Improving binary crow search algorithm for feature selection

The feature selection (FS) process has an essential effect in solving many problems such as prediction, regression, and classification to get the optimal solution. For solving classification problems, selecting the most relevant features of a dataset leads to better classification accuracy with low...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of intelligent systems Ročník 32; číslo 1; s. 1598 - 610
Hlavní autoři: Hamed Alnaish, Zakaria A., Algamal, Zakariya Yahya
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin De Gruyter 01.01.2023
Walter de Gruyter GmbH
Témata:
ISSN:2191-026X, 0334-1860, 2191-026X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The feature selection (FS) process has an essential effect in solving many problems such as prediction, regression, and classification to get the optimal solution. For solving classification problems, selecting the most relevant features of a dataset leads to better classification accuracy with low training time. In this work, a hybrid binary crow search algorithm (BCSA) based quasi-oppositional (QO) method is proposed as an FS method based on wrapper mode to solve a classification problem. The QO method was employed in tuning the value of flight length in the BCSA which is controlling the ability of the crows to find the optimal solution. To evaluate the performance of the proposed method, four benchmark datasets have been used which are human intestinal absorption, HDAC8 inhibitory activity (IC50), P-glycoproteins, and antimicrobial. Accordingly, the experimental results are discussed and compared against other standard algorithms based on the accuracy rate, the average number of selected features, and running time. The results have proven the robustness of the proposed method relied on the high obtained value of accuracy (84.93–95.92%), -mean (0.853–0.971%), and average selected features (4.36–11.8) with a relatively low computational time. Moreover, to investigate the effectiveness of the proposed method, Friedman test was used which declared that the performance supremacy of the proposed BCSA-QO with four datasets was very evident against BCSA and CSA by selecting the minimum relevant features and producing the highest accuracy classification rate. The obtained results verify the usefulness of the proposed method (BCSA-QO) in the FS with classification in terms of high classification accuracy, a small number of selected features, and low computational time.
AbstractList The feature selection (FS) process has an essential effect in solving many problems such as prediction, regression, and classification to get the optimal solution. For solving classification problems, selecting the most relevant features of a dataset leads to better classification accuracy with low training time. In this work, a hybrid binary crow search algorithm (BCSA) based quasi-oppositional (QO) method is proposed as an FS method based on wrapper mode to solve a classification problem. The QO method was employed in tuning the value of flight length in the BCSA which is controlling the ability of the crows to find the optimal solution. To evaluate the performance of the proposed method, four benchmark datasets have been used which are human intestinal absorption, HDAC8 inhibitory activity (IC50), P-glycoproteins, and antimicrobial. Accordingly, the experimental results are discussed and compared against other standard algorithms based on the accuracy rate, the average number of selected features, and running time. The results have proven the robustness of the proposed method relied on the high obtained value of accuracy (84.93–95.92%), G-mean (0.853–0.971%), and average selected features (4.36–11.8) with a relatively low computational time. Moreover, to investigate the effectiveness of the proposed method, Friedman test was used which declared that the performance supremacy of the proposed BCSA-QO with four datasets was very evident against BCSA and CSA by selecting the minimum relevant features and producing the highest accuracy classification rate. The obtained results verify the usefulness of the proposed method (BCSA-QO) in the FS with classification in terms of high classification accuracy, a small number of selected features, and low computational time.
The feature selection (FS) process has an essential effect in solving many problems such as prediction, regression, and classification to get the optimal solution. For solving classification problems, selecting the most relevant features of a dataset leads to better classification accuracy with low training time. In this work, a hybrid binary crow search algorithm (BCSA) based quasi-oppositional (QO) method is proposed as an FS method based on wrapper mode to solve a classification problem. The QO method was employed in tuning the value of flight length in the BCSA which is controlling the ability of the crows to find the optimal solution. To evaluate the performance of the proposed method, four benchmark datasets have been used which are human intestinal absorption, HDAC8 inhibitory activity (IC50), P-glycoproteins, and antimicrobial. Accordingly, the experimental results are discussed and compared against other standard algorithms based on the accuracy rate, the average number of selected features, and running time. The results have proven the robustness of the proposed method relied on the high obtained value of accuracy (84.93–95.92%), G -mean (0.853–0.971%), and average selected features (4.36–11.8) with a relatively low computational time. Moreover, to investigate the effectiveness of the proposed method, Friedman test was used which declared that the performance supremacy of the proposed BCSA-QO with four datasets was very evident against BCSA and CSA by selecting the minimum relevant features and producing the highest accuracy classification rate. The obtained results verify the usefulness of the proposed method (BCSA-QO) in the FS with classification in terms of high classification accuracy, a small number of selected features, and low computational time.
The feature selection (FS) process has an essential effect in solving many problems such as prediction, regression, and classification to get the optimal solution. For solving classification problems, selecting the most relevant features of a dataset leads to better classification accuracy with low training time. In this work, a hybrid binary crow search algorithm (BCSA) based quasi-oppositional (QO) method is proposed as an FS method based on wrapper mode to solve a classification problem. The QO method was employed in tuning the value of flight length in the BCSA which is controlling the ability of the crows to find the optimal solution. To evaluate the performance of the proposed method, four benchmark datasets have been used which are human intestinal absorption, HDAC8 inhibitory activity (IC50), P-glycoproteins, and antimicrobial. Accordingly, the experimental results are discussed and compared against other standard algorithms based on the accuracy rate, the average number of selected features, and running time. The results have proven the robustness of the proposed method relied on the high obtained value of accuracy (84.93–95.92%), -mean (0.853–0.971%), and average selected features (4.36–11.8) with a relatively low computational time. Moreover, to investigate the effectiveness of the proposed method, Friedman test was used which declared that the performance supremacy of the proposed BCSA-QO with four datasets was very evident against BCSA and CSA by selecting the minimum relevant features and producing the highest accuracy classification rate. The obtained results verify the usefulness of the proposed method (BCSA-QO) in the FS with classification in terms of high classification accuracy, a small number of selected features, and low computational time.
Author Hamed Alnaish, Zakaria A.
Algamal, Zakariya Yahya
Author_xml – sequence: 1
  givenname: Zakaria A.
  surname: Hamed Alnaish
  fullname: Hamed Alnaish, Zakaria A.
  email: zakriahamoalnaish@uomosul.edu.iq
  organization: College of Sciences, University of Mosul, 41001 Mosul, Iraq
– sequence: 2
  givenname: Zakariya Yahya
  surname: Algamal
  fullname: Algamal, Zakariya Yahya
  email: zakariya.algamal@uomosul.edu.iq
  organization: College of Engineering, University of Warith Al-Anbiyaa, 56001 Karbala, Iraq
BookMark eNp9kM1LAzEQxYMoWLVnrwueVzfZJLsRL1L8KAheFLyFaXa2TdluapIq_e9NW1ERNBDyyMzvZfKOyH7veiTklBbnVFBxMbdhHXJWMJanXe-RAaOKJi1f9n_oQzIMYV6kxRUVtRiQq_Fi6d2b7afZxPbg15nx7j0LCN7MMuimzts4W2St81mLEFceU7FDE63rT8hBC13A4ed5TJ5vb55G9_nD4914dP2QG86qmDNoSl5I5EVTgwKsoOYtRZYkMM6FaJia1BUIJViJIGWjuCpBAlWpJkR5TMY738bBXC-9XaRBtQOrtxfOTzX4aE2HupkYJZUUDVUll6pUCk2JhnOoi2ICLHmd7bzSt19XGKKeu5Xv0_iaVVVCmeIydV3sulIaIXhsv16lhd4krreJ603iepN4IsQvwtgIm5SiB9v9w13uuHfoIvoGp361TuJ7rL9IRssPT9KbMw
CitedBy_id crossref_primary_10_3233_IDT_230307
Cites_doi 10.1016/j.asoc.2018.06.040
10.1007/s00521-017-2988-6
10.1007/s00521-022-07203-7
10.1016/j.swevo.2021.101022
10.1109/CEC.2018.8477975
10.1109/ACCESS.2021.3135805
10.1007/s00521-018-3688-6
10.1016/j.chemolab.2014.06.011
10.1016/j.procs.2020.03.420
10.1080/1062936X.2015.1040453
10.1109/ACCESS.2019.2897325
10.1016/j.compstruc.2016.03.001
10.1515/jisys-2019-0062
10.1109/JEEIT.2019.8717491
10.1155/2022/5974634
10.1007/s00500-019-03988-3
10.1016/j.chemolab.2015.08.015
10.1016/j.knosys.2021.107034
10.1016/j.neucom.2015.06.083
10.1016/j.eswa.2021.116431
10.1007/978-981-10-8863-6_9
10.1016/j.chemolab.2021.104288
10.1016/j.mlwa.2021.100108
10.1016/j.eswa.2020.114288
10.1007/978-981-15-5281-6_34
ContentType Journal Article
Copyright 2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
JQ2
DOA
DOI 10.1515/jisys-2022-0228
DatabaseName CrossRef
ProQuest Computer Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2191-026X
EndPage 610
ExternalDocumentID oai_doaj_org_article_dbc96965d193469399ec3ec44a800ba2
10_1515_jisys_2022_0228
10_1515_jisys_2022_0228321
GroupedDBID 0R~
0~D
4.4
7WY
AAFPC
AAFWJ
AAGVJ
AAPJK
AAQCX
AASOL
AASQH
AAWFC
AAXCG
ABAOT
ABAQN
ABFKT
ABIQR
ABSOE
ABUVI
ABXMZ
ABYKJ
ACEFL
ACGFS
ACZBO
ADGQD
ADGYE
ADJVZ
ADMLS
ADOZN
AEJTT
AEQDQ
AERZL
AEXIE
AFBAA
AFBDD
AFCXV
AFPKN
AFQUK
AHGBP
AHGSO
AIERV
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BAKPI
BBCWN
BCIFA
CFGNV
EBS
GROUPED_DOAJ
HZ~
IY9
M0C
M48
O9-
OK1
P2P
QD8
RDG
SA.
SLJYH
AAYXX
CITATION
JQ2
ID FETCH-LOGICAL-c427t-2ad3406e40d8a9ae7a84f1e29aea24455d29b87a59523ea66d9493a6a1955d553
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000935449800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2191-026X
0334-1860
IngestDate Fri Oct 03 12:51:46 EDT 2025
Wed Aug 13 08:45:26 EDT 2025
Tue Nov 18 22:08:15 EST 2025
Sat Nov 29 04:22:19 EST 2025
Sat Nov 29 01:28:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-2ad3406e40d8a9ae7a84f1e29aea24455d29b87a59523ea66d9493a6a1955d553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/dbc96965d193469399ec3ec44a800ba2
PQID 2776962946
PQPubID 2031329
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_dbc96965d193469399ec3ec44a800ba2
proquest_journals_2776962946
crossref_primary_10_1515_jisys_2022_0228
crossref_citationtrail_10_1515_jisys_2022_0228
walterdegruyter_journals_10_1515_jisys_2022_0228321
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Journal of intelligent systems
PublicationYear 2023
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References He, Y; Zhang, F; Mirjalili, S; Zhang, T (j_jisys-2022-0228_ref_006) 2022; 69
Abdi Alkareem Alyasseri, Z; Alomari, OA; Al-Betar, MA; Awadallah, MA; Hameed Abdulkareem, K; Abed Mohammed, M (j_jisys-2022-0228_ref_012) 2022; 2022
Anter, AM; Ali, M (j_jisys-2022-0228_ref_015) 2020; 24
Chaudhuri, A; Sahu, TP (j_jisys-2022-0228_ref_020) 2021; 168
Gupta, D; Rodrigues, JJPC; Sundaram, S; Khanna, A; Korotaev, V; de Albuquerque, VHC (j_jisys-2022-0228_ref_016) 2020; 32
Sayed, GI; Hassanien, AE; Azar, AT (j_jisys-2022-0228_ref_022) 2019; 31
Gad, AG; Sallam, KM; Chakrabortty, RK; Ryan, MJ; Abohany, AA; Gad, AG (j_jisys-2022-0228_ref_004) 2022; 34
Arora, S; Singh, H; Sharma, M; Sharma, S; Anand, P (j_jisys-2022-0228_ref_019) 2019; 7
Xing, J-J; Liu, Y-F; Li, Y-Q; Gong, H; Zhou, Y-P (j_jisys-2022-0228_ref_027) 2014; 137
Emary, E; Zawbaa, HM; Hassanien, AE (j_jisys-2022-0228_ref_007) 2016; 172
Awadallah, MA; Al-Betar, MA; Doush, IA; Makhadmeh, SN; Alyasseri, ZAA; Abasi, AK (j_jisys-2022-0228_ref_021) 2022; 194
Alyasseri, ZAA; Alomari, OA; Makhadmeh, SN; Mirjalili, S; Al-Betar, MA; Abdullah, S (j_jisys-2022-0228_ref_013) 2022; 10
Cao, GP; Arooj, M; Thangapandian, S; Park, C; Arulalapperumal, V; Kim, Y (j_jisys-2022-0228_ref_025) 2015; 26
Ghosh, M; Guha, R; Alam, I; Lohariwal, P; Jalan, D; Sarkar, R (j_jisys-2022-0228_ref_002) 2020; 29
Adamu, A; Abdullahi, M; Junaidu, SB; Hassan, IH (j_jisys-2022-0228_ref_003) 2021; 6
Alomari, OA; Makhadmeh, SN; Al-Betar, MA; Alyasseri, ZAA; Doush, IA; Abasi, AK (j_jisys-2022-0228_ref_014) 2021; 223
Askarzadeh, A (j_jisys-2022-0228_ref_024) 2016; 169
Liu, F; Zhou, Z (j_jisys-2022-0228_ref_026) 2015; 147
Mohammadi, F; Abdi, H (j_jisys-2022-0228_ref_023) 2018; 71
Laabadi, S; Naimi, M; Amri, HE; Achchab, B (j_jisys-2022-0228_ref_009) 2020; 167
Al-Thanoon, NA; Algamal, ZY; Qasim, OS (j_jisys-2022-0228_ref_018) 2021; 212
2023031519363286491_j_jisys-2022-0228_ref_007
2023031519363286491_j_jisys-2022-0228_ref_008
2023031519363286491_j_jisys-2022-0228_ref_005
2023031519363286491_j_jisys-2022-0228_ref_027
2023031519363286491_j_jisys-2022-0228_ref_006
2023031519363286491_j_jisys-2022-0228_ref_003
2023031519363286491_j_jisys-2022-0228_ref_025
2023031519363286491_j_jisys-2022-0228_ref_004
2023031519363286491_j_jisys-2022-0228_ref_026
2023031519363286491_j_jisys-2022-0228_ref_001
2023031519363286491_j_jisys-2022-0228_ref_023
2023031519363286491_j_jisys-2022-0228_ref_002
2023031519363286491_j_jisys-2022-0228_ref_024
2023031519363286491_j_jisys-2022-0228_ref_021
2023031519363286491_j_jisys-2022-0228_ref_022
2023031519363286491_j_jisys-2022-0228_ref_020
2023031519363286491_j_jisys-2022-0228_ref_009
2023031519363286491_j_jisys-2022-0228_ref_018
2023031519363286491_j_jisys-2022-0228_ref_019
2023031519363286491_j_jisys-2022-0228_ref_016
2023031519363286491_j_jisys-2022-0228_ref_017
2023031519363286491_j_jisys-2022-0228_ref_014
2023031519363286491_j_jisys-2022-0228_ref_015
2023031519363286491_j_jisys-2022-0228_ref_012
2023031519363286491_j_jisys-2022-0228_ref_013
2023031519363286491_j_jisys-2022-0228_ref_010
2023031519363286491_j_jisys-2022-0228_ref_011
References_xml – volume: 6
  start-page: 100108
  year: 2021
  ident: j_jisys-2022-0228_ref_003
  article-title: An hybrid particle swarm optimization with crow search algorithm for feature selection
  publication-title: Mach Learn Appl
– volume: 223
  start-page: 107034
  year: 2021
  ident: j_jisys-2022-0228_ref_014
  article-title: Gene selection for microarray data classification based on Gray Wolf Optimizer enhanced with TRIZ-inspired operators
  publication-title: Knowl Syst
– volume: 7
  start-page: 26343
  year: 2019
  end-page: 61
  ident: j_jisys-2022-0228_ref_019
  article-title: A new hybrid algorithm based on grey wolf optimization and crow search algorithm for unconstrained function optimization and feature selection
  publication-title: IEEE Access
– volume: 31
  start-page: 171
  issue: 1
  year: 2019
  end-page: 88
  ident: j_jisys-2022-0228_ref_022
  article-title: Feature selection via a novel chaotic crow search algorithm
  publication-title: Neural Comput Appl
– volume: 32
  start-page: 10915
  issue: 15
  year: 2020
  end-page: 25
  ident: j_jisys-2022-0228_ref_016
  article-title: Usability feature extraction using modified crow search algorithm: a novel approach
  publication-title: Neural Comput Appl
– volume: 24
  start-page: 1565
  issue: 3
  year: 2020
  end-page: 84
  ident: j_jisys-2022-0228_ref_015
  article-title: Feature selection strategy based on hybrid crow search optimization algorithm integrated with chaos theory and fuzzy c-means algorithm for medical diagnosis problems
  publication-title: Soft Comput
– volume: 10
  start-page: 10500
  year: 2022
  end-page: 13
  ident: j_jisys-2022-0228_ref_013
  article-title: EEG channel selection for person identification using binary grey wolf optimizer
  publication-title: IEEE Access
– volume: 71
  start-page: 51
  year: 2018
  end-page: 65.28
  ident: j_jisys-2022-0228_ref_023
  article-title: A modified crow search algorithm (MCSA) for solving economic load dispatch problem
  publication-title: Appl Soft Comput
– volume: 34
  start-page: 1
  year: 2022
  end-page: 49
  ident: j_jisys-2022-0228_ref_004
  article-title: An improved binary sparrow search algorithm for feature selection in data classification
  publication-title: Neural Comput Appl
– volume: 69
  start-page: 101022
  year: 2022
  ident: j_jisys-2022-0228_ref_006
  article-title: Novel binary differential evolution algorithm based on Taper-shaped transfer functions for binary optimization problems
  publication-title: Swarm Evolut Comput
– volume: 172
  start-page: 371
  year: 2016
  end-page: 81
  ident: j_jisys-2022-0228_ref_007
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
– volume: 167
  start-page: 809
  year: 2020
  end-page: 18
  ident: j_jisys-2022-0228_ref_009
  article-title: A binary crow search algorithm for solving two-dimensional bin packing problem with fixed orientation
  publication-title: Procedia Comput Sci
– volume: 2022
  start-page: 5974634
  year: 2022
  ident: j_jisys-2022-0228_ref_012
  article-title: EEG channel selection using multiobjective cuckoo search for person identification as protection system in healthcare applications
  publication-title: Comput Intell Neurosci
– volume: 26
  start-page: 397
  year: 2015
  end-page: 420
  ident: j_jisys-2022-0228_ref_025
  article-title: A lazy learning-based QSAR classification study for screening potential histone deacetylase 8 (HDAC8) inhibitors
  publication-title: SAR QSAR Environ Res
– volume: 147
  start-page: 147
  year: 2015
  end-page: 56
  ident: j_jisys-2022-0228_ref_026
  article-title: A new data classification method based on chaotic particle swarm optimization and least square-support vector machine
  publication-title: Chemom Intell Lab Syst
– volume: 29
  start-page: 1598
  issue: 1
  year: 2020
  end-page: 610
  ident: j_jisys-2022-0228_ref_002
  article-title: Binary genetic swarm optimization: A combination of GA and PSO for feature selection
  publication-title: J Intell Syst
– volume: 168
  start-page: 114288
  year: 2021
  ident: j_jisys-2022-0228_ref_020
  article-title: Feature selection using Binary Crow Search Algorithm with time varying flight length
  publication-title: Expert Syst Appl
– volume: 137
  start-page: 82
  year: 2014
  end-page: 90
  ident: j_jisys-2022-0228_ref_027
  article-title: QSAR classification model for diverse series of antimicrobial agents using classification tree configured by modified particle swarm optimization
  publication-title: Chemom Intell Lab Syst
– volume: 212
  start-page: 104288
  year: 2021
  ident: j_jisys-2022-0228_ref_018
  article-title: Feature selection based on a crow search algorithm for big data classification
  publication-title: Chemom Intell Lab Syst
– volume: 194
  start-page: 116431
  year: 2022
  ident: j_jisys-2022-0228_ref_021
  article-title: CCSA: Cellular Crow Search Algorithm with topological neighborhood shapes for optimization
  publication-title: Expert Syst Appl
– volume: 169
  start-page: 1
  year: 2016
  end-page: 12
  ident: j_jisys-2022-0228_ref_024
  article-title: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm
  publication-title: Comput Struct
– ident: 2023031519363286491_j_jisys-2022-0228_ref_017
– ident: 2023031519363286491_j_jisys-2022-0228_ref_023
  doi: 10.1016/j.asoc.2018.06.040
– ident: 2023031519363286491_j_jisys-2022-0228_ref_022
  doi: 10.1007/s00521-017-2988-6
– ident: 2023031519363286491_j_jisys-2022-0228_ref_004
  doi: 10.1007/s00521-022-07203-7
– ident: 2023031519363286491_j_jisys-2022-0228_ref_006
  doi: 10.1016/j.swevo.2021.101022
– ident: 2023031519363286491_j_jisys-2022-0228_ref_001
  doi: 10.1109/CEC.2018.8477975
– ident: 2023031519363286491_j_jisys-2022-0228_ref_013
  doi: 10.1109/ACCESS.2021.3135805
– ident: 2023031519363286491_j_jisys-2022-0228_ref_016
  doi: 10.1007/s00521-018-3688-6
– ident: 2023031519363286491_j_jisys-2022-0228_ref_027
  doi: 10.1016/j.chemolab.2014.06.011
– ident: 2023031519363286491_j_jisys-2022-0228_ref_009
  doi: 10.1016/j.procs.2020.03.420
– ident: 2023031519363286491_j_jisys-2022-0228_ref_025
  doi: 10.1080/1062936X.2015.1040453
– ident: 2023031519363286491_j_jisys-2022-0228_ref_019
  doi: 10.1109/ACCESS.2019.2897325
– ident: 2023031519363286491_j_jisys-2022-0228_ref_024
  doi: 10.1016/j.compstruc.2016.03.001
– ident: 2023031519363286491_j_jisys-2022-0228_ref_002
  doi: 10.1515/jisys-2019-0062
– ident: 2023031519363286491_j_jisys-2022-0228_ref_010
  doi: 10.1109/JEEIT.2019.8717491
– ident: 2023031519363286491_j_jisys-2022-0228_ref_012
  doi: 10.1155/2022/5974634
– ident: 2023031519363286491_j_jisys-2022-0228_ref_015
  doi: 10.1007/s00500-019-03988-3
– ident: 2023031519363286491_j_jisys-2022-0228_ref_026
  doi: 10.1016/j.chemolab.2015.08.015
– ident: 2023031519363286491_j_jisys-2022-0228_ref_014
  doi: 10.1016/j.knosys.2021.107034
– ident: 2023031519363286491_j_jisys-2022-0228_ref_007
  doi: 10.1016/j.neucom.2015.06.083
– ident: 2023031519363286491_j_jisys-2022-0228_ref_021
  doi: 10.1016/j.eswa.2021.116431
– ident: 2023031519363286491_j_jisys-2022-0228_ref_008
  doi: 10.1007/978-981-10-8863-6_9
– ident: 2023031519363286491_j_jisys-2022-0228_ref_018
  doi: 10.1016/j.chemolab.2021.104288
– ident: 2023031519363286491_j_jisys-2022-0228_ref_003
  doi: 10.1016/j.mlwa.2021.100108
– ident: 2023031519363286491_j_jisys-2022-0228_ref_020
  doi: 10.1016/j.eswa.2020.114288
– ident: 2023031519363286491_j_jisys-2022-0228_ref_011
  doi: 10.1007/978-981-15-5281-6_34
– ident: 2023031519363286491_j_jisys-2022-0228_ref_005
SSID ssj0000491585
Score 2.272015
Snippet The feature selection (FS) process has an essential effect in solving many problems such as prediction, regression, and classification to get the optimal...
SourceID doaj
proquest
crossref
walterdegruyter
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1598
SubjectTerms Accuracy
Antiinfectives and antibacterials
binary crow search algorithm
Classification
Computational efficiency
Computing time
Datasets
Feature selection
Glycoproteins
Performance evaluation
quasi-oppositional method
Search algorithms
Title Improving binary crow search algorithm for feature selection
URI https://www.degruyter.com/doi/10.1515/jisys-2022-0228
https://www.proquest.com/docview/2776962946
https://doaj.org/article/dbc96965d193469399ec3ec44a800ba2
Volume 32
WOSCitedRecordID wos000935449800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2191-026X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000491585
  issn: 2191-026X
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcBS3qJQkAcGltDGsZNYYgFExVQxgNQt8iulVWlRklL133N2ktIiVSxsUWLL1nd27js_vkPomjJfh0IQmEiEQ4AiqScCe5OLp8CO464mskw2EfX78WDAX9ZSfdkzYaU8cAlcR0tlBVyYBqYBoRz4U6MCoygVQHWkcH9fYD1rwdS45L0-EOFKywd8dmc8ypc5jAmIvazky4Ybcmr9GxSzuXCb1doMs_myqDdHnc_pHaBmRRbxfdnJQ7Rjpkdov07EgKt5eYzuVksDWLr7tRhaXeByFGMxGc6yUfH-gYGg4tQ4KU-cuwQ4YJUT9NZ7en189qq0CJ6iJCo8InQAbtjQro6ttnYkYpr6hsCjAGfNmCZcxpFgHIJMI8JQc8oDEQqfwzfGglPUmM6m5gzhEMIXliolA66pkL5MFRfMRNQQ4_uKt9BtjVKiKs1wm7piktjYAWBNHKyJhTWxsLbQzarCZymXsb3og4V9VczqXLsXYP2ksn7yl_VbqF0bLakmHzQRRVCHcBq2UPDLkD-ltnQrIP75f_TsAu3ZzPTlak0bNYpsbi7RrvoqRnl25UbrNyoD7vc
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+binary+crow+search+algorithm+for+feature+selection&rft.jtitle=Journal+of+intelligent+systems&rft.au=Hamed+Alnaish%2C+Zakaria+A.&rft.au=Algamal%2C+Zakariya+Yahya&rft.date=2023-01-01&rft.issn=2191-026X&rft.eissn=2191-026X&rft.volume=32&rft.issue=1&rft_id=info:doi/10.1515%2Fjisys-2022-0228&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_jisys_2022_0228
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2191-026X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2191-026X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2191-026X&client=summon