331 ident: br000035 article-title: Non-uniform continuity of the flow map for an evolution equation modeling shallow water waves of moderate amplitude publication-title: Nonlinear Anal. RWA – volume: 18 start-page: 381 year: 2006 end-page: 391 ident: br000060 article-title: Classification of traveling waves for a class of nonlinear wave equations publication-title: J. Dynam. Differential Equations – volume: 2009 start-page: 4578 year: 2009 end-page: 4596 ident: br000045 article-title: Symmetric waves are traveling waves publication-title: Int. Math. Res. Not. – volume: 217 start-page: 393 year: 2005 end-page: 430 ident: br000050 article-title: Traveling wave solutions of the Camassa–Holm equation publication-title: J. Differential Equations – volume: 102 start-page: 105 year: 2014 end-page: 119 ident: br000040 article-title: Traveling surface waves of moderate amplitude in shallow water publication-title: Nonlinear Anal. Theory Methods Appl. – volume: 3 start-page: 419 year: 1997 end-page: 432 ident: br000065 article-title: Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system. I. Compactons and peakons publication-title: Discrete Contin. Dyn. Syst. – volume: 192 start-page: 165 year: 2009 end-page: 186 ident: br000020 article-title: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations publication-title: Arch. Ration. Mech. Anal. – volume: 97 start-page: 145 year: 2014 end-page: 154 ident: br000030 article-title: Local well-posedness and wave breaking results for periodic solutions of a shallow water equation for waves of moderate amplitude publication-title: Nonlinear Anal. Theory Methods Appl. – volume: 31 start-page: 1 year: 1994 end-page: 33 ident: br000010 article-title: A new integrable shallow water equation publication-title: Adv. Appl. Mech. – year: 1992 ident: br000055 article-title: Ordinary Differential Equations – volume: 455 start-page: 63 year: 2002 end-page: 82 ident: br000075 article-title: Camassa–Holm, Korteweg–de Vries and related models for water waves publication-title: J. Fluid Mech. – volume: 11 start-page: 508 year: 2004 end-page: 520 ident: br000085 article-title: Traveling wave solutions of the Camassa–Holm and Korteweg–de Vries equations publication-title: J. Nonlinear Math. Phys. – volume: 71 start-page: 1661 year: 1993 end-page: 1664 ident: br000005 article-title: An integrable shallow water equation with peaked solitons publication-title: Phys. Rev. Lett. – volume: 14 start-page: 2022 year: 2013 end-page: 2026 ident: br000025 article-title: On the Cauchy problem for a model equation for shallow water waves of moderate amplitude publication-title: Nonlinear Anal. RWA – volume: 19 start-page: 77 year: 2004 end-page: 92 ident: br000070 article-title: Peaked wave solutions of Camassa–Holm equation publication-title: Chaos Solitons Fractals – volume: 19 start-page: 1240010 year: 2012 ident: br000080 article-title: Solitary traveling water waves of moderate amplitude publication-title: J. Nonlinear Math. Phys. – volume: 4 start-page: 821 year: 1981 end-page: 831 ident: br000015 article-title: Symplectic structures, their Bäcklund transformations and hereditary symmetries publication-title: Physica D – volume: 14 start-page: 2022 issue: 5 year: 2013 ident: 10.1016/j.nonrwa.2016.01.009_br000025 article-title: On the Cauchy problem for a model equation for shallow water waves of moderate amplitude publication-title: Nonlinear Anal. RWA doi: 10.1016/j.nonrwa.2013.02.006 – volume: 97 start-page: 145 year: 2014 ident: 10.1016/j.nonrwa.2016.01.009_br000030 article-title: Local well-posedness and wave breaking results for periodic solutions of a shallow water equation for waves of moderate amplitude publication-title: Nonlinear Anal. Theory Methods Appl. doi: 10.1016/j.na.2013.11.021 – volume: 71 start-page: 1661 issue: 11 year: 1993 ident: 10.1016/j.nonrwa.2016.01.009_br000005 article-title: An integrable shallow water equation with peaked solitons publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.71.1661 – volume: 217 start-page: 393 issue: 2 year: 2005 ident: 10.1016/j.nonrwa.2016.01.009_br000050 article-title: Traveling wave solutions of the Camassa–Holm equation publication-title: J. Differential Equations doi: 10.1016/j.jde.2004.09.007 – volume: 455 start-page: 63 year: 2002 ident: 10.1016/j.nonrwa.2016.01.009_br000075 article-title: Camassa–Holm, Korteweg–de Vries and related models for water waves publication-title: J. Fluid Mech. doi: 10.1017/S0022112001007224 – volume: 17 start-page: 322 year: 2014 ident: 10.1016/j.nonrwa.2016.01.009_br000035 article-title: Non-uniform continuity of the flow map for an evolution equation modeling shallow water waves of moderate amplitude publication-title: Nonlinear Anal. RWA doi: 10.1016/j.nonrwa.2013.12.007 – volume: 192 start-page: 165 year: 2009 ident: 10.1016/j.nonrwa.2016.01.009_br000020 article-title: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-008-0128-2 – volume: 19 start-page: 1240010 issue: supp.01 year: 2012 ident: 10.1016/j.nonrwa.2016.01.009_br000080 article-title: Solitary traveling water waves of moderate amplitude publication-title: J. Nonlinear Math. Phys. – volume: 2009 start-page: 4578 issue: 24 year: 2009 ident: 10.1016/j.nonrwa.2016.01.009_br000045 article-title: Symmetric waves are traveling waves publication-title: Int. Math. Res. Not. – year: 1992 ident: 10.1016/j.nonrwa.2016.01.009_br000055 – volume: 3 start-page: 419 issue: 3 year: 1997 ident: 10.1016/j.nonrwa.2016.01.009_br000065 article-title: Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system. I. Compactons and peakons publication-title: Discrete Contin. Dyn. Syst. doi: 10.3934/dcds.1997.3.419 – volume: 102 start-page: 105 year: 2014 ident: 10.1016/j.nonrwa.2016.01.009_br000040 article-title: Traveling surface waves of moderate amplitude in shallow water publication-title: Nonlinear Anal. Theory Methods Appl. doi: 10.1016/j.na.2014.02.005 – volume: 31 start-page: 1 issue: 31 year: 1994 ident: 10.1016/j.nonrwa.2016.01.009_br000010 article-title: A new integrable shallow water equation publication-title: Adv. Appl. Mech. doi: 10.1016/S0065-2156(08)70254-0 – volume: 4 start-page: 821 year: 1981 ident: 10.1016/j.nonrwa.2016.01.009_br000015 article-title: Symplectic structures, their Bäcklund transformations and hereditary symmetries publication-title: Physica D doi: 10.1016/0167-2789(81)90004-X – volume: 19 start-page: 77 year: 2004 ident: 10.1016/j.nonrwa.2016.01.009_br000070 article-title: Peaked wave solutions of Camassa–Holm equation publication-title: Chaos Solitons Fractals doi: 10.1016/S0960-0779(03)00082-1 – volume: 18 start-page: 381 issue: 2 year: 2006 ident: 10.1016/j.nonrwa.2016.01.009_br000060 article-title: Classification of traveling waves for a class of nonlinear wave equations publication-title: J. Dynam. Differential Equations doi: 10.1007/s10884-006-9009-2 – volume: 11 start-page: 508 issue: 4 year: 2004 ident: 10.1016/j.nonrwa.2016.01.009_br000085 article-title: Traveling wave solutions of the Camassa–Holm and Korteweg–de Vries equations publication-title: J. Nonlinear Math. Phys. doi: 10.2991/jnmp.2004.11.4.7 |
| SSID | ssj0017131 |
| Score | 2.1698766 |
| Snippet | We give an exhaustive characterization of singular weak solutions for ordinary differential equations of the form üu+12u̇2+F′(u)=0, where F is an analytic... We give an exhaustive characterization of singular weak solutions for ordinary differential equations of the form View the MathML sourceuu+12u2+F'(u)=0, where... We give an exhaustive characterization of singular weak solutions for some singular ordinary differential equations. Our motivation stems from the fact that in... |
| SourceID | csuc proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 57 |
| SubjectTerms | 35 Partial differential equations 35Q Equations of mathematical physics and other areas of application 37 Dynamical systems and ergodic theory 37C Smooth dynamical systems: general theory 37N Applications 76 Fluid mechanics 76B Incompressible inviscid fluids Camassa-Holm equations Camassa–Holm equation Classificació AMS Differential equations Differential equations, Partial Equacions diferencials i integrals Equacions diferencials parcials Equacions diferencials singulars Fluid dynamics Fluid flow Hidrodinàmica Hydrodinamics Hydrodynamics Integrable vector fields Matemàtiques i estadística Mathematical analysis Periodic solutions Singular ordinary differential equations Stems Surface waves Traveling waves Àrees temàtiques de la UPC |
| Title | Singular solutions for a class of traveling wave equations arising in hydrodynamics |
| URI | https://dx.doi.org/10.1016/j.nonrwa.2016.01.009 https://www.proquest.com/docview/1825449284 https://recercat.cat/handle/2072/259959 |
| Volume | 31 |
| WOSCitedRecordID | wos000376213400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1878-5719 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017131 issn: 1468-1218 databaseCode: AIEXJ dateStart: 20000301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELeg4wEeEJ-ifMlIPDEFOU7iJI8DhgBpFVIH6psVf0RsQulIWrb999zZjruyhwESD42aqIkj3_XuZ9_d7wh5yZq0KRTu2mhmkpw3aVJlbZ3wWrVtIaxhlXbNJsrZrFos6s8hXDC4dgJl11VnZ_XJfxU1XANhY-nsX4g7PhQuwHcQOhxB7HD8I8HPwRm53NI4jM-U3NUIlF1OALYccmXop9h7yP5Yh3w4bEgYaly-nRswrb5d_XARwc48t0aDuZeezwQ3FXrkJ3bsq7sXQ-Ixu8eeh67ZXRf9wEGDUfo36XJwAPari9m_057-OG5FpCImtYX9sbFGZpOQhCYVa7tSHqys9dcqWLsWZTCWwQ4Hb-ANqWetDi7Zd4i5ZOz9vsPx627Z9afIIZUKR8HK6o1ziymHc3wPfI1UMBcPvE52eFnUYMx39j7uLz7F2BMs29OxJg1vGAsuXVbg5bG2AM1ED2u9hWt-8_AOthzeIbfDeoPueT25S67Z7h65dRDJeof7ZD5qDI0aQ0FjaEOdxtBlS6PGUNQYGjWGBo2hRx3d0pgH5Mv7_cO3H5LQayPROS9XSaa1qK3QulC5aLF1kWhKbqzJW8MKyxVAUa1aYTLDW9GqrDFM81w0gldWiyx7SCYwN_YRoUoInSlmTAXwvOSZMuDcTa2sqSsAiHpKsnHCpA5E9NgP5bscMw6PpZ9midMsWSphmqckiXedeCKWK37_CmUhATfYHpReIo96PMEPZyWX3BHuTUk5SkwG5OkRpQRdu2KYF6OAJRhmjLY1nV2uB5ni3kteA_x7_M9Pf0Jubv5nT8lk1a_tM3JD_1wdDf3zoLi_ACiJuYQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Singular+solutions+for+a+class+of+traveling+wave+equations+arising+in+hydrodynamics&rft.jtitle=Nonlinear+analysis%3A+real+world+applications&rft.au=Geyer%2C+Anna&rft.au=Ma%C3%B1osa%2C+V%C3%ADctor&rft.date=2016-10-01&rft.pub=Elsevier+Ltd&rft.issn=1468-1218&rft.eissn=1878-5719&rft.volume=31&rft.spage=57&rft.epage=76&rft_id=info:doi/10.1016%2Fj.nonrwa.2016.01.009&rft.externalDocID=S1468121816000109 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-1218&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-1218&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-1218&client=summon |