Electricity price forecasting on the day-ahead market using machine learning

The price of electricity on the European market is very volatile. This is due both to its mode of production by different sources, each with its own constraints (volume of production, dependence on the weather, or production inertia), and by the difficulty of its storage. Being able to predict the p...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied energy Ročník 313; s. 118752
Hlavní autori: Tschora, Léonard, Pierre, Erwan, Plantevit, Marc, Robardet, Céline
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.05.2022
Elsevier
Predmet:
ISSN:0306-2619, 1872-9118
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The price of electricity on the European market is very volatile. This is due both to its mode of production by different sources, each with its own constraints (volume of production, dependence on the weather, or production inertia), and by the difficulty of its storage. Being able to predict the prices of the next day is an important issue, to allow the development of intelligent uses of electricity. In this article, we investigate the capabilities of different machine learning techniques to accurately predict electricity prices. Specifically, we extend current state-of-the-art approaches by considering previously unused predictive features such as price histories of neighboring countries. We show that these features significantly improve the quality of forecasts, even in the current period when sudden changes are occurring. We also develop an analysis of the contribution of the different features in model prediction using Shap values, in order to shed light on how models make their prediction and to build user confidence in models. •Evaluation of several machine learning models for electricity price forecasting.•Methodology is rigorously detailed, the source and the data are made available.•New Machine Learning models are provided and achieved cutting edge results.•Performances of the models are increased by adding new features to the datasets.•XAI techniques are used to explain which features impact most the predictions.•Modeling multiple countries at once improves results.
AbstractList The price of electricity on the European market is very volatile. This is due both to its mode of production by different sources, each with its own constraints (volume of production, dependence on the weather, or production inertia), and by the difficulty of its storage. Being able to predict the prices of the next day is an important issue, to allow the development of intelligent uses of electricity. In this article, we investigate the capabilities of different machine learning techniques to accurately predict electricity prices. Specifically, we extend current state-of-the-art approaches by considering previously unused predictive features such as price histories of neighboring countries. We show that these features significantly improve the quality of forecasts, even in the current period when sudden changes are occurring. We also develop an analysis of the contribution of the different features in model prediction using Shap values, in order to shed light on how models make their prediction and to build user confidence in models. •Evaluation of several machine learning models for electricity price forecasting.•Methodology is rigorously detailed, the source and the data are made available.•New Machine Learning models are provided and achieved cutting edge results.•Performances of the models are increased by adding new features to the datasets.•XAI techniques are used to explain which features impact most the predictions.•Modeling multiple countries at once improves results.
The price of electricity on the European market is very volatile. This is due both to its mode of production by different sources, each with its own constraints (volume of production, dependence on the weather, or production inertia), and by the difficulty of its storage. Being able to predict the prices of the next day is an important issue, to allow the development of intelligent uses of electricity. In this article, we investigate the capabilities of different machine learning techniques to accurately predict electricity prices. Specifically, we extend current state-of-the-art approaches by considering previously unused predictive features such as price histories of neighboring countries. We show that these features significantly improve the quality of forecasts, even in the current period when sudden changes are occurring. We also develop an analysis of the contribution of the different features in model prediction using Shap values, in order to shed light on how models make their prediction and to build user confidence in models.
ArticleNumber 118752
Author Tschora, Léonard
Plantevit, Marc
Pierre, Erwan
Robardet, Céline
Author_xml – sequence: 1
  givenname: Léonard
  surname: Tschora
  fullname: Tschora, Léonard
  email: leonard.tschora@insa-lyon.fr
  organization: BCM Energy, FR-69006, Lyon, France
– sequence: 2
  givenname: Erwan
  surname: Pierre
  fullname: Pierre, Erwan
  email: erwan.pierre@bcmenergy.fr
  organization: BCM Energy, FR-69006, Lyon, France
– sequence: 3
  givenname: Marc
  surname: Plantevit
  fullname: Plantevit, Marc
  email: marc.plantevit@epita.fr
  organization: EPITA Research and Development Laboratory (LRDE), FR-94276 Le Kremlin-Bicêtre, France
– sequence: 4
  givenname: Céline
  orcidid: 0000-0002-8583-9408
  surname: Robardet
  fullname: Robardet, Céline
  email: celine.robardet@insa-lyon.fr
  organization: Univ. Lyon, INSA Lyon, CNRS, LIRIS UMR5205, FR-69621, France
BackLink https://hal.science/hal-03621974$$DView record in HAL
BookMark eNqFkTFPwzAQhS1UJNrCX0AZYUixncRJJAYQKhSpEgvM1sW5tC6pXWwXqf8eV4GFpdOT7947PX2ekJGxBgm5ZnTGKBN3mxns0KBbHWaccj5jrCoLfkbGUXlax-eIjGlGRcoFqy_IxPsNpZQzTsdkOe9RBaeVDodkFxWTzjpU4IM2q8SaJKwxaeGQwhqhTbbgPjEke3_cbkGttcGkR3AmDi7JeQe9x6tfnZKP5_n70yJdvr28Pj0uU5XzMqQZK7KyUU3ZFTnPuyavOHBUmENFOS3boiqaTnDRCNV2TY3ARalEVbVQ11XLumxKboe7a-hlLB1LHaQFLRePS3mc0UxwVpf5N4vem8G7c_Zrjz7IrfYK-x4M2r2X8XZRiKJkIlrvB6ty1nuHnYxUIGhrggPdS0blEbjcyD_g8ghcDsBjXPyL_1U7GXwYghiZfWt00iuNRmGr408E2Vp96sQPHMmg3A
CitedBy_id crossref_primary_10_3390_en17122909
crossref_primary_10_3390_en18123097
crossref_primary_10_1016_j_ribaf_2023_102132
crossref_primary_10_1016_j_energy_2024_132877
crossref_primary_10_1002_for_3185
crossref_primary_10_1016_j_est_2024_111622
crossref_primary_10_1016_j_energy_2023_127834
crossref_primary_10_3390_en18143659
crossref_primary_10_1016_j_egyr_2024_11_013
crossref_primary_10_3390_en15103494
crossref_primary_10_3390_en15165980
crossref_primary_10_1109_TSG_2024_3363049
crossref_primary_10_3390_en16186510
crossref_primary_10_1016_j_aej_2025_04_050
crossref_primary_10_1016_j_energy_2025_134784
crossref_primary_10_1016_j_energy_2023_129729
crossref_primary_10_1016_j_apenergy_2024_123863
crossref_primary_10_1016_j_ref_2023_100492
crossref_primary_10_1016_j_segan_2023_100996
crossref_primary_10_3390_a16040177
crossref_primary_10_3390_en17236106
crossref_primary_10_1007_s43615_025_00592_6
crossref_primary_10_3390_su141811745
crossref_primary_10_1016_j_apenergy_2023_121989
crossref_primary_10_1016_j_knosys_2024_112574
crossref_primary_10_1016_j_suscom_2025_101151
crossref_primary_10_3390_app142110032
crossref_primary_10_1002_for_3004
crossref_primary_10_1109_ACCESS_2022_3215532
crossref_primary_10_1007_s00202_023_02174_x
crossref_primary_10_1038_s41597_025_04750_1
crossref_primary_10_1016_j_apenergy_2024_123058
crossref_primary_10_1002_for_3119
crossref_primary_10_1016_j_eswa_2023_122502
crossref_primary_10_3934_GF_2024014
crossref_primary_10_1016_j_enpol_2024_114448
crossref_primary_10_3390_en15207504
crossref_primary_10_3390_su14084832
crossref_primary_10_3390_forecast5030028
crossref_primary_10_1016_j_energy_2024_133374
crossref_primary_10_1016_j_eswa_2025_129108
crossref_primary_10_3389_fenrg_2023_1168944
crossref_primary_10_1016_j_egyr_2024_09_073
crossref_primary_10_1016_j_energy_2023_127889
crossref_primary_10_1007_s10614_023_10416_0
crossref_primary_10_1016_j_ijepes_2024_110177
crossref_primary_10_63556_tisej_2025_1509
crossref_primary_10_1016_j_matcom_2024_10_004
crossref_primary_10_1016_j_apenergy_2024_122915
crossref_primary_10_1134_S1064562423701223
crossref_primary_10_1016_j_ijhydene_2022_11_067
crossref_primary_10_1016_j_jclepro_2023_137353
crossref_primary_10_1016_j_renene_2022_07_065
crossref_primary_10_3390_en16114271
crossref_primary_10_1109_TAI_2024_3455313
crossref_primary_10_1109_ACCESS_2024_3389039
crossref_primary_10_3390_en17020516
crossref_primary_10_1016_j_energy_2023_127598
crossref_primary_10_1007_s42835_024_02059_4
crossref_primary_10_1016_j_eneco_2023_107241
crossref_primary_10_1007_s10669_024_09998_3
crossref_primary_10_3389_fenrg_2024_1308806
crossref_primary_10_3390_sym17071032
crossref_primary_10_1016_j_applthermaleng_2023_120368
crossref_primary_10_1016_j_energy_2024_131614
crossref_primary_10_1016_j_ijepes_2024_109975
crossref_primary_10_1103_zncf_n4y3
crossref_primary_10_1016_j_apenergy_2024_125201
crossref_primary_10_1016_j_eneco_2025_108878
crossref_primary_10_3389_fenrg_2023_1271934
crossref_primary_10_1016_j_apenergy_2023_122079
crossref_primary_10_1109_ACCESS_2024_3501773
crossref_primary_10_1016_j_etran_2025_100435
crossref_primary_10_1109_ACCESS_2025_3528450
crossref_primary_10_1177_01445987251360272
crossref_primary_10_3390_s23031490
crossref_primary_10_1016_j_enpol_2024_114375
crossref_primary_10_1016_j_apenergy_2025_126082
crossref_primary_10_1007_s43926_024_00075_4
crossref_primary_10_3390_forecast7020018
crossref_primary_10_3390_en16186669
crossref_primary_10_1016_j_gloei_2025_03_003
crossref_primary_10_1016_j_ijepes_2024_110029
crossref_primary_10_1016_j_energy_2025_136980
crossref_primary_10_1016_j_epsr_2025_111749
crossref_primary_10_1007_s11540_024_09789_y
crossref_primary_10_1155_2023_3815063
crossref_primary_10_1016_j_irfa_2024_103238
crossref_primary_10_1016_j_eneco_2025_108651
crossref_primary_10_1016_j_apenergy_2025_126412
crossref_primary_10_1007_s00202_024_02393_w
crossref_primary_10_1016_j_apenergy_2024_123241
crossref_primary_10_1108_K_07_2023_1235
crossref_primary_10_1109_ACCESS_2024_3365812
crossref_primary_10_1080_21642583_2024_2313862
crossref_primary_10_1109_TPEL_2025_3569790
crossref_primary_10_1016_j_apenergy_2023_120913
crossref_primary_10_1016_j_egyai_2025_100532
crossref_primary_10_3390_en17174436
crossref_primary_10_1016_j_est_2022_105899
Cites_doi 10.1016/j.adapen.2021.100078
10.1109/TPWRS.2008.919309
10.1613/jair.1.12228
10.1016/j.apenergy.2021.116983
10.1016/j.epsr.2021.107416
10.1016/j.patcog.2010.06.005
10.1016/j.ijforecast.2016.02.001
10.1016/j.adapen.2021.100031
10.1016/j.trc.2014.01.005
10.1142/S233568041450001X
10.1007/s10618-020-00727-3
10.1007/978-3-319-19857-6_7
10.1016/j.ijforecast.2015.12.001
10.3390/app12031353
10.1007/978-3-319-08010-9_33
10.1109/TITB.2008.2003323
10.1016/j.enconman.2010.02.023
10.1016/j.ijforecast.2014.08.008
10.1016/j.apenergy.2010.05.012
10.1109/TPWRS.2005.846054
10.1016/j.apenergy.2016.12.134
10.1016/j.eneco.2014.07.014
10.1016/j.apenergy.2015.09.087
10.1023/A:1018054314350
10.1109/JSYST.2012.2225733
10.1109/ACCESS.2021.3108629
10.1007/s10618-019-00619-1
10.1016/j.apenergy.2014.07.064
10.1198/073500102753410444
10.1016/j.apenergy.2016.03.089
10.1016/j.adapen.2021.100020
10.1145/3236009
10.1016/j.eneco.2016.08.008
10.1016/j.artint.2021.103473
10.1145/2939672.2939778
10.1016/j.eneco.2015.08.005
10.1016/j.heliyon.2018.e00938
10.1016/j.adapen.2020.100004
10.1016/S0306-2619(03)00096-5
10.1016/j.ijforecast.2015.12.002
10.1109/TPWRS.2017.2734563
10.1038/s42256-019-0138-9
10.1109/MPER.2002.4312577
10.1016/j.ejor.2003.08.037
10.1016/j.engappai.2007.02.001
10.1016/j.apenergy.2021.117695
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7S9
L.6
1XC
BXJBU
IHQJB
VOOES
DOI 10.1016/j.apenergy.2022.118752
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société
HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société (Open Access)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Computer Science
EISSN 1872-9118
ExternalDocumentID oai:HAL:hal-03621974v1
10_1016_j_apenergy_2022_118752
S0306261922002057
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
1XC
BXJBU
IHQJB
VOOES
ID FETCH-LOGICAL-c427t-31537bcb7f5424fb482a2ece4a80207d585bf626b6cdfb9ea267c688da998d1f3
ISICitedReferencesCount 120
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000797044500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Tue Oct 14 21:04:37 EDT 2025
Sat Sep 27 22:08:00 EDT 2025
Tue Nov 18 22:34:35 EST 2025
Sat Nov 29 07:24:20 EST 2025
Fri Feb 23 02:41:00 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Electricity price forecasting
Forecast evaluation
Open-access benchmark
Explainable AI (XAI)
Machine learning
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c427t-31537bcb7f5424fb482a2ece4a80207d585bf626b6cdfb9ea267c688da998d1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8583-9408
0000-0003-4636-5753
0009-0001-3757-7642
OpenAccessLink https://hal.science/hal-03621974
PQID 2675565716
PQPubID 24069
ParticipantIDs hal_primary_oai_HAL_hal_03621974v1
proquest_miscellaneous_2675565716
crossref_citationtrail_10_1016_j_apenergy_2022_118752
crossref_primary_10_1016_j_apenergy_2022_118752
elsevier_sciencedirect_doi_10_1016_j_apenergy_2022_118752
PublicationCentury 2000
PublicationDate 2022-05-01
2022-05-00
20220501
2022-05
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Shapley (b58) 1953
Zheng Y, Liu Q, Chen E, Ge Y, Zhao J. Time series classification using multi-channels deep convolutional neural networks. In: WAIM 2014. LNCS, vol. 8485. 2014, p. 298–310.
Figueroa, Cartea (b83) 2015; 12
Suvarna, Katragadda, Sun, Choh, Chen, PS (b6) 2022; 5
Guidotti, Monreale, Ruggieri, Pedreschi, Turini, Giannotti (b84) 2018
Zhao, Dong, Xu, Wong (b39) 2008; 23
Bagnall, Bostrom, Large, Lines (b13) 2016
Conejo, Plazas, Espinola, Molina (b23) 2005; 20
Breiman (b68) 1996; 24
Islam, Ahmed, Barua, Begum (b19) 2022; 12
Borovykh, Bohte, Oosterlee (b75) 2018
Guidotti, Monreale, Ruggieri, Turini, Giannotti, Pedreschi (b15) 2019; 51
Molnar (b16) 2020
Kampouraki, Manis, Nikou (b64) 2009; 13
Lago, Ridder, Schutter (b30) 2018
Lago, Marcjasz, De Schutter, Weron (b11) 2021; 293
Zhang, Qi (b69) 2005; 160
Che, Wang (b66) 2014; 132
Contreras, Espinola, Nogales, Conejo (b36) 2002; 22
Uniejewski, Weron, Ziel (b80) 2018; 33
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (b67) 2011; 12
Khan, Fareed, Anwar, Naeem, Gul, Arif (b44) 2020
Bergstra, Bengio (b81) 2012; 13
Shiri, Afshar, Rahimi-Kian, Maham (b27) 2015
Sheppard (b82) 2021
Li, Yu, Shahabi, Liu (b9) 2018
Abadi, Agarwal, Barham, Brevdo, Chen, Citro (b77) 2015
Rakotomamonjy, Bach, Canu, Grandvalet (b65) 2008; 9
Ziel, Steinert, Husmann (b33) 2015; 51
Covert, Lundberg, Lee (b18) 2021; 22
Narajewski, Ziel (b5) 2020
Lago, Ridder, Vrancx, Schutter (b29) 2017
Hong, Pinson, Fan, Zareipour, Troccoli, Hyndman (b51) 2016; 32
Mei, He, Harley, Habetler, Qu (b22) 2014
Orsenigo, Vercellis (b62) 2010; 43
Kulakov (b47) 2019
Panapakidis, Dagoumas (b40) 2016; 172
He, Zhang, Ren, Sun (b60) 2015
Krizhevsky, Sutskever, Hinto (b7) 2012
Ribeiro, Singh, Guestrin (b57) 2016
Diebold, Mariano (b78) 1992; 20
Mei, Zuo, Lee, Wang, Kirtley (b2) 2021; 2
RTE (b3) 2020
Lundberg, Erion, Chen, DeGrave, Prutkin, Nair (b85) 2020; 2
PCR (b4) 2016
Vlahogianni, Karlaftis, Golias (b10) 2014; 43
Wang, Luo, Grunder, Lin, Guo (b31) 2017; 190
Sansom, Downs, Saha (b21) 2003; 22
Tan, Zhang, Wang, Xu (b34) 2010; 87
Ziel, Steinert (b45) 2016; 59
LeCun, Bengio (b72) 1998
Shi, Wang, Chen, Ma (b26) 2021; 199
Heijden, Lago, Palensky, Abraham (b28) 2021; 9
Juban, Ohlsson, Maasoumy, Poirier, Kolter (b49) 2016; 32
Burkart, Huber (b17) 2021; 70
Amabile, Bresch-Pietri, El Hajje, Labbé, Petit (b1) 2021; 2
Miralles, Dorronsoro, Diaz (b25) 2019
Lundberg, Lee (b20) 2017
Che, Wang (b35) 2010; 51
Langer, Oster, Speith, Hermanns, Kästner, Schmidt (b55) 2021; 296
Dempster, Petitjean, Webb (b86) 2019
Schnürch, Wagner (b46) 2019
Crespo Cuaresma, Hlouskova, Kossmeier, Obersteiner (b37) 2004; 77
Weron R, Misiorek A. Forecasting spot electricity prices with time series models. In: Proceedings of the European electricity market EEM-05 conference. 2005.
Nowotarski, Raviv, Trück, Weron (b53) 2014; 46
Mosbah, El-Hawary (b41) 2015; 39
Ismail Fawaz, Forestier, Weber, Idoumghar, Muller (b63) 2019; 33
Nan, Bordignon, Bunn, Lisi (b54) 2014; 2
Cheng, Kuo, Shen, Huang (b76) 2020
Demir, Mincev, Kok, Paterakis (b52) 2021; 304
Chen, Zhang (b71) 2021; 1
Weron (b12) 2014; 30
Diebold (b79) 2012; 33
Abiodun, Jantan, Omolara, Dada, Mohamed, Arshad (b70) 2018; 4
Lundberg SM, Lee S. A unified approach to interpreting model predictions. In: NEURIPS. 2017, p. 4765–74.
Pino, Parreno, Gomez, Priore (b24) 2008; 21
Gunduz, Ugurlu, Oksuz (b32) 2020
Anbazhagan, Kumarappan (b43) 2013; 7
Szegedy, Ioffe, Vanhoucke, Alemi (b59) 2016
Zheng, Liu, Chen, Ge, Zhao (b8) 2015
Badrinarayanan, Handa, Cipolla (b73) 2015
Ruiz, Flynn, Large, Middlehurst, Bagnall (b14) 2021; 35
Keles, Scelle, Paraschiv, Fichtner (b42) 2016; SCI
Barta, Nagy, Kazi, Henk (b48) 2015
Gaillard, Goude, Nedellec (b50) 2016; 32
Batal, Sacchi, Bellazzi, Hauskrecht (b61) 2009; 22
LeCun (10.1016/j.apenergy.2022.118752_b72) 1998
Shi (10.1016/j.apenergy.2022.118752_b26) 2021; 199
Gunduz (10.1016/j.apenergy.2022.118752_b32) 2020
He (10.1016/j.apenergy.2022.118752_b60) 2015
Vlahogianni (10.1016/j.apenergy.2022.118752_b10) 2014; 43
Kampouraki (10.1016/j.apenergy.2022.118752_b64) 2009; 13
Pedregosa (10.1016/j.apenergy.2022.118752_b67) 2011; 12
Ribeiro (10.1016/j.apenergy.2022.118752_b57) 2016
Covert (10.1016/j.apenergy.2022.118752_b18) 2021; 22
10.1016/j.apenergy.2022.118752_b56
Abadi (10.1016/j.apenergy.2022.118752_b77) 2015
Weron (10.1016/j.apenergy.2022.118752_b12) 2014; 30
Lago (10.1016/j.apenergy.2022.118752_b30) 2018
PCR (10.1016/j.apenergy.2022.118752_b4) 2016
Mei (10.1016/j.apenergy.2022.118752_b2) 2021; 2
Li (10.1016/j.apenergy.2022.118752_b9) 2018
Badrinarayanan (10.1016/j.apenergy.2022.118752_b73) 2015
Zheng (10.1016/j.apenergy.2022.118752_b8) 2015
Borovykh (10.1016/j.apenergy.2022.118752_b75) 2018
Figueroa (10.1016/j.apenergy.2022.118752_b83) 2015; 12
Bagnall (10.1016/j.apenergy.2022.118752_b13) 2016
Nowotarski (10.1016/j.apenergy.2022.118752_b53) 2014; 46
Mosbah (10.1016/j.apenergy.2022.118752_b41) 2015; 39
Schnürch (10.1016/j.apenergy.2022.118752_b46) 2019
RTE (10.1016/j.apenergy.2022.118752_b3) 2020
Szegedy (10.1016/j.apenergy.2022.118752_b59) 2016
Bergstra (10.1016/j.apenergy.2022.118752_b81) 2012; 13
Narajewski (10.1016/j.apenergy.2022.118752_b5) 2020
Mei (10.1016/j.apenergy.2022.118752_b22) 2014
Ruiz (10.1016/j.apenergy.2022.118752_b14) 2021; 35
Zhao (10.1016/j.apenergy.2022.118752_b39) 2008; 23
Ziel (10.1016/j.apenergy.2022.118752_b33) 2015; 51
Wang (10.1016/j.apenergy.2022.118752_b31) 2017; 190
Orsenigo (10.1016/j.apenergy.2022.118752_b62) 2010; 43
Ziel (10.1016/j.apenergy.2022.118752_b45) 2016; 59
Krizhevsky (10.1016/j.apenergy.2022.118752_b7) 2012
Langer (10.1016/j.apenergy.2022.118752_b55) 2021; 296
Amabile (10.1016/j.apenergy.2022.118752_b1) 2021; 2
Juban (10.1016/j.apenergy.2022.118752_b49) 2016; 32
Sheppard (10.1016/j.apenergy.2022.118752_b82) 2021
Burkart (10.1016/j.apenergy.2022.118752_b17) 2021; 70
Islam (10.1016/j.apenergy.2022.118752_b19) 2022; 12
Crespo Cuaresma (10.1016/j.apenergy.2022.118752_b37) 2004; 77
Suvarna (10.1016/j.apenergy.2022.118752_b6) 2022; 5
Dempster (10.1016/j.apenergy.2022.118752_b86) 2019
Lundberg (10.1016/j.apenergy.2022.118752_b85) 2020; 2
Cheng (10.1016/j.apenergy.2022.118752_b76) 2020
Lago (10.1016/j.apenergy.2022.118752_b29) 2017
Zhang (10.1016/j.apenergy.2022.118752_b69) 2005; 160
Tan (10.1016/j.apenergy.2022.118752_b34) 2010; 87
Diebold (10.1016/j.apenergy.2022.118752_b78) 1992; 20
Lundberg (10.1016/j.apenergy.2022.118752_b20) 2017
Lago (10.1016/j.apenergy.2022.118752_b11) 2021; 293
10.1016/j.apenergy.2022.118752_b74
Rakotomamonjy (10.1016/j.apenergy.2022.118752_b65) 2008; 9
Molnar (10.1016/j.apenergy.2022.118752_b16) 2020
Hong (10.1016/j.apenergy.2022.118752_b51) 2016; 32
Pino (10.1016/j.apenergy.2022.118752_b24) 2008; 21
Diebold (10.1016/j.apenergy.2022.118752_b79) 2012; 33
Shiri (10.1016/j.apenergy.2022.118752_b27) 2015
10.1016/j.apenergy.2022.118752_b38
Batal (10.1016/j.apenergy.2022.118752_b61) 2009; 22
Demir (10.1016/j.apenergy.2022.118752_b52) 2021; 304
Kulakov (10.1016/j.apenergy.2022.118752_b47) 2019
Breiman (10.1016/j.apenergy.2022.118752_b68) 1996; 24
Conejo (10.1016/j.apenergy.2022.118752_b23) 2005; 20
Khan (10.1016/j.apenergy.2022.118752_b44) 2020
Gaillard (10.1016/j.apenergy.2022.118752_b50) 2016; 32
Guidotti (10.1016/j.apenergy.2022.118752_b15) 2019; 51
Barta (10.1016/j.apenergy.2022.118752_b48) 2015
Shapley (10.1016/j.apenergy.2022.118752_b58) 1953
Sansom (10.1016/j.apenergy.2022.118752_b21) 2003; 22
Keles (10.1016/j.apenergy.2022.118752_b42) 2016; SCI
Uniejewski (10.1016/j.apenergy.2022.118752_b80) 2018; 33
Che (10.1016/j.apenergy.2022.118752_b35) 2010; 51
Anbazhagan (10.1016/j.apenergy.2022.118752_b43) 2013; 7
Chen (10.1016/j.apenergy.2022.118752_b71) 2021; 1
Heijden (10.1016/j.apenergy.2022.118752_b28) 2021; 9
Che (10.1016/j.apenergy.2022.118752_b66) 2014; 132
Guidotti (10.1016/j.apenergy.2022.118752_b84) 2018
Contreras (10.1016/j.apenergy.2022.118752_b36) 2002; 22
Ismail Fawaz (10.1016/j.apenergy.2022.118752_b63) 2019; 33
Panapakidis (10.1016/j.apenergy.2022.118752_b40) 2016; 172
Abiodun (10.1016/j.apenergy.2022.118752_b70) 2018; 4
Nan (10.1016/j.apenergy.2022.118752_b54) 2014; 2
Miralles (10.1016/j.apenergy.2022.118752_b25) 2019
References_xml – volume: 22
  start-page: 344
  year: 2009
  end-page: 349
  ident: b61
  article-title: Multivariate time series classification with temporal abstractions
  publication-title: Int J Artif Intell Tools Archit Languages Algorithms
– reference: Weron R, Misiorek A. Forecasting spot electricity prices with time series models. In: Proceedings of the European electricity market EEM-05 conference. 2005.
– year: 2020
  ident: b5
  article-title: Changes in electricity demand pattern in europe due to COVID-19 shutdowns
– year: 2015
  ident: b73
  article-title: SegNet: A deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling
– volume: 51
  start-page: 1911
  year: 2010
  end-page: 1917
  ident: b35
  article-title: Short-term electricity prices forecasting based on support vector regression and auto-regressive integrated moving average modeling
  publication-title: Energy Convers Manage
– volume: 33
  start-page: 2219
  year: 2018
  end-page: 2229
  ident: b80
  article-title: Variance stabilizing transformations for electricity spot price forecasting
  publication-title: IEEE Trans Power Syst
– year: 2019
  ident: b25
  article-title: Day-ahead price forecasting for the spanish electricity market
– volume: 7
  start-page: 866
  year: 2013
  end-page: 872
  ident: b43
  article-title: Day-ahead deregulated electricity market price forecasting using recurrent neural network
  publication-title: IEEE Syst J
– volume: 21
  start-page: 53
  year: 2008
  end-page: 62
  ident: b24
  article-title: Forecasting next-day price of electricity in the spanish energy market using artificial neural networks
  publication-title: Eng Appl Artif Intell
– volume: 172
  start-page: 132
  year: 2016
  end-page: 151
  ident: b40
  article-title: Day-ahead electricity price forecasting via the application of artificial neural network based models
  publication-title: Appl Energy
– volume: 293
  year: 2021
  ident: b11
  article-title: Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark
  publication-title: Appl Energy
– year: 1953
  ident: b58
  article-title: 17. A value for n-person games
– year: 2019
  ident: b47
  article-title: X-model: further development and possible modifications
– volume: 22
  year: 2003
  ident: b21
  article-title: Evaluation of support vector machine based forecasting tool in electricity price forecasting for Australian national electricity market participants
  publication-title: J Electr Electron Eng Australia
– volume: 43
  start-page: 3787
  year: 2010
  end-page: 3794
  ident: b62
  article-title: Combining discrete SVM and fixed cardinality warping distances for multivariate time series classification
  publication-title: Pattern Recognit
– volume: 9
  start-page: 2491
  year: 2008
  end-page: 2521
  ident: b65
  article-title: SimpleMKL
  publication-title: J Mach Learn Res
– year: 2017
  ident: b29
  article-title: Forecasting day-ahead electricity prices in Europe the importance of considering market integration
– volume: 39
  year: 2015
  ident: b41
  article-title: Hourly electricity price forecasting for the next month using multilayer neural network
  publication-title: Can J Electr Comput Eng
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b67
  article-title: Scikit-learn: Machine learning in python
  publication-title: J Mach Learn Res
– volume: 87
  start-page: 3606
  year: 2010
  end-page: 3610
  ident: b34
  article-title: Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models
  publication-title: Appl Energy
– year: 2017
  ident: b20
  article-title: A unified approach to interpreting model predictions
– volume: 51
  start-page: 430
  year: 2015
  end-page: 444
  ident: b33
  article-title: Forecasting day ahead electricity spot prices: The impact of the exaa to other European electricity markets
  publication-title: Energy Econ
– volume: 160
  start-page: 501
  year: 2005
  end-page: 514
  ident: b69
  article-title: Neural network forecasting for seasonal and trend time series
  publication-title: European J Oper Res
– volume: 12
  start-page: 313
  year: 2015
  end-page: 335
  ident: b83
  article-title: Pricing in electricity markets: A mean reverting jump diffusion model with seasonality
  publication-title: Appl Math Finance
– year: 2018
  ident: b9
  article-title: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting
– start-page: 1135
  year: 2016
  end-page: 1144
  ident: b57
  article-title: ”Why should I trust you?”: Explaining the predictions of any classifier
  publication-title: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining
– year: 2021
  ident: b82
  article-title: Gas shortages: what is driving Europe’s energy crisis?
– volume: 4
  year: 2018
  ident: b70
  article-title: State-of-the-art in artificial neural network applications: A survey
  publication-title: Heliyon
– volume: 199
  year: 2021
  ident: b26
  article-title: An effective two-stage electricity price forecasting scheme
  publication-title: Electr Power Syst Res
– volume: 77
  start-page: 87
  year: 2004
  end-page: 106
  ident: b37
  article-title: Forecasting electricity spot-prices using linear univariate time-series models
  publication-title: Appl Energy
– volume: 33
  start-page: 917
  year: 2019
  end-page: 963
  ident: b63
  article-title: Deep learning for time series classification: a review
  publication-title: Data Min Knowl Discov
– volume: 70
  start-page: 245
  year: 2021
  end-page: 317
  ident: b17
  article-title: A survey on the explainability of supervised machine learning
  publication-title: J Artificial Intelligence Res
– year: 2020
  ident: b44
  article-title: Short term electricity price forecasting through convolutional neural network (CNN)
  publication-title: BOOK
– volume: SCI
  start-page: 218
  year: 2016
  ident: b42
  article-title: Extended forecast methods for day-ahead electricity prices applying artificial neural networks
  publication-title: Appl Energy
– start-page: 67
  year: 2015
  end-page: 76
  ident: b48
  article-title: GEFCOM 2014–p-robabilistic electricity price forecasting
  publication-title: Intelligent decision technologies
– year: 2020
  ident: b76
  article-title: Deep convolutional neural network model for short-term electricity price forecasting
– volume: 23
  start-page: 267
  year: 2008
  end-page: 276
  ident: b39
  article-title: A statistical approach for interval forecasting of the electricity price
  publication-title: IEEE Trans Power Syst
– year: 2020
  ident: b16
  article-title: Interpretable machine learning
– volume: 304
  year: 2021
  ident: b52
  article-title: Data augmentation for time series regression: Applying transformations, autoencoders and adversarial networks to electricity price forecasting
  publication-title: Appl Energy
– year: 2012
  ident: b7
  article-title: ImageNet classification with deep convolutional neural networks
– year: 2018
  ident: b75
  article-title: Conditional time series forecasting with convolutional neural networks
– volume: 2
  start-page: 56
  year: 2020
  end-page: 67
  ident: b85
  article-title: From local explanations to global understanding with explainable AI for trees
  publication-title: Nat Mach Intell
– volume: 2
  start-page: 1
  year: 2014
  end-page: 26
  ident: b54
  article-title: The forecasting accuracy of electricity price formation models
  publication-title: Int J Energy Stat
– year: 2015
  ident: b60
  article-title: Deep residual networks for image recogition
– year: 2016
  ident: b4
  article-title: EUPHEMIA public description
– volume: 296
  year: 2021
  ident: b55
  article-title: What do we want from explainable artificial intelligence (XAI)?–A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI research
  publication-title: Artificial Intelligence
– volume: 20
  start-page: 1035
  year: 2005
  end-page: 1042
  ident: b23
  article-title: Day-ahead electricity price forecasting using the wavelet transform and ARIMA models
  publication-title: IEEE Trans Power Syst
– year: 2019
  ident: b46
  article-title: Machine learning on EPEX order books insights and forecasts
– volume: 51
  start-page: 93:1
  year: 2019
  end-page: 93:42
  ident: b15
  article-title: A survey of methods for explaining black box models
  publication-title: ACM Comput Surv
– volume: 5
  year: 2022
  ident: b6
  article-title: A machine learning framework to quantify and assess the impact of COVID-19 on the power sector: An Indian context
  publication-title: Adv Appl Energy
– volume: 32
  start-page: 1038
  year: 2016
  end-page: 1050
  ident: b50
  article-title: Additive models and robust aggregation for GEFCom2014 probabilistic electric load and electricity price forecasting
  publication-title: Int J Forecast
– volume: 59
  start-page: 435
  year: 2016
  end-page: 454
  ident: b45
  article-title: Electricity price forecasting using sale and purchase curves the X-Model
  publication-title: Energy Econ
– volume: 2
  year: 2021
  ident: b1
  article-title: Optimizing the self-consumption of residential photovoltaic energy and quantification of the impact of production forecast uncertainties
  publication-title: Adv Appl Energy
– volume: 22
  start-page: 209:1
  year: 2021
  end-page: 209:90
  ident: b18
  article-title: Explaining by removing: A unified framework for model explanation
  publication-title: J Mach Learn Res
– volume: 35
  start-page: 401?449
  year: 2021
  ident: b14
  article-title: The great multivariate time series classification bake off: a review and experimental evaluation of recent algorithmic advances
  publication-title: Data Min Knowl Discov
– volume: 9
  start-page: 119954
  year: 2021
  end-page: 119966
  ident: b28
  article-title: Electricity price forecasting in European day ahead markets: A greedy consideration of market integration
  publication-title: IEEE Access
– volume: 32
  start-page: 896
  year: 2016
  end-page: 913
  ident: b51
  article-title: Probabilistic energy forecasting: Global energy forecasting competition 2014 and beyond
  publication-title: Int J Forecast
– volume: 190
  start-page: 390
  year: 2017
  end-page: 407
  ident: b31
  article-title: Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm
  publication-title: Appl Energy
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: b68
  article-title: Bagging predictors
  publication-title: Mach Learn
– reference: Zheng Y, Liu Q, Chen E, Ge Y, Zhao J. Time series classification using multi-channels deep convolutional neural networks. In: WAIM 2014. LNCS, vol. 8485. 2014, p. 298–310.
– volume: 13
  year: 2012
  ident: b81
  article-title: Random search for hyper-parameter optimization
  publication-title: J Mach Learn Res
– volume: 2
  year: 2021
  ident: b2
  article-title: Stochastic optimization of multi-energy system operation considering hydrogen-based vehicle applications
  publication-title: Adv Appl Energy
– year: 2016
  ident: b13
  article-title: The great time series classification bake off: An experimental evaluation of recently proposed algorithms. Extended version
– year: 2020
  ident: b3
  article-title: Bilan électrique 2019
– year: 2015
  ident: b77
  article-title: TensorFlow: Large-scale machine learning on heterogeneous systems
– year: 2020
  ident: b32
  article-title: Transfer learning for electricity price forecasting
– year: 2016
  ident: b59
  article-title: Inception-v4, inception-ResNet and the impact of residual connections on learning
– volume: 32
  start-page: 1094
  year: 2016
  end-page: 1102
  ident: b49
  article-title: A multiple quantile regression approach to the wind, solar, and price tracks of gefcom2014
  publication-title: Int J Forecast
– volume: 13
  start-page: 512
  year: 2009
  end-page: 518
  ident: b64
  article-title: Heartbeat time series classification with support vector machines
  publication-title: IEEE Trans Inf Technol Biomed
– volume: 132
  start-page: 602
  year: 2014
  end-page: 609
  ident: b66
  article-title: Short-term load forecasting using a kernel-based support vector regression combination model
  publication-title: Appl Energy
– volume: 33
  year: 2012
  ident: b79
  article-title: Comparing predictive accuracy, twenty years later: A personal perspective on the use and abuse of Diebold-Mariano tests
  publication-title: J Bus Econom Statist
– volume: 30
  year: 2014
  ident: b12
  article-title: Electricity price forecasting: A review of the state-of-the-art with a look into the future
  publication-title: Int J Forecast
– volume: 43
  start-page: 3
  year: 2014
  end-page: 19
  ident: b10
  article-title: Short-term traffic forecasting: Where we are and where we’re going
  publication-title: Transp Res C
– start-page: 1
  year: 2015
  end-page: 5
  ident: b27
  article-title: Electricity price forecasting using support vector machines by considering oil and natural gas price impacts
  publication-title: Mybook
– volume: 46
  start-page: 395
  year: 2014
  end-page: 412
  ident: b53
  article-title: An empirical comparison of alternative schemes for combining electricity spot price forecasts
  publication-title: Energy Econ
– year: 2019
  ident: b86
  article-title: ROCKET: exceptionally fast and accurate time series classification using random convolutional kernels
– year: 2018
  ident: b30
  article-title: Forecasting day-ahead electricity prices Deep Learning approaches and empirical comparison of traditional algorithms
– year: 2018
  ident: b84
  article-title: Local rule-based explanations of black box decision systems
– volume: 22
  start-page: 57
  year: 2002
  ident: b36
  article-title: ARIMA models to predict next-day electricity prices
  publication-title: Power Eng Rev IEEE
– year: 2015
  ident: b8
  article-title: Exploiting multi-channels deep convolutional neural networks for multivariate time series classification
– volume: 1
  year: 2021
  ident: b71
  article-title: Theory-guided deep-learning for electrical load forecasting (TgDLF) via ensemble long short-term memory
  publication-title: Adv Appl Energy
– start-page: 255
  year: 1998
  end-page: 258
  ident: b72
  article-title: Convolutional networks for images, speech, and time series
  publication-title: The handbook of brain theory and neural networks
– volume: 12
  start-page: 1353
  year: 2022
  ident: b19
  article-title: A systematic review of explainable artificial intelligence in terms of different application domains and tasks
  publication-title: Appl Sci
– start-page: 1
  year: 2014
  end-page: 5
  ident: b22
  article-title: A random forest method for real-time price forecasting in new york electricity market
  publication-title: 2014 IEEE PES general meeting— conference & exposition
– volume: 20
  start-page: 134
  year: 1992
  end-page: 144
  ident: b78
  article-title: Comparing predictive accuracy
  publication-title: J Bus Econom Statist
– reference: Lundberg SM, Lee S. A unified approach to interpreting model predictions. In: NEURIPS. 2017, p. 4765–74.
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.apenergy.2022.118752_b67
  article-title: Scikit-learn: Machine learning in python
  publication-title: J Mach Learn Res
– volume: 5
  issn: 2666-7924
  year: 2022
  ident: 10.1016/j.apenergy.2022.118752_b6
  article-title: A machine learning framework to quantify and assess the impact of COVID-19 on the power sector: An Indian context
  publication-title: Adv Appl Energy
  doi: 10.1016/j.adapen.2021.100078
– year: 2018
  ident: 10.1016/j.apenergy.2022.118752_b9
– volume: 23
  start-page: 267
  year: 2008
  ident: 10.1016/j.apenergy.2022.118752_b39
  article-title: A statistical approach for interval forecasting of the electricity price
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2008.919309
– volume: 70
  start-page: 245
  year: 2021
  ident: 10.1016/j.apenergy.2022.118752_b17
  article-title: A survey on the explainability of supervised machine learning
  publication-title: J Artificial Intelligence Res
  doi: 10.1613/jair.1.12228
– year: 2018
  ident: 10.1016/j.apenergy.2022.118752_b84
– volume: 293
  issn: 0306-2619
  year: 2021
  ident: 10.1016/j.apenergy.2022.118752_b11
  article-title: Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.116983
– volume: 199
  issn: 0378-7796
  year: 2021
  ident: 10.1016/j.apenergy.2022.118752_b26
  article-title: An effective two-stage electricity price forecasting scheme
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2021.107416
– volume: 43
  start-page: 3787
  year: 2010
  ident: 10.1016/j.apenergy.2022.118752_b62
  article-title: Combining discrete SVM and fixed cardinality warping distances for multivariate time series classification
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2010.06.005
– year: 2016
  ident: 10.1016/j.apenergy.2022.118752_b59
– volume: 32
  start-page: 896
  issn: 0169-2070
  issue: 3
  year: 2016
  ident: 10.1016/j.apenergy.2022.118752_b51
  article-title: Probabilistic energy forecasting: Global energy forecasting competition 2014 and beyond
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2016.02.001
– volume: 2
  issn: 2666-7924
  year: 2021
  ident: 10.1016/j.apenergy.2022.118752_b2
  article-title: Stochastic optimization of multi-energy system operation considering hydrogen-based vehicle applications
  publication-title: Adv Appl Energy
  doi: 10.1016/j.adapen.2021.100031
– volume: 43
  start-page: 3
  issn: 0968-090X
  year: 2014
  ident: 10.1016/j.apenergy.2022.118752_b10
  article-title: Short-term traffic forecasting: Where we are and where we’re going
  publication-title: Transp Res C
  doi: 10.1016/j.trc.2014.01.005
– year: 2020
  ident: 10.1016/j.apenergy.2022.118752_b16
– volume: 2
  start-page: 1
  year: 2014
  ident: 10.1016/j.apenergy.2022.118752_b54
  article-title: The forecasting accuracy of electricity price formation models
  publication-title: Int J Energy Stat
  doi: 10.1142/S233568041450001X
– ident: 10.1016/j.apenergy.2022.118752_b38
– volume: 35
  start-page: 401?449
  year: 2021
  ident: 10.1016/j.apenergy.2022.118752_b14
  article-title: The great multivariate time series classification bake off: a review and experimental evaluation of recent algorithmic advances
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-020-00727-3
– year: 1953
  ident: 10.1016/j.apenergy.2022.118752_b58
– year: 2015
  ident: 10.1016/j.apenergy.2022.118752_b8
– volume: 22
  start-page: 209:1
  year: 2021
  ident: 10.1016/j.apenergy.2022.118752_b18
  article-title: Explaining by removing: A unified framework for model explanation
  publication-title: J Mach Learn Res
– start-page: 1
  year: 2015
  ident: 10.1016/j.apenergy.2022.118752_b27
  article-title: Electricity price forecasting using support vector machines by considering oil and natural gas price impacts
– start-page: 67
  year: 2015
  ident: 10.1016/j.apenergy.2022.118752_b48
  article-title: GEFCOM 2014–p-robabilistic electricity price forecasting
  doi: 10.1007/978-3-319-19857-6_7
– volume: 32
  start-page: 1038
  issn: 0169-2070
  issue: 3
  year: 2016
  ident: 10.1016/j.apenergy.2022.118752_b50
  article-title: Additive models and robust aggregation for GEFCom2014 probabilistic electric load and electricity price forecasting
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2015.12.001
– year: 2019
  ident: 10.1016/j.apenergy.2022.118752_b47
– volume: 12
  start-page: 1353
  issue: 3
  year: 2022
  ident: 10.1016/j.apenergy.2022.118752_b19
  article-title: A systematic review of explainable artificial intelligence in terms of different application domains and tasks
  publication-title: Appl Sci
  doi: 10.3390/app12031353
– ident: 10.1016/j.apenergy.2022.118752_b74
  doi: 10.1007/978-3-319-08010-9_33
– year: 2020
  ident: 10.1016/j.apenergy.2022.118752_b44
  article-title: Short term electricity price forecasting through convolutional neural network (CNN)
– volume: 13
  start-page: 512
  issn: 1558-0032
  issue: 4
  year: 2009
  ident: 10.1016/j.apenergy.2022.118752_b64
  article-title: Heartbeat time series classification with support vector machines
  publication-title: IEEE Trans Inf Technol Biomed
  doi: 10.1109/TITB.2008.2003323
– volume: 12
  start-page: 313
  issue: 4
  year: 2015
  ident: 10.1016/j.apenergy.2022.118752_b83
  article-title: Pricing in electricity markets: A mean reverting jump diffusion model with seasonality
  publication-title: Appl Math Finance
– volume: 51
  start-page: 1911
  year: 2010
  ident: 10.1016/j.apenergy.2022.118752_b35
  article-title: Short-term electricity prices forecasting based on support vector regression and auto-regressive integrated moving average modeling
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2010.02.023
– volume: 30
  year: 2014
  ident: 10.1016/j.apenergy.2022.118752_b12
  article-title: Electricity price forecasting: A review of the state-of-the-art with a look into the future
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2014.08.008
– volume: 9
  start-page: 2491
  year: 2008
  ident: 10.1016/j.apenergy.2022.118752_b65
  article-title: SimpleMKL
  publication-title: J Mach Learn Res
– year: 2020
  ident: 10.1016/j.apenergy.2022.118752_b5
– volume: 87
  start-page: 3606
  issn: 0306-2619
  issue: 11
  year: 2010
  ident: 10.1016/j.apenergy.2022.118752_b34
  article-title: Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.05.012
– year: 2017
  ident: 10.1016/j.apenergy.2022.118752_b20
– volume: 20
  start-page: 1035
  year: 2005
  ident: 10.1016/j.apenergy.2022.118752_b23
  article-title: Day-ahead electricity price forecasting using the wavelet transform and ARIMA models
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2005.846054
– volume: 190
  start-page: 390
  issn: 0306-2619
  year: 2017
  ident: 10.1016/j.apenergy.2022.118752_b31
  article-title: Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.12.134
– year: 2020
  ident: 10.1016/j.apenergy.2022.118752_b32
– year: 2016
  ident: 10.1016/j.apenergy.2022.118752_b13
– volume: 46
  start-page: 395
  issn: 0140-9883
  year: 2014
  ident: 10.1016/j.apenergy.2022.118752_b53
  article-title: An empirical comparison of alternative schemes for combining electricity spot price forecasts
  publication-title: Energy Econ
  doi: 10.1016/j.eneco.2014.07.014
– volume: 13
  issue: 2
  year: 2012
  ident: 10.1016/j.apenergy.2022.118752_b81
  article-title: Random search for hyper-parameter optimization
  publication-title: J Mach Learn Res
– volume: SCI
  start-page: 218
  year: 2016
  ident: 10.1016/j.apenergy.2022.118752_b42
  article-title: Extended forecast methods for day-ahead electricity prices applying artificial neural networks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.09.087
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.1016/j.apenergy.2022.118752_b68
  article-title: Bagging predictors
  publication-title: Mach Learn
  doi: 10.1023/A:1018054314350
– volume: 7
  start-page: 866
  issue: 4
  year: 2013
  ident: 10.1016/j.apenergy.2022.118752_b43
  article-title: Day-ahead deregulated electricity market price forecasting using recurrent neural network
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2012.2225733
– volume: 9
  start-page: 119954
  year: 2021
  ident: 10.1016/j.apenergy.2022.118752_b28
  article-title: Electricity price forecasting in European day ahead markets: A greedy consideration of market integration
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3108629
– year: 2021
  ident: 10.1016/j.apenergy.2022.118752_b82
– ident: 10.1016/j.apenergy.2022.118752_b56
– volume: 33
  start-page: 917
  issn: 1573-756X
  issue: 4
  year: 2019
  ident: 10.1016/j.apenergy.2022.118752_b63
  article-title: Deep learning for time series classification: a review
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-019-00619-1
– volume: 132
  start-page: 602
  issn: 0306-2619
  year: 2014
  ident: 10.1016/j.apenergy.2022.118752_b66
  article-title: Short-term load forecasting using a kernel-based support vector regression combination model
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.07.064
– volume: 20
  start-page: 134
  year: 1992
  ident: 10.1016/j.apenergy.2022.118752_b78
  article-title: Comparing predictive accuracy
  publication-title: J Bus Econom Statist
  doi: 10.1198/073500102753410444
– volume: 172
  start-page: 132
  issn: 0306-2619
  year: 2016
  ident: 10.1016/j.apenergy.2022.118752_b40
  article-title: Day-ahead electricity price forecasting via the application of artificial neural network based models
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.03.089
– year: 2012
  ident: 10.1016/j.apenergy.2022.118752_b7
– year: 2018
  ident: 10.1016/j.apenergy.2022.118752_b30
– volume: 2
  issn: 2666-7924
  year: 2021
  ident: 10.1016/j.apenergy.2022.118752_b1
  article-title: Optimizing the self-consumption of residential photovoltaic energy and quantification of the impact of production forecast uncertainties
  publication-title: Adv Appl Energy
  doi: 10.1016/j.adapen.2021.100020
– volume: 51
  start-page: 93:1
  issue: 5
  year: 2019
  ident: 10.1016/j.apenergy.2022.118752_b15
  article-title: A survey of methods for explaining black box models
  publication-title: ACM Comput Surv
  doi: 10.1145/3236009
– volume: 22
  year: 2003
  ident: 10.1016/j.apenergy.2022.118752_b21
  article-title: Evaluation of support vector machine based forecasting tool in electricity price forecasting for Australian national electricity market participants
  publication-title: J Electr Electron Eng Australia
– year: 2019
  ident: 10.1016/j.apenergy.2022.118752_b86
– volume: 59
  start-page: 435
  issn: 0140-9883
  year: 2016
  ident: 10.1016/j.apenergy.2022.118752_b45
  article-title: Electricity price forecasting using sale and purchase curves the X-Model
  publication-title: Energy Econ
  doi: 10.1016/j.eneco.2016.08.008
– volume: 296
  year: 2021
  ident: 10.1016/j.apenergy.2022.118752_b55
  article-title: What do we want from explainable artificial intelligence (XAI)?–A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI research
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2021.103473
– start-page: 1135
  year: 2016
  ident: 10.1016/j.apenergy.2022.118752_b57
  article-title: ”Why should I trust you?”: Explaining the predictions of any classifier
  doi: 10.1145/2939672.2939778
– volume: 51
  start-page: 430
  issn: 0140-9883
  year: 2015
  ident: 10.1016/j.apenergy.2022.118752_b33
  article-title: Forecasting day ahead electricity spot prices: The impact of the exaa to other European electricity markets
  publication-title: Energy Econ
  doi: 10.1016/j.eneco.2015.08.005
– volume: 4
  issn: 2405-8440
  issue: 11
  year: 2018
  ident: 10.1016/j.apenergy.2022.118752_b70
  article-title: State-of-the-art in artificial neural network applications: A survey
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2018.e00938
– start-page: 255
  year: 1998
  ident: 10.1016/j.apenergy.2022.118752_b72
  article-title: Convolutional networks for images, speech, and time series
– volume: 1
  issn: 2666-7924
  year: 2021
  ident: 10.1016/j.apenergy.2022.118752_b71
  article-title: Theory-guided deep-learning for electrical load forecasting (TgDLF) via ensemble long short-term memory
  publication-title: Adv Appl Energy
  doi: 10.1016/j.adapen.2020.100004
– volume: 33
  year: 2012
  ident: 10.1016/j.apenergy.2022.118752_b79
  article-title: Comparing predictive accuracy, twenty years later: A personal perspective on the use and abuse of Diebold-Mariano tests
  publication-title: J Bus Econom Statist
– volume: 77
  start-page: 87
  year: 2004
  ident: 10.1016/j.apenergy.2022.118752_b37
  article-title: Forecasting electricity spot-prices using linear univariate time-series models
  publication-title: Appl Energy
  doi: 10.1016/S0306-2619(03)00096-5
– start-page: 1
  year: 2014
  ident: 10.1016/j.apenergy.2022.118752_b22
  article-title: A random forest method for real-time price forecasting in new york electricity market
– year: 2015
  ident: 10.1016/j.apenergy.2022.118752_b77
– year: 2018
  ident: 10.1016/j.apenergy.2022.118752_b75
– volume: 32
  start-page: 1094
  issn: 0169-2070
  issue: 3
  year: 2016
  ident: 10.1016/j.apenergy.2022.118752_b49
  article-title: A multiple quantile regression approach to the wind, solar, and price tracks of gefcom2014
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2015.12.002
– volume: 22
  start-page: 344
  year: 2009
  ident: 10.1016/j.apenergy.2022.118752_b61
  article-title: Multivariate time series classification with temporal abstractions
  publication-title: Int J Artif Intell Tools Archit Languages Algorithms
– volume: 33
  start-page: 2219
  issue: 2
  year: 2018
  ident: 10.1016/j.apenergy.2022.118752_b80
  article-title: Variance stabilizing transformations for electricity spot price forecasting
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2017.2734563
– volume: 2
  start-page: 56
  issue: 1
  year: 2020
  ident: 10.1016/j.apenergy.2022.118752_b85
  article-title: From local explanations to global understanding with explainable AI for trees
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-019-0138-9
– year: 2019
  ident: 10.1016/j.apenergy.2022.118752_b46
– year: 2020
  ident: 10.1016/j.apenergy.2022.118752_b3
– year: 2015
  ident: 10.1016/j.apenergy.2022.118752_b60
– year: 2020
  ident: 10.1016/j.apenergy.2022.118752_b76
– volume: 39
  year: 2015
  ident: 10.1016/j.apenergy.2022.118752_b41
  article-title: Hourly electricity price forecasting for the next month using multilayer neural network
  publication-title: Can J Electr Comput Eng
– year: 2016
  ident: 10.1016/j.apenergy.2022.118752_b4
– year: 2017
  ident: 10.1016/j.apenergy.2022.118752_b29
– volume: 22
  start-page: 57
  year: 2002
  ident: 10.1016/j.apenergy.2022.118752_b36
  article-title: ARIMA models to predict next-day electricity prices
  publication-title: Power Eng Rev IEEE
  doi: 10.1109/MPER.2002.4312577
– year: 2019
  ident: 10.1016/j.apenergy.2022.118752_b25
– volume: 160
  start-page: 501
  issue: 2
  year: 2005
  ident: 10.1016/j.apenergy.2022.118752_b69
  article-title: Neural network forecasting for seasonal and trend time series
  publication-title: European J Oper Res
  doi: 10.1016/j.ejor.2003.08.037
– year: 2015
  ident: 10.1016/j.apenergy.2022.118752_b73
– volume: 21
  start-page: 53
  issn: 0952-1976
  issue: 1
  year: 2008
  ident: 10.1016/j.apenergy.2022.118752_b24
  article-title: Forecasting next-day price of electricity in the spanish energy market using artificial neural networks
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2007.02.001
– volume: 304
  issn: 0306-2619
  year: 2021
  ident: 10.1016/j.apenergy.2022.118752_b52
  article-title: Data augmentation for time series regression: Applying transformations, autoencoders and adversarial networks to electricity price forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.117695
SSID ssj0002120
Score 2.67628
Snippet The price of electricity on the European market is very volatile. This is due both to its mode of production by different sources, each with its own...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118752
SubjectTerms Artificial Intelligence
Computational Engineering, Finance, and Science
Computer Science
Data Structures and Algorithms
Economics and Finance
electricity
electricity costs
Electricity price forecasting
energy
Explainable AI (XAI)
Forecast evaluation
Humanities and Social Sciences
Machine Learning
markets
Open-access benchmark
prediction
prices
weather
Title Electricity price forecasting on the day-ahead market using machine learning
URI https://dx.doi.org/10.1016/j.apenergy.2022.118752
https://www.proquest.com/docview/2675565716
https://hal.science/hal-03621974
Volume 313
WOSCitedRecordID wos000797044500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLamLQc4IChUnbLIIG6jDJPYiZPjqAoqaFRxKNLcLNtxoNU0M5qN6b_n2Y6TUJbSA5cosvKc5X15i_0WhN6NQglKmCQBAeMhoCoWgdAjHZCCxVRLUGrS1pmdsPPzdDrNPvd6O58Ls52xqkp3u2zxX1kNY8Bskzp7D3Y3k8IAnAPT4Qhsh-M_MT63jW0ulTGvF6ZkkIkk1EqsXICzC2ssxE0gQA4Xg2ub9jzY2DWDaxtaqX0via9d09Xbq9pmCzYev_GOba-iwcRtuoNpvywaiQta161y58vvLRBNq6Q1qGSfLqTafR8J1G6D5NTNN_M7__XaBLi1TSSgz8kaJYHx0bryloSkIzFNu3NXw_YXYe7WFa6GYuHebGhuMWwJfq6efUurNbGGPoztivt5uJmHu3n20EHE4gzk4cH4Yz791GjxqC7p6d-gk13--yf6k2Gz981E2N5S9NZ6uXiCHtduBx47uDxFPV0dokedYpSH6Chvcx7h0lror56hSQdR2CIKdxCF5xUGROEGUdghCltE4RpR2CPqOfryIb84PQvqJhyBohFbg46OCZNKsjKmES0lTSMRaaWpSMHTYAW4m7IEr1gmqihlpkWUMJWkaSHAkS_Ckhyh_Wpe6WOEiWkFoEY6C1NKSSJSITKSmAEGtCHto9h_Qa7qCvWmUcqM_52HffS-oVu4Gi13UmSeQby2NJ0FyQF7d9K-BY42NzLl2c_GE27GjDUYgoO-DfvojWc4B3ltNuFEpeebFYfPE5tQgzA5ufdjv0AP27_sJdpfLzf6FXqgtuvL1fJ1jeAf7XC6Mg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electricity+price+forecasting+on+the+day-ahead+market+using+machine+learning&rft.jtitle=Applied+energy&rft.au=Tschora%2C+L%C3%A9onard&rft.au=Pierre%2C+Erwan&rft.au=Plantevit%2C+Marc&rft.au=Robardet%2C+C%C3%A9line&rft.date=2022-05-01&rft.issn=0306-2619&rft.volume=313&rft.spage=118752&rft_id=info:doi/10.1016%2Fj.apenergy.2022.118752&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2022_118752
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon