Electricity price forecasting on the day-ahead market using machine learning
The price of electricity on the European market is very volatile. This is due both to its mode of production by different sources, each with its own constraints (volume of production, dependence on the weather, or production inertia), and by the difficulty of its storage. Being able to predict the p...
Uložené v:
| Vydané v: | Applied energy Ročník 313; s. 118752 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.05.2022
Elsevier |
| Predmet: | |
| ISSN: | 0306-2619, 1872-9118 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The price of electricity on the European market is very volatile. This is due both to its mode of production by different sources, each with its own constraints (volume of production, dependence on the weather, or production inertia), and by the difficulty of its storage. Being able to predict the prices of the next day is an important issue, to allow the development of intelligent uses of electricity. In this article, we investigate the capabilities of different machine learning techniques to accurately predict electricity prices. Specifically, we extend current state-of-the-art approaches by considering previously unused predictive features such as price histories of neighboring countries. We show that these features significantly improve the quality of forecasts, even in the current period when sudden changes are occurring. We also develop an analysis of the contribution of the different features in model prediction using Shap values, in order to shed light on how models make their prediction and to build user confidence in models.
•Evaluation of several machine learning models for electricity price forecasting.•Methodology is rigorously detailed, the source and the data are made available.•New Machine Learning models are provided and achieved cutting edge results.•Performances of the models are increased by adding new features to the datasets.•XAI techniques are used to explain which features impact most the predictions.•Modeling multiple countries at once improves results. |
|---|---|
| AbstractList | The price of electricity on the European market is very volatile. This is due both to its mode of production by different sources, each with its own constraints (volume of production, dependence on the weather, or production inertia), and by the difficulty of its storage. Being able to predict the prices of the next day is an important issue, to allow the development of intelligent uses of electricity. In this article, we investigate the capabilities of different machine learning techniques to accurately predict electricity prices. Specifically, we extend current state-of-the-art approaches by considering previously unused predictive features such as price histories of neighboring countries. We show that these features significantly improve the quality of forecasts, even in the current period when sudden changes are occurring. We also develop an analysis of the contribution of the different features in model prediction using Shap values, in order to shed light on how models make their prediction and to build user confidence in models.
•Evaluation of several machine learning models for electricity price forecasting.•Methodology is rigorously detailed, the source and the data are made available.•New Machine Learning models are provided and achieved cutting edge results.•Performances of the models are increased by adding new features to the datasets.•XAI techniques are used to explain which features impact most the predictions.•Modeling multiple countries at once improves results. The price of electricity on the European market is very volatile. This is due both to its mode of production by different sources, each with its own constraints (volume of production, dependence on the weather, or production inertia), and by the difficulty of its storage. Being able to predict the prices of the next day is an important issue, to allow the development of intelligent uses of electricity. In this article, we investigate the capabilities of different machine learning techniques to accurately predict electricity prices. Specifically, we extend current state-of-the-art approaches by considering previously unused predictive features such as price histories of neighboring countries. We show that these features significantly improve the quality of forecasts, even in the current period when sudden changes are occurring. We also develop an analysis of the contribution of the different features in model prediction using Shap values, in order to shed light on how models make their prediction and to build user confidence in models. |
| ArticleNumber | 118752 |
| Author | Tschora, Léonard Plantevit, Marc Pierre, Erwan Robardet, Céline |
| Author_xml | – sequence: 1 givenname: Léonard surname: Tschora fullname: Tschora, Léonard email: leonard.tschora@insa-lyon.fr organization: BCM Energy, FR-69006, Lyon, France – sequence: 2 givenname: Erwan surname: Pierre fullname: Pierre, Erwan email: erwan.pierre@bcmenergy.fr organization: BCM Energy, FR-69006, Lyon, France – sequence: 3 givenname: Marc surname: Plantevit fullname: Plantevit, Marc email: marc.plantevit@epita.fr organization: EPITA Research and Development Laboratory (LRDE), FR-94276 Le Kremlin-Bicêtre, France – sequence: 4 givenname: Céline orcidid: 0000-0002-8583-9408 surname: Robardet fullname: Robardet, Céline email: celine.robardet@insa-lyon.fr organization: Univ. Lyon, INSA Lyon, CNRS, LIRIS UMR5205, FR-69621, France |
| BackLink | https://hal.science/hal-03621974$$DView record in HAL |
| BookMark | eNqFkTFPwzAQhS1UJNrCX0AZYUixncRJJAYQKhSpEgvM1sW5tC6pXWwXqf8eV4GFpdOT7947PX2ekJGxBgm5ZnTGKBN3mxns0KBbHWaccj5jrCoLfkbGUXlax-eIjGlGRcoFqy_IxPsNpZQzTsdkOe9RBaeVDodkFxWTzjpU4IM2q8SaJKwxaeGQwhqhTbbgPjEke3_cbkGttcGkR3AmDi7JeQe9x6tfnZKP5_n70yJdvr28Pj0uU5XzMqQZK7KyUU3ZFTnPuyavOHBUmENFOS3boiqaTnDRCNV2TY3ARalEVbVQ11XLumxKboe7a-hlLB1LHaQFLRePS3mc0UxwVpf5N4vem8G7c_Zrjz7IrfYK-x4M2r2X8XZRiKJkIlrvB6ty1nuHnYxUIGhrggPdS0blEbjcyD_g8ghcDsBjXPyL_1U7GXwYghiZfWt00iuNRmGr408E2Vp96sQPHMmg3A |
| CitedBy_id | crossref_primary_10_3390_en17122909 crossref_primary_10_3390_en18123097 crossref_primary_10_1016_j_ribaf_2023_102132 crossref_primary_10_1016_j_energy_2024_132877 crossref_primary_10_1002_for_3185 crossref_primary_10_1016_j_est_2024_111622 crossref_primary_10_1016_j_energy_2023_127834 crossref_primary_10_3390_en18143659 crossref_primary_10_1016_j_egyr_2024_11_013 crossref_primary_10_3390_en15103494 crossref_primary_10_3390_en15165980 crossref_primary_10_1109_TSG_2024_3363049 crossref_primary_10_3390_en16186510 crossref_primary_10_1016_j_aej_2025_04_050 crossref_primary_10_1016_j_energy_2025_134784 crossref_primary_10_1016_j_energy_2023_129729 crossref_primary_10_1016_j_apenergy_2024_123863 crossref_primary_10_1016_j_ref_2023_100492 crossref_primary_10_1016_j_segan_2023_100996 crossref_primary_10_3390_a16040177 crossref_primary_10_3390_en17236106 crossref_primary_10_1007_s43615_025_00592_6 crossref_primary_10_3390_su141811745 crossref_primary_10_1016_j_apenergy_2023_121989 crossref_primary_10_1016_j_knosys_2024_112574 crossref_primary_10_1016_j_suscom_2025_101151 crossref_primary_10_3390_app142110032 crossref_primary_10_1002_for_3004 crossref_primary_10_1109_ACCESS_2022_3215532 crossref_primary_10_1007_s00202_023_02174_x crossref_primary_10_1038_s41597_025_04750_1 crossref_primary_10_1016_j_apenergy_2024_123058 crossref_primary_10_1002_for_3119 crossref_primary_10_1016_j_eswa_2023_122502 crossref_primary_10_3934_GF_2024014 crossref_primary_10_1016_j_enpol_2024_114448 crossref_primary_10_3390_en15207504 crossref_primary_10_3390_su14084832 crossref_primary_10_3390_forecast5030028 crossref_primary_10_1016_j_energy_2024_133374 crossref_primary_10_1016_j_eswa_2025_129108 crossref_primary_10_3389_fenrg_2023_1168944 crossref_primary_10_1016_j_egyr_2024_09_073 crossref_primary_10_1016_j_energy_2023_127889 crossref_primary_10_1007_s10614_023_10416_0 crossref_primary_10_1016_j_ijepes_2024_110177 crossref_primary_10_63556_tisej_2025_1509 crossref_primary_10_1016_j_matcom_2024_10_004 crossref_primary_10_1016_j_apenergy_2024_122915 crossref_primary_10_1134_S1064562423701223 crossref_primary_10_1016_j_ijhydene_2022_11_067 crossref_primary_10_1016_j_jclepro_2023_137353 crossref_primary_10_1016_j_renene_2022_07_065 crossref_primary_10_3390_en16114271 crossref_primary_10_1109_TAI_2024_3455313 crossref_primary_10_1109_ACCESS_2024_3389039 crossref_primary_10_3390_en17020516 crossref_primary_10_1016_j_energy_2023_127598 crossref_primary_10_1007_s42835_024_02059_4 crossref_primary_10_1016_j_eneco_2023_107241 crossref_primary_10_1007_s10669_024_09998_3 crossref_primary_10_3389_fenrg_2024_1308806 crossref_primary_10_3390_sym17071032 crossref_primary_10_1016_j_applthermaleng_2023_120368 crossref_primary_10_1016_j_energy_2024_131614 crossref_primary_10_1016_j_ijepes_2024_109975 crossref_primary_10_1103_zncf_n4y3 crossref_primary_10_1016_j_apenergy_2024_125201 crossref_primary_10_1016_j_eneco_2025_108878 crossref_primary_10_3389_fenrg_2023_1271934 crossref_primary_10_1016_j_apenergy_2023_122079 crossref_primary_10_1109_ACCESS_2024_3501773 crossref_primary_10_1016_j_etran_2025_100435 crossref_primary_10_1109_ACCESS_2025_3528450 crossref_primary_10_1177_01445987251360272 crossref_primary_10_3390_s23031490 crossref_primary_10_1016_j_enpol_2024_114375 crossref_primary_10_1016_j_apenergy_2025_126082 crossref_primary_10_1007_s43926_024_00075_4 crossref_primary_10_3390_forecast7020018 crossref_primary_10_3390_en16186669 crossref_primary_10_1016_j_gloei_2025_03_003 crossref_primary_10_1016_j_ijepes_2024_110029 crossref_primary_10_1016_j_energy_2025_136980 crossref_primary_10_1016_j_epsr_2025_111749 crossref_primary_10_1007_s11540_024_09789_y crossref_primary_10_1155_2023_3815063 crossref_primary_10_1016_j_irfa_2024_103238 crossref_primary_10_1016_j_eneco_2025_108651 crossref_primary_10_1016_j_apenergy_2025_126412 crossref_primary_10_1007_s00202_024_02393_w crossref_primary_10_1016_j_apenergy_2024_123241 crossref_primary_10_1108_K_07_2023_1235 crossref_primary_10_1109_ACCESS_2024_3365812 crossref_primary_10_1080_21642583_2024_2313862 crossref_primary_10_1109_TPEL_2025_3569790 crossref_primary_10_1016_j_apenergy_2023_120913 crossref_primary_10_1016_j_egyai_2025_100532 crossref_primary_10_3390_en17174436 crossref_primary_10_1016_j_est_2022_105899 |
| Cites_doi | 10.1016/j.adapen.2021.100078 10.1109/TPWRS.2008.919309 10.1613/jair.1.12228 10.1016/j.apenergy.2021.116983 10.1016/j.epsr.2021.107416 10.1016/j.patcog.2010.06.005 10.1016/j.ijforecast.2016.02.001 10.1016/j.adapen.2021.100031 10.1016/j.trc.2014.01.005 10.1142/S233568041450001X 10.1007/s10618-020-00727-3 10.1007/978-3-319-19857-6_7 10.1016/j.ijforecast.2015.12.001 10.3390/app12031353 10.1007/978-3-319-08010-9_33 10.1109/TITB.2008.2003323 10.1016/j.enconman.2010.02.023 10.1016/j.ijforecast.2014.08.008 10.1016/j.apenergy.2010.05.012 10.1109/TPWRS.2005.846054 10.1016/j.apenergy.2016.12.134 10.1016/j.eneco.2014.07.014 10.1016/j.apenergy.2015.09.087 10.1023/A:1018054314350 10.1109/JSYST.2012.2225733 10.1109/ACCESS.2021.3108629 10.1007/s10618-019-00619-1 10.1016/j.apenergy.2014.07.064 10.1198/073500102753410444 10.1016/j.apenergy.2016.03.089 10.1016/j.adapen.2021.100020 10.1145/3236009 10.1016/j.eneco.2016.08.008 10.1016/j.artint.2021.103473 10.1145/2939672.2939778 10.1016/j.eneco.2015.08.005 10.1016/j.heliyon.2018.e00938 10.1016/j.adapen.2020.100004 10.1016/S0306-2619(03)00096-5 10.1016/j.ijforecast.2015.12.002 10.1109/TPWRS.2017.2734563 10.1038/s42256-019-0138-9 10.1109/MPER.2002.4312577 10.1016/j.ejor.2003.08.037 10.1016/j.engappai.2007.02.001 10.1016/j.apenergy.2021.117695 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 7S9 L.6 1XC BXJBU IHQJB VOOES |
| DOI | 10.1016/j.apenergy.2022.118752 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société (Open Access) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences Computer Science |
| EISSN | 1872-9118 |
| ExternalDocumentID | oai:HAL:hal-03621974v1 10_1016_j_apenergy_2022_118752 S0306261922002057 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 1XC BXJBU IHQJB VOOES |
| ID | FETCH-LOGICAL-c427t-31537bcb7f5424fb482a2ece4a80207d585bf626b6cdfb9ea267c688da998d1f3 |
| ISICitedReferencesCount | 120 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000797044500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Tue Oct 14 21:04:37 EDT 2025 Sat Sep 27 22:08:00 EDT 2025 Tue Nov 18 22:34:35 EST 2025 Sat Nov 29 07:24:20 EST 2025 Fri Feb 23 02:41:00 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Electricity price forecasting Forecast evaluation Open-access benchmark Explainable AI (XAI) Machine learning |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c427t-31537bcb7f5424fb482a2ece4a80207d585bf626b6cdfb9ea267c688da998d1f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-8583-9408 0000-0003-4636-5753 0009-0001-3757-7642 |
| OpenAccessLink | https://hal.science/hal-03621974 |
| PQID | 2675565716 |
| PQPubID | 24069 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03621974v1 proquest_miscellaneous_2675565716 crossref_citationtrail_10_1016_j_apenergy_2022_118752 crossref_primary_10_1016_j_apenergy_2022_118752 elsevier_sciencedirect_doi_10_1016_j_apenergy_2022_118752 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-01 2022-05-00 20220501 2022-05 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied energy |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Shapley (b58) 1953 Zheng Y, Liu Q, Chen E, Ge Y, Zhao J. Time series classification using multi-channels deep convolutional neural networks. In: WAIM 2014. LNCS, vol. 8485. 2014, p. 298–310. Figueroa, Cartea (b83) 2015; 12 Suvarna, Katragadda, Sun, Choh, Chen, PS (b6) 2022; 5 Guidotti, Monreale, Ruggieri, Pedreschi, Turini, Giannotti (b84) 2018 Zhao, Dong, Xu, Wong (b39) 2008; 23 Bagnall, Bostrom, Large, Lines (b13) 2016 Conejo, Plazas, Espinola, Molina (b23) 2005; 20 Breiman (b68) 1996; 24 Islam, Ahmed, Barua, Begum (b19) 2022; 12 Borovykh, Bohte, Oosterlee (b75) 2018 Guidotti, Monreale, Ruggieri, Turini, Giannotti, Pedreschi (b15) 2019; 51 Molnar (b16) 2020 Kampouraki, Manis, Nikou (b64) 2009; 13 Lago, Ridder, Schutter (b30) 2018 Lago, Marcjasz, De Schutter, Weron (b11) 2021; 293 Zhang, Qi (b69) 2005; 160 Che, Wang (b66) 2014; 132 Contreras, Espinola, Nogales, Conejo (b36) 2002; 22 Uniejewski, Weron, Ziel (b80) 2018; 33 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (b67) 2011; 12 Khan, Fareed, Anwar, Naeem, Gul, Arif (b44) 2020 Bergstra, Bengio (b81) 2012; 13 Shiri, Afshar, Rahimi-Kian, Maham (b27) 2015 Sheppard (b82) 2021 Li, Yu, Shahabi, Liu (b9) 2018 Abadi, Agarwal, Barham, Brevdo, Chen, Citro (b77) 2015 Rakotomamonjy, Bach, Canu, Grandvalet (b65) 2008; 9 Ziel, Steinert, Husmann (b33) 2015; 51 Covert, Lundberg, Lee (b18) 2021; 22 Narajewski, Ziel (b5) 2020 Lago, Ridder, Vrancx, Schutter (b29) 2017 Hong, Pinson, Fan, Zareipour, Troccoli, Hyndman (b51) 2016; 32 Mei, He, Harley, Habetler, Qu (b22) 2014 Orsenigo, Vercellis (b62) 2010; 43 Kulakov (b47) 2019 Panapakidis, Dagoumas (b40) 2016; 172 He, Zhang, Ren, Sun (b60) 2015 Krizhevsky, Sutskever, Hinto (b7) 2012 Ribeiro, Singh, Guestrin (b57) 2016 Diebold, Mariano (b78) 1992; 20 Mei, Zuo, Lee, Wang, Kirtley (b2) 2021; 2 RTE (b3) 2020 Lundberg, Erion, Chen, DeGrave, Prutkin, Nair (b85) 2020; 2 PCR (b4) 2016 Vlahogianni, Karlaftis, Golias (b10) 2014; 43 Wang, Luo, Grunder, Lin, Guo (b31) 2017; 190 Sansom, Downs, Saha (b21) 2003; 22 Tan, Zhang, Wang, Xu (b34) 2010; 87 Ziel, Steinert (b45) 2016; 59 LeCun, Bengio (b72) 1998 Shi, Wang, Chen, Ma (b26) 2021; 199 Heijden, Lago, Palensky, Abraham (b28) 2021; 9 Juban, Ohlsson, Maasoumy, Poirier, Kolter (b49) 2016; 32 Burkart, Huber (b17) 2021; 70 Amabile, Bresch-Pietri, El Hajje, Labbé, Petit (b1) 2021; 2 Miralles, Dorronsoro, Diaz (b25) 2019 Lundberg, Lee (b20) 2017 Che, Wang (b35) 2010; 51 Langer, Oster, Speith, Hermanns, Kästner, Schmidt (b55) 2021; 296 Dempster, Petitjean, Webb (b86) 2019 Schnürch, Wagner (b46) 2019 Crespo Cuaresma, Hlouskova, Kossmeier, Obersteiner (b37) 2004; 77 Weron R, Misiorek A. Forecasting spot electricity prices with time series models. In: Proceedings of the European electricity market EEM-05 conference. 2005. Nowotarski, Raviv, Trück, Weron (b53) 2014; 46 Mosbah, El-Hawary (b41) 2015; 39 Ismail Fawaz, Forestier, Weber, Idoumghar, Muller (b63) 2019; 33 Nan, Bordignon, Bunn, Lisi (b54) 2014; 2 Cheng, Kuo, Shen, Huang (b76) 2020 Demir, Mincev, Kok, Paterakis (b52) 2021; 304 Chen, Zhang (b71) 2021; 1 Weron (b12) 2014; 30 Diebold (b79) 2012; 33 Abiodun, Jantan, Omolara, Dada, Mohamed, Arshad (b70) 2018; 4 Lundberg SM, Lee S. A unified approach to interpreting model predictions. In: NEURIPS. 2017, p. 4765–74. Pino, Parreno, Gomez, Priore (b24) 2008; 21 Gunduz, Ugurlu, Oksuz (b32) 2020 Anbazhagan, Kumarappan (b43) 2013; 7 Szegedy, Ioffe, Vanhoucke, Alemi (b59) 2016 Zheng, Liu, Chen, Ge, Zhao (b8) 2015 Badrinarayanan, Handa, Cipolla (b73) 2015 Ruiz, Flynn, Large, Middlehurst, Bagnall (b14) 2021; 35 Keles, Scelle, Paraschiv, Fichtner (b42) 2016; SCI Barta, Nagy, Kazi, Henk (b48) 2015 Gaillard, Goude, Nedellec (b50) 2016; 32 Batal, Sacchi, Bellazzi, Hauskrecht (b61) 2009; 22 LeCun (10.1016/j.apenergy.2022.118752_b72) 1998 Shi (10.1016/j.apenergy.2022.118752_b26) 2021; 199 Gunduz (10.1016/j.apenergy.2022.118752_b32) 2020 He (10.1016/j.apenergy.2022.118752_b60) 2015 Vlahogianni (10.1016/j.apenergy.2022.118752_b10) 2014; 43 Kampouraki (10.1016/j.apenergy.2022.118752_b64) 2009; 13 Pedregosa (10.1016/j.apenergy.2022.118752_b67) 2011; 12 Ribeiro (10.1016/j.apenergy.2022.118752_b57) 2016 Covert (10.1016/j.apenergy.2022.118752_b18) 2021; 22 10.1016/j.apenergy.2022.118752_b56 Abadi (10.1016/j.apenergy.2022.118752_b77) 2015 Weron (10.1016/j.apenergy.2022.118752_b12) 2014; 30 Lago (10.1016/j.apenergy.2022.118752_b30) 2018 PCR (10.1016/j.apenergy.2022.118752_b4) 2016 Mei (10.1016/j.apenergy.2022.118752_b2) 2021; 2 Li (10.1016/j.apenergy.2022.118752_b9) 2018 Badrinarayanan (10.1016/j.apenergy.2022.118752_b73) 2015 Zheng (10.1016/j.apenergy.2022.118752_b8) 2015 Borovykh (10.1016/j.apenergy.2022.118752_b75) 2018 Figueroa (10.1016/j.apenergy.2022.118752_b83) 2015; 12 Bagnall (10.1016/j.apenergy.2022.118752_b13) 2016 Nowotarski (10.1016/j.apenergy.2022.118752_b53) 2014; 46 Mosbah (10.1016/j.apenergy.2022.118752_b41) 2015; 39 Schnürch (10.1016/j.apenergy.2022.118752_b46) 2019 RTE (10.1016/j.apenergy.2022.118752_b3) 2020 Szegedy (10.1016/j.apenergy.2022.118752_b59) 2016 Bergstra (10.1016/j.apenergy.2022.118752_b81) 2012; 13 Narajewski (10.1016/j.apenergy.2022.118752_b5) 2020 Mei (10.1016/j.apenergy.2022.118752_b22) 2014 Ruiz (10.1016/j.apenergy.2022.118752_b14) 2021; 35 Zhao (10.1016/j.apenergy.2022.118752_b39) 2008; 23 Ziel (10.1016/j.apenergy.2022.118752_b33) 2015; 51 Wang (10.1016/j.apenergy.2022.118752_b31) 2017; 190 Orsenigo (10.1016/j.apenergy.2022.118752_b62) 2010; 43 Ziel (10.1016/j.apenergy.2022.118752_b45) 2016; 59 Krizhevsky (10.1016/j.apenergy.2022.118752_b7) 2012 Langer (10.1016/j.apenergy.2022.118752_b55) 2021; 296 Amabile (10.1016/j.apenergy.2022.118752_b1) 2021; 2 Juban (10.1016/j.apenergy.2022.118752_b49) 2016; 32 Sheppard (10.1016/j.apenergy.2022.118752_b82) 2021 Burkart (10.1016/j.apenergy.2022.118752_b17) 2021; 70 Islam (10.1016/j.apenergy.2022.118752_b19) 2022; 12 Crespo Cuaresma (10.1016/j.apenergy.2022.118752_b37) 2004; 77 Suvarna (10.1016/j.apenergy.2022.118752_b6) 2022; 5 Dempster (10.1016/j.apenergy.2022.118752_b86) 2019 Lundberg (10.1016/j.apenergy.2022.118752_b85) 2020; 2 Cheng (10.1016/j.apenergy.2022.118752_b76) 2020 Lago (10.1016/j.apenergy.2022.118752_b29) 2017 Zhang (10.1016/j.apenergy.2022.118752_b69) 2005; 160 Tan (10.1016/j.apenergy.2022.118752_b34) 2010; 87 Diebold (10.1016/j.apenergy.2022.118752_b78) 1992; 20 Lundberg (10.1016/j.apenergy.2022.118752_b20) 2017 Lago (10.1016/j.apenergy.2022.118752_b11) 2021; 293 10.1016/j.apenergy.2022.118752_b74 Rakotomamonjy (10.1016/j.apenergy.2022.118752_b65) 2008; 9 Molnar (10.1016/j.apenergy.2022.118752_b16) 2020 Hong (10.1016/j.apenergy.2022.118752_b51) 2016; 32 Pino (10.1016/j.apenergy.2022.118752_b24) 2008; 21 Diebold (10.1016/j.apenergy.2022.118752_b79) 2012; 33 Shiri (10.1016/j.apenergy.2022.118752_b27) 2015 10.1016/j.apenergy.2022.118752_b38 Batal (10.1016/j.apenergy.2022.118752_b61) 2009; 22 Demir (10.1016/j.apenergy.2022.118752_b52) 2021; 304 Kulakov (10.1016/j.apenergy.2022.118752_b47) 2019 Breiman (10.1016/j.apenergy.2022.118752_b68) 1996; 24 Conejo (10.1016/j.apenergy.2022.118752_b23) 2005; 20 Khan (10.1016/j.apenergy.2022.118752_b44) 2020 Gaillard (10.1016/j.apenergy.2022.118752_b50) 2016; 32 Guidotti (10.1016/j.apenergy.2022.118752_b15) 2019; 51 Barta (10.1016/j.apenergy.2022.118752_b48) 2015 Shapley (10.1016/j.apenergy.2022.118752_b58) 1953 Sansom (10.1016/j.apenergy.2022.118752_b21) 2003; 22 Keles (10.1016/j.apenergy.2022.118752_b42) 2016; SCI Uniejewski (10.1016/j.apenergy.2022.118752_b80) 2018; 33 Che (10.1016/j.apenergy.2022.118752_b35) 2010; 51 Anbazhagan (10.1016/j.apenergy.2022.118752_b43) 2013; 7 Chen (10.1016/j.apenergy.2022.118752_b71) 2021; 1 Heijden (10.1016/j.apenergy.2022.118752_b28) 2021; 9 Che (10.1016/j.apenergy.2022.118752_b66) 2014; 132 Guidotti (10.1016/j.apenergy.2022.118752_b84) 2018 Contreras (10.1016/j.apenergy.2022.118752_b36) 2002; 22 Ismail Fawaz (10.1016/j.apenergy.2022.118752_b63) 2019; 33 Panapakidis (10.1016/j.apenergy.2022.118752_b40) 2016; 172 Abiodun (10.1016/j.apenergy.2022.118752_b70) 2018; 4 Nan (10.1016/j.apenergy.2022.118752_b54) 2014; 2 Miralles (10.1016/j.apenergy.2022.118752_b25) 2019 |
| References_xml | – volume: 22 start-page: 344 year: 2009 end-page: 349 ident: b61 article-title: Multivariate time series classification with temporal abstractions publication-title: Int J Artif Intell Tools Archit Languages Algorithms – reference: Weron R, Misiorek A. Forecasting spot electricity prices with time series models. In: Proceedings of the European electricity market EEM-05 conference. 2005. – year: 2020 ident: b5 article-title: Changes in electricity demand pattern in europe due to COVID-19 shutdowns – year: 2015 ident: b73 article-title: SegNet: A deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling – volume: 51 start-page: 1911 year: 2010 end-page: 1917 ident: b35 article-title: Short-term electricity prices forecasting based on support vector regression and auto-regressive integrated moving average modeling publication-title: Energy Convers Manage – volume: 33 start-page: 2219 year: 2018 end-page: 2229 ident: b80 article-title: Variance stabilizing transformations for electricity spot price forecasting publication-title: IEEE Trans Power Syst – year: 2019 ident: b25 article-title: Day-ahead price forecasting for the spanish electricity market – volume: 7 start-page: 866 year: 2013 end-page: 872 ident: b43 article-title: Day-ahead deregulated electricity market price forecasting using recurrent neural network publication-title: IEEE Syst J – volume: 21 start-page: 53 year: 2008 end-page: 62 ident: b24 article-title: Forecasting next-day price of electricity in the spanish energy market using artificial neural networks publication-title: Eng Appl Artif Intell – volume: 172 start-page: 132 year: 2016 end-page: 151 ident: b40 article-title: Day-ahead electricity price forecasting via the application of artificial neural network based models publication-title: Appl Energy – volume: 293 year: 2021 ident: b11 article-title: Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark publication-title: Appl Energy – year: 1953 ident: b58 article-title: 17. A value for n-person games – year: 2019 ident: b47 article-title: X-model: further development and possible modifications – volume: 22 year: 2003 ident: b21 article-title: Evaluation of support vector machine based forecasting tool in electricity price forecasting for Australian national electricity market participants publication-title: J Electr Electron Eng Australia – volume: 43 start-page: 3787 year: 2010 end-page: 3794 ident: b62 article-title: Combining discrete SVM and fixed cardinality warping distances for multivariate time series classification publication-title: Pattern Recognit – volume: 9 start-page: 2491 year: 2008 end-page: 2521 ident: b65 article-title: SimpleMKL publication-title: J Mach Learn Res – year: 2017 ident: b29 article-title: Forecasting day-ahead electricity prices in Europe the importance of considering market integration – volume: 39 year: 2015 ident: b41 article-title: Hourly electricity price forecasting for the next month using multilayer neural network publication-title: Can J Electr Comput Eng – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: b67 article-title: Scikit-learn: Machine learning in python publication-title: J Mach Learn Res – volume: 87 start-page: 3606 year: 2010 end-page: 3610 ident: b34 article-title: Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models publication-title: Appl Energy – year: 2017 ident: b20 article-title: A unified approach to interpreting model predictions – volume: 51 start-page: 430 year: 2015 end-page: 444 ident: b33 article-title: Forecasting day ahead electricity spot prices: The impact of the exaa to other European electricity markets publication-title: Energy Econ – volume: 160 start-page: 501 year: 2005 end-page: 514 ident: b69 article-title: Neural network forecasting for seasonal and trend time series publication-title: European J Oper Res – volume: 12 start-page: 313 year: 2015 end-page: 335 ident: b83 article-title: Pricing in electricity markets: A mean reverting jump diffusion model with seasonality publication-title: Appl Math Finance – year: 2018 ident: b9 article-title: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting – start-page: 1135 year: 2016 end-page: 1144 ident: b57 article-title: ”Why should I trust you?”: Explaining the predictions of any classifier publication-title: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining – year: 2021 ident: b82 article-title: Gas shortages: what is driving Europe’s energy crisis? – volume: 4 year: 2018 ident: b70 article-title: State-of-the-art in artificial neural network applications: A survey publication-title: Heliyon – volume: 199 year: 2021 ident: b26 article-title: An effective two-stage electricity price forecasting scheme publication-title: Electr Power Syst Res – volume: 77 start-page: 87 year: 2004 end-page: 106 ident: b37 article-title: Forecasting electricity spot-prices using linear univariate time-series models publication-title: Appl Energy – volume: 33 start-page: 917 year: 2019 end-page: 963 ident: b63 article-title: Deep learning for time series classification: a review publication-title: Data Min Knowl Discov – volume: 70 start-page: 245 year: 2021 end-page: 317 ident: b17 article-title: A survey on the explainability of supervised machine learning publication-title: J Artificial Intelligence Res – year: 2020 ident: b44 article-title: Short term electricity price forecasting through convolutional neural network (CNN) publication-title: BOOK – volume: SCI start-page: 218 year: 2016 ident: b42 article-title: Extended forecast methods for day-ahead electricity prices applying artificial neural networks publication-title: Appl Energy – start-page: 67 year: 2015 end-page: 76 ident: b48 article-title: GEFCOM 2014–p-robabilistic electricity price forecasting publication-title: Intelligent decision technologies – year: 2020 ident: b76 article-title: Deep convolutional neural network model for short-term electricity price forecasting – volume: 23 start-page: 267 year: 2008 end-page: 276 ident: b39 article-title: A statistical approach for interval forecasting of the electricity price publication-title: IEEE Trans Power Syst – year: 2020 ident: b16 article-title: Interpretable machine learning – volume: 304 year: 2021 ident: b52 article-title: Data augmentation for time series regression: Applying transformations, autoencoders and adversarial networks to electricity price forecasting publication-title: Appl Energy – year: 2012 ident: b7 article-title: ImageNet classification with deep convolutional neural networks – year: 2018 ident: b75 article-title: Conditional time series forecasting with convolutional neural networks – volume: 2 start-page: 56 year: 2020 end-page: 67 ident: b85 article-title: From local explanations to global understanding with explainable AI for trees publication-title: Nat Mach Intell – volume: 2 start-page: 1 year: 2014 end-page: 26 ident: b54 article-title: The forecasting accuracy of electricity price formation models publication-title: Int J Energy Stat – year: 2015 ident: b60 article-title: Deep residual networks for image recogition – year: 2016 ident: b4 article-title: EUPHEMIA public description – volume: 296 year: 2021 ident: b55 article-title: What do we want from explainable artificial intelligence (XAI)?–A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI research publication-title: Artificial Intelligence – volume: 20 start-page: 1035 year: 2005 end-page: 1042 ident: b23 article-title: Day-ahead electricity price forecasting using the wavelet transform and ARIMA models publication-title: IEEE Trans Power Syst – year: 2019 ident: b46 article-title: Machine learning on EPEX order books insights and forecasts – volume: 51 start-page: 93:1 year: 2019 end-page: 93:42 ident: b15 article-title: A survey of methods for explaining black box models publication-title: ACM Comput Surv – volume: 5 year: 2022 ident: b6 article-title: A machine learning framework to quantify and assess the impact of COVID-19 on the power sector: An Indian context publication-title: Adv Appl Energy – volume: 32 start-page: 1038 year: 2016 end-page: 1050 ident: b50 article-title: Additive models and robust aggregation for GEFCom2014 probabilistic electric load and electricity price forecasting publication-title: Int J Forecast – volume: 59 start-page: 435 year: 2016 end-page: 454 ident: b45 article-title: Electricity price forecasting using sale and purchase curves the X-Model publication-title: Energy Econ – volume: 2 year: 2021 ident: b1 article-title: Optimizing the self-consumption of residential photovoltaic energy and quantification of the impact of production forecast uncertainties publication-title: Adv Appl Energy – volume: 22 start-page: 209:1 year: 2021 end-page: 209:90 ident: b18 article-title: Explaining by removing: A unified framework for model explanation publication-title: J Mach Learn Res – volume: 35 start-page: 401?449 year: 2021 ident: b14 article-title: The great multivariate time series classification bake off: a review and experimental evaluation of recent algorithmic advances publication-title: Data Min Knowl Discov – volume: 9 start-page: 119954 year: 2021 end-page: 119966 ident: b28 article-title: Electricity price forecasting in European day ahead markets: A greedy consideration of market integration publication-title: IEEE Access – volume: 32 start-page: 896 year: 2016 end-page: 913 ident: b51 article-title: Probabilistic energy forecasting: Global energy forecasting competition 2014 and beyond publication-title: Int J Forecast – volume: 190 start-page: 390 year: 2017 end-page: 407 ident: b31 article-title: Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm publication-title: Appl Energy – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: b68 article-title: Bagging predictors publication-title: Mach Learn – reference: Zheng Y, Liu Q, Chen E, Ge Y, Zhao J. Time series classification using multi-channels deep convolutional neural networks. In: WAIM 2014. LNCS, vol. 8485. 2014, p. 298–310. – volume: 13 year: 2012 ident: b81 article-title: Random search for hyper-parameter optimization publication-title: J Mach Learn Res – volume: 2 year: 2021 ident: b2 article-title: Stochastic optimization of multi-energy system operation considering hydrogen-based vehicle applications publication-title: Adv Appl Energy – year: 2016 ident: b13 article-title: The great time series classification bake off: An experimental evaluation of recently proposed algorithms. Extended version – year: 2020 ident: b3 article-title: Bilan électrique 2019 – year: 2015 ident: b77 article-title: TensorFlow: Large-scale machine learning on heterogeneous systems – year: 2020 ident: b32 article-title: Transfer learning for electricity price forecasting – year: 2016 ident: b59 article-title: Inception-v4, inception-ResNet and the impact of residual connections on learning – volume: 32 start-page: 1094 year: 2016 end-page: 1102 ident: b49 article-title: A multiple quantile regression approach to the wind, solar, and price tracks of gefcom2014 publication-title: Int J Forecast – volume: 13 start-page: 512 year: 2009 end-page: 518 ident: b64 article-title: Heartbeat time series classification with support vector machines publication-title: IEEE Trans Inf Technol Biomed – volume: 132 start-page: 602 year: 2014 end-page: 609 ident: b66 article-title: Short-term load forecasting using a kernel-based support vector regression combination model publication-title: Appl Energy – volume: 33 year: 2012 ident: b79 article-title: Comparing predictive accuracy, twenty years later: A personal perspective on the use and abuse of Diebold-Mariano tests publication-title: J Bus Econom Statist – volume: 30 year: 2014 ident: b12 article-title: Electricity price forecasting: A review of the state-of-the-art with a look into the future publication-title: Int J Forecast – volume: 43 start-page: 3 year: 2014 end-page: 19 ident: b10 article-title: Short-term traffic forecasting: Where we are and where we’re going publication-title: Transp Res C – start-page: 1 year: 2015 end-page: 5 ident: b27 article-title: Electricity price forecasting using support vector machines by considering oil and natural gas price impacts publication-title: Mybook – volume: 46 start-page: 395 year: 2014 end-page: 412 ident: b53 article-title: An empirical comparison of alternative schemes for combining electricity spot price forecasts publication-title: Energy Econ – year: 2019 ident: b86 article-title: ROCKET: exceptionally fast and accurate time series classification using random convolutional kernels – year: 2018 ident: b30 article-title: Forecasting day-ahead electricity prices Deep Learning approaches and empirical comparison of traditional algorithms – year: 2018 ident: b84 article-title: Local rule-based explanations of black box decision systems – volume: 22 start-page: 57 year: 2002 ident: b36 article-title: ARIMA models to predict next-day electricity prices publication-title: Power Eng Rev IEEE – year: 2015 ident: b8 article-title: Exploiting multi-channels deep convolutional neural networks for multivariate time series classification – volume: 1 year: 2021 ident: b71 article-title: Theory-guided deep-learning for electrical load forecasting (TgDLF) via ensemble long short-term memory publication-title: Adv Appl Energy – start-page: 255 year: 1998 end-page: 258 ident: b72 article-title: Convolutional networks for images, speech, and time series publication-title: The handbook of brain theory and neural networks – volume: 12 start-page: 1353 year: 2022 ident: b19 article-title: A systematic review of explainable artificial intelligence in terms of different application domains and tasks publication-title: Appl Sci – start-page: 1 year: 2014 end-page: 5 ident: b22 article-title: A random forest method for real-time price forecasting in new york electricity market publication-title: 2014 IEEE PES general meeting— conference & exposition – volume: 20 start-page: 134 year: 1992 end-page: 144 ident: b78 article-title: Comparing predictive accuracy publication-title: J Bus Econom Statist – reference: Lundberg SM, Lee S. A unified approach to interpreting model predictions. In: NEURIPS. 2017, p. 4765–74. – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.apenergy.2022.118752_b67 article-title: Scikit-learn: Machine learning in python publication-title: J Mach Learn Res – volume: 5 issn: 2666-7924 year: 2022 ident: 10.1016/j.apenergy.2022.118752_b6 article-title: A machine learning framework to quantify and assess the impact of COVID-19 on the power sector: An Indian context publication-title: Adv Appl Energy doi: 10.1016/j.adapen.2021.100078 – year: 2018 ident: 10.1016/j.apenergy.2022.118752_b9 – volume: 23 start-page: 267 year: 2008 ident: 10.1016/j.apenergy.2022.118752_b39 article-title: A statistical approach for interval forecasting of the electricity price publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2008.919309 – volume: 70 start-page: 245 year: 2021 ident: 10.1016/j.apenergy.2022.118752_b17 article-title: A survey on the explainability of supervised machine learning publication-title: J Artificial Intelligence Res doi: 10.1613/jair.1.12228 – year: 2018 ident: 10.1016/j.apenergy.2022.118752_b84 – volume: 293 issn: 0306-2619 year: 2021 ident: 10.1016/j.apenergy.2022.118752_b11 article-title: Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.116983 – volume: 199 issn: 0378-7796 year: 2021 ident: 10.1016/j.apenergy.2022.118752_b26 article-title: An effective two-stage electricity price forecasting scheme publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2021.107416 – volume: 43 start-page: 3787 year: 2010 ident: 10.1016/j.apenergy.2022.118752_b62 article-title: Combining discrete SVM and fixed cardinality warping distances for multivariate time series classification publication-title: Pattern Recognit doi: 10.1016/j.patcog.2010.06.005 – year: 2016 ident: 10.1016/j.apenergy.2022.118752_b59 – volume: 32 start-page: 896 issn: 0169-2070 issue: 3 year: 2016 ident: 10.1016/j.apenergy.2022.118752_b51 article-title: Probabilistic energy forecasting: Global energy forecasting competition 2014 and beyond publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2016.02.001 – volume: 2 issn: 2666-7924 year: 2021 ident: 10.1016/j.apenergy.2022.118752_b2 article-title: Stochastic optimization of multi-energy system operation considering hydrogen-based vehicle applications publication-title: Adv Appl Energy doi: 10.1016/j.adapen.2021.100031 – volume: 43 start-page: 3 issn: 0968-090X year: 2014 ident: 10.1016/j.apenergy.2022.118752_b10 article-title: Short-term traffic forecasting: Where we are and where we’re going publication-title: Transp Res C doi: 10.1016/j.trc.2014.01.005 – year: 2020 ident: 10.1016/j.apenergy.2022.118752_b16 – volume: 2 start-page: 1 year: 2014 ident: 10.1016/j.apenergy.2022.118752_b54 article-title: The forecasting accuracy of electricity price formation models publication-title: Int J Energy Stat doi: 10.1142/S233568041450001X – ident: 10.1016/j.apenergy.2022.118752_b38 – volume: 35 start-page: 401?449 year: 2021 ident: 10.1016/j.apenergy.2022.118752_b14 article-title: The great multivariate time series classification bake off: a review and experimental evaluation of recent algorithmic advances publication-title: Data Min Knowl Discov doi: 10.1007/s10618-020-00727-3 – year: 1953 ident: 10.1016/j.apenergy.2022.118752_b58 – year: 2015 ident: 10.1016/j.apenergy.2022.118752_b8 – volume: 22 start-page: 209:1 year: 2021 ident: 10.1016/j.apenergy.2022.118752_b18 article-title: Explaining by removing: A unified framework for model explanation publication-title: J Mach Learn Res – start-page: 1 year: 2015 ident: 10.1016/j.apenergy.2022.118752_b27 article-title: Electricity price forecasting using support vector machines by considering oil and natural gas price impacts – start-page: 67 year: 2015 ident: 10.1016/j.apenergy.2022.118752_b48 article-title: GEFCOM 2014–p-robabilistic electricity price forecasting doi: 10.1007/978-3-319-19857-6_7 – volume: 32 start-page: 1038 issn: 0169-2070 issue: 3 year: 2016 ident: 10.1016/j.apenergy.2022.118752_b50 article-title: Additive models and robust aggregation for GEFCom2014 probabilistic electric load and electricity price forecasting publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2015.12.001 – year: 2019 ident: 10.1016/j.apenergy.2022.118752_b47 – volume: 12 start-page: 1353 issue: 3 year: 2022 ident: 10.1016/j.apenergy.2022.118752_b19 article-title: A systematic review of explainable artificial intelligence in terms of different application domains and tasks publication-title: Appl Sci doi: 10.3390/app12031353 – ident: 10.1016/j.apenergy.2022.118752_b74 doi: 10.1007/978-3-319-08010-9_33 – year: 2020 ident: 10.1016/j.apenergy.2022.118752_b44 article-title: Short term electricity price forecasting through convolutional neural network (CNN) – volume: 13 start-page: 512 issn: 1558-0032 issue: 4 year: 2009 ident: 10.1016/j.apenergy.2022.118752_b64 article-title: Heartbeat time series classification with support vector machines publication-title: IEEE Trans Inf Technol Biomed doi: 10.1109/TITB.2008.2003323 – volume: 12 start-page: 313 issue: 4 year: 2015 ident: 10.1016/j.apenergy.2022.118752_b83 article-title: Pricing in electricity markets: A mean reverting jump diffusion model with seasonality publication-title: Appl Math Finance – volume: 51 start-page: 1911 year: 2010 ident: 10.1016/j.apenergy.2022.118752_b35 article-title: Short-term electricity prices forecasting based on support vector regression and auto-regressive integrated moving average modeling publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2010.02.023 – volume: 30 year: 2014 ident: 10.1016/j.apenergy.2022.118752_b12 article-title: Electricity price forecasting: A review of the state-of-the-art with a look into the future publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2014.08.008 – volume: 9 start-page: 2491 year: 2008 ident: 10.1016/j.apenergy.2022.118752_b65 article-title: SimpleMKL publication-title: J Mach Learn Res – year: 2020 ident: 10.1016/j.apenergy.2022.118752_b5 – volume: 87 start-page: 3606 issn: 0306-2619 issue: 11 year: 2010 ident: 10.1016/j.apenergy.2022.118752_b34 article-title: Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models publication-title: Appl Energy doi: 10.1016/j.apenergy.2010.05.012 – year: 2017 ident: 10.1016/j.apenergy.2022.118752_b20 – volume: 20 start-page: 1035 year: 2005 ident: 10.1016/j.apenergy.2022.118752_b23 article-title: Day-ahead electricity price forecasting using the wavelet transform and ARIMA models publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2005.846054 – volume: 190 start-page: 390 issn: 0306-2619 year: 2017 ident: 10.1016/j.apenergy.2022.118752_b31 article-title: Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.12.134 – year: 2020 ident: 10.1016/j.apenergy.2022.118752_b32 – year: 2016 ident: 10.1016/j.apenergy.2022.118752_b13 – volume: 46 start-page: 395 issn: 0140-9883 year: 2014 ident: 10.1016/j.apenergy.2022.118752_b53 article-title: An empirical comparison of alternative schemes for combining electricity spot price forecasts publication-title: Energy Econ doi: 10.1016/j.eneco.2014.07.014 – volume: 13 issue: 2 year: 2012 ident: 10.1016/j.apenergy.2022.118752_b81 article-title: Random search for hyper-parameter optimization publication-title: J Mach Learn Res – volume: SCI start-page: 218 year: 2016 ident: 10.1016/j.apenergy.2022.118752_b42 article-title: Extended forecast methods for day-ahead electricity prices applying artificial neural networks publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.09.087 – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 10.1016/j.apenergy.2022.118752_b68 article-title: Bagging predictors publication-title: Mach Learn doi: 10.1023/A:1018054314350 – volume: 7 start-page: 866 issue: 4 year: 2013 ident: 10.1016/j.apenergy.2022.118752_b43 article-title: Day-ahead deregulated electricity market price forecasting using recurrent neural network publication-title: IEEE Syst J doi: 10.1109/JSYST.2012.2225733 – volume: 9 start-page: 119954 year: 2021 ident: 10.1016/j.apenergy.2022.118752_b28 article-title: Electricity price forecasting in European day ahead markets: A greedy consideration of market integration publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3108629 – year: 2021 ident: 10.1016/j.apenergy.2022.118752_b82 – ident: 10.1016/j.apenergy.2022.118752_b56 – volume: 33 start-page: 917 issn: 1573-756X issue: 4 year: 2019 ident: 10.1016/j.apenergy.2022.118752_b63 article-title: Deep learning for time series classification: a review publication-title: Data Min Knowl Discov doi: 10.1007/s10618-019-00619-1 – volume: 132 start-page: 602 issn: 0306-2619 year: 2014 ident: 10.1016/j.apenergy.2022.118752_b66 article-title: Short-term load forecasting using a kernel-based support vector regression combination model publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.07.064 – volume: 20 start-page: 134 year: 1992 ident: 10.1016/j.apenergy.2022.118752_b78 article-title: Comparing predictive accuracy publication-title: J Bus Econom Statist doi: 10.1198/073500102753410444 – volume: 172 start-page: 132 issn: 0306-2619 year: 2016 ident: 10.1016/j.apenergy.2022.118752_b40 article-title: Day-ahead electricity price forecasting via the application of artificial neural network based models publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.03.089 – year: 2012 ident: 10.1016/j.apenergy.2022.118752_b7 – year: 2018 ident: 10.1016/j.apenergy.2022.118752_b30 – volume: 2 issn: 2666-7924 year: 2021 ident: 10.1016/j.apenergy.2022.118752_b1 article-title: Optimizing the self-consumption of residential photovoltaic energy and quantification of the impact of production forecast uncertainties publication-title: Adv Appl Energy doi: 10.1016/j.adapen.2021.100020 – volume: 51 start-page: 93:1 issue: 5 year: 2019 ident: 10.1016/j.apenergy.2022.118752_b15 article-title: A survey of methods for explaining black box models publication-title: ACM Comput Surv doi: 10.1145/3236009 – volume: 22 year: 2003 ident: 10.1016/j.apenergy.2022.118752_b21 article-title: Evaluation of support vector machine based forecasting tool in electricity price forecasting for Australian national electricity market participants publication-title: J Electr Electron Eng Australia – year: 2019 ident: 10.1016/j.apenergy.2022.118752_b86 – volume: 59 start-page: 435 issn: 0140-9883 year: 2016 ident: 10.1016/j.apenergy.2022.118752_b45 article-title: Electricity price forecasting using sale and purchase curves the X-Model publication-title: Energy Econ doi: 10.1016/j.eneco.2016.08.008 – volume: 296 year: 2021 ident: 10.1016/j.apenergy.2022.118752_b55 article-title: What do we want from explainable artificial intelligence (XAI)?–A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI research publication-title: Artificial Intelligence doi: 10.1016/j.artint.2021.103473 – start-page: 1135 year: 2016 ident: 10.1016/j.apenergy.2022.118752_b57 article-title: ”Why should I trust you?”: Explaining the predictions of any classifier doi: 10.1145/2939672.2939778 – volume: 51 start-page: 430 issn: 0140-9883 year: 2015 ident: 10.1016/j.apenergy.2022.118752_b33 article-title: Forecasting day ahead electricity spot prices: The impact of the exaa to other European electricity markets publication-title: Energy Econ doi: 10.1016/j.eneco.2015.08.005 – volume: 4 issn: 2405-8440 issue: 11 year: 2018 ident: 10.1016/j.apenergy.2022.118752_b70 article-title: State-of-the-art in artificial neural network applications: A survey publication-title: Heliyon doi: 10.1016/j.heliyon.2018.e00938 – start-page: 255 year: 1998 ident: 10.1016/j.apenergy.2022.118752_b72 article-title: Convolutional networks for images, speech, and time series – volume: 1 issn: 2666-7924 year: 2021 ident: 10.1016/j.apenergy.2022.118752_b71 article-title: Theory-guided deep-learning for electrical load forecasting (TgDLF) via ensemble long short-term memory publication-title: Adv Appl Energy doi: 10.1016/j.adapen.2020.100004 – volume: 33 year: 2012 ident: 10.1016/j.apenergy.2022.118752_b79 article-title: Comparing predictive accuracy, twenty years later: A personal perspective on the use and abuse of Diebold-Mariano tests publication-title: J Bus Econom Statist – volume: 77 start-page: 87 year: 2004 ident: 10.1016/j.apenergy.2022.118752_b37 article-title: Forecasting electricity spot-prices using linear univariate time-series models publication-title: Appl Energy doi: 10.1016/S0306-2619(03)00096-5 – start-page: 1 year: 2014 ident: 10.1016/j.apenergy.2022.118752_b22 article-title: A random forest method for real-time price forecasting in new york electricity market – year: 2015 ident: 10.1016/j.apenergy.2022.118752_b77 – year: 2018 ident: 10.1016/j.apenergy.2022.118752_b75 – volume: 32 start-page: 1094 issn: 0169-2070 issue: 3 year: 2016 ident: 10.1016/j.apenergy.2022.118752_b49 article-title: A multiple quantile regression approach to the wind, solar, and price tracks of gefcom2014 publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2015.12.002 – volume: 22 start-page: 344 year: 2009 ident: 10.1016/j.apenergy.2022.118752_b61 article-title: Multivariate time series classification with temporal abstractions publication-title: Int J Artif Intell Tools Archit Languages Algorithms – volume: 33 start-page: 2219 issue: 2 year: 2018 ident: 10.1016/j.apenergy.2022.118752_b80 article-title: Variance stabilizing transformations for electricity spot price forecasting publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2017.2734563 – volume: 2 start-page: 56 issue: 1 year: 2020 ident: 10.1016/j.apenergy.2022.118752_b85 article-title: From local explanations to global understanding with explainable AI for trees publication-title: Nat Mach Intell doi: 10.1038/s42256-019-0138-9 – year: 2019 ident: 10.1016/j.apenergy.2022.118752_b46 – year: 2020 ident: 10.1016/j.apenergy.2022.118752_b3 – year: 2015 ident: 10.1016/j.apenergy.2022.118752_b60 – year: 2020 ident: 10.1016/j.apenergy.2022.118752_b76 – volume: 39 year: 2015 ident: 10.1016/j.apenergy.2022.118752_b41 article-title: Hourly electricity price forecasting for the next month using multilayer neural network publication-title: Can J Electr Comput Eng – year: 2016 ident: 10.1016/j.apenergy.2022.118752_b4 – year: 2017 ident: 10.1016/j.apenergy.2022.118752_b29 – volume: 22 start-page: 57 year: 2002 ident: 10.1016/j.apenergy.2022.118752_b36 article-title: ARIMA models to predict next-day electricity prices publication-title: Power Eng Rev IEEE doi: 10.1109/MPER.2002.4312577 – year: 2019 ident: 10.1016/j.apenergy.2022.118752_b25 – volume: 160 start-page: 501 issue: 2 year: 2005 ident: 10.1016/j.apenergy.2022.118752_b69 article-title: Neural network forecasting for seasonal and trend time series publication-title: European J Oper Res doi: 10.1016/j.ejor.2003.08.037 – year: 2015 ident: 10.1016/j.apenergy.2022.118752_b73 – volume: 21 start-page: 53 issn: 0952-1976 issue: 1 year: 2008 ident: 10.1016/j.apenergy.2022.118752_b24 article-title: Forecasting next-day price of electricity in the spanish energy market using artificial neural networks publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2007.02.001 – volume: 304 issn: 0306-2619 year: 2021 ident: 10.1016/j.apenergy.2022.118752_b52 article-title: Data augmentation for time series regression: Applying transformations, autoencoders and adversarial networks to electricity price forecasting publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.117695 |
| SSID | ssj0002120 |
| Score | 2.67628 |
| Snippet | The price of electricity on the European market is very volatile. This is due both to its mode of production by different sources, each with its own... |
| SourceID | hal proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 118752 |
| SubjectTerms | Artificial Intelligence Computational Engineering, Finance, and Science Computer Science Data Structures and Algorithms Economics and Finance electricity electricity costs Electricity price forecasting energy Explainable AI (XAI) Forecast evaluation Humanities and Social Sciences Machine Learning markets Open-access benchmark prediction prices weather |
| Title | Electricity price forecasting on the day-ahead market using machine learning |
| URI | https://dx.doi.org/10.1016/j.apenergy.2022.118752 https://www.proquest.com/docview/2675565716 https://hal.science/hal-03621974 |
| Volume | 313 |
| WOSCitedRecordID | wos000797044500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLamLQc4IChUnbLIIG6jDJPYiZPjqAoqaFRxKNLcLNtxoNU0M5qN6b_n2Y6TUJbSA5cosvKc5X15i_0WhN6NQglKmCQBAeMhoCoWgdAjHZCCxVRLUGrS1pmdsPPzdDrNPvd6O58Ls52xqkp3u2zxX1kNY8Bskzp7D3Y3k8IAnAPT4Qhsh-M_MT63jW0ulTGvF6ZkkIkk1EqsXICzC2ssxE0gQA4Xg2ub9jzY2DWDaxtaqX0via9d09Xbq9pmCzYev_GOba-iwcRtuoNpvywaiQta161y58vvLRBNq6Q1qGSfLqTafR8J1G6D5NTNN_M7__XaBLi1TSSgz8kaJYHx0bryloSkIzFNu3NXw_YXYe7WFa6GYuHebGhuMWwJfq6efUurNbGGPoztivt5uJmHu3n20EHE4gzk4cH4Yz791GjxqC7p6d-gk13--yf6k2Gz981E2N5S9NZ6uXiCHtduBx47uDxFPV0dokedYpSH6Chvcx7h0lror56hSQdR2CIKdxCF5xUGROEGUdghCltE4RpR2CPqOfryIb84PQvqJhyBohFbg46OCZNKsjKmES0lTSMRaaWpSMHTYAW4m7IEr1gmqihlpkWUMJWkaSHAkS_Ckhyh_Wpe6WOEiWkFoEY6C1NKSSJSITKSmAEGtCHto9h_Qa7qCvWmUcqM_52HffS-oVu4Gi13UmSeQby2NJ0FyQF7d9K-BY42NzLl2c_GE27GjDUYgoO-DfvojWc4B3ltNuFEpeebFYfPE5tQgzA5ufdjv0AP27_sJdpfLzf6FXqgtuvL1fJ1jeAf7XC6Mg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electricity+price+forecasting+on+the+day-ahead+market+using+machine+learning&rft.jtitle=Applied+energy&rft.au=Tschora%2C+L%C3%A9onard&rft.au=Pierre%2C+Erwan&rft.au=Plantevit%2C+Marc&rft.au=Robardet%2C+C%C3%A9line&rft.date=2022-05-01&rft.issn=0306-2619&rft.volume=313&rft.spage=118752&rft_id=info:doi/10.1016%2Fj.apenergy.2022.118752&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2022_118752 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |