A Robust Wi-Fi Fingerprint Positioning Algorithm Using Stacked Denoising Autoencoder and Multi-Layer Perceptron

With the increasing demand for location-based services, Wi-Fi-based indoor positioning technology has attracted much attention in recent years because of its ubiquitous deployment and low cost. Considering that Wi-Fi signals fluctuate greatly with time, extracting robust features of Wi-Fi signals is...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Remote sensing (Basel, Switzerland) Ročník 11; číslo 11; s. 1293
Hlavní autoři: Wang, Rongrong, Li, Zhaohui, Luo, Haiyong, Zhao, Fang, Shao, Wenhua, Wang, Qu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.06.2019
Témata:
ISSN:2072-4292, 2072-4292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the increasing demand for location-based services, Wi-Fi-based indoor positioning technology has attracted much attention in recent years because of its ubiquitous deployment and low cost. Considering that Wi-Fi signals fluctuate greatly with time, extracting robust features of Wi-Fi signals is the key point to maintaining good positioning accuracy. To handle the dynamic fluctuation with time and sparsity of Wi-Fi signals, we propose an SDAE (Stacked Denoising Autoencoder)-based feature extraction method, which can obtain a robust and time-independent Wi-Fi fingerprint by learning the reconstruction distribution from a raw Wi-Fi signal and an artificial-noise-added Wi-Fi signal. We also leverage the strong representation ability of MLP (Multi-Layer Perceptron) to build a regression model, which maps the extracted features to the corresponding location. To fully evaluate the performance of our proposed algorithm, three datasets are applied, which represent three different scenarios, namely, spacious area with time interval, no time interval, and complex area with large time interval. The experimental results confirm the validity of our proposed SDAE-based feature extraction method, which can accurately reflect Wi-Fi signals in corresponding locations. Compared with other regression models, our proposed regression model can better map the extracted features to the target position. The average positioning error of our proposed algorithm is 4.24 m when there is a 52-day interval between training dataset and testing dataset. That confirms that the proposed algorithm outperforms other state-of-the-art positioning algorithms when there is a large time interval between training dataset and testing dataset.
AbstractList With the increasing demand for location-based services, Wi-Fi-based indoor positioning technology has attracted much attention in recent years because of its ubiquitous deployment and low cost. Considering that Wi-Fi signals fluctuate greatly with time, extracting robust features of Wi-Fi signals is the key point to maintaining good positioning accuracy. To handle the dynamic fluctuation with time and sparsity of Wi-Fi signals, we propose an SDAE (Stacked Denoising Autoencoder)-based feature extraction method, which can obtain a robust and time-independent Wi-Fi fingerprint by learning the reconstruction distribution from a raw Wi-Fi signal and an artificial-noise-added Wi-Fi signal. We also leverage the strong representation ability of MLP (Multi-Layer Perceptron) to build a regression model, which maps the extracted features to the corresponding location. To fully evaluate the performance of our proposed algorithm, three datasets are applied, which represent three different scenarios, namely, spacious area with time interval, no time interval, and complex area with large time interval. The experimental results confirm the validity of our proposed SDAE-based feature extraction method, which can accurately reflect Wi-Fi signals in corresponding locations. Compared with other regression models, our proposed regression model can better map the extracted features to the target position. The average positioning error of our proposed algorithm is 4.24 m when there is a 52-day interval between training dataset and testing dataset. That confirms that the proposed algorithm outperforms other state-of-the-art positioning algorithms when there is a large time interval between training dataset and testing dataset.
Author Zhao, Fang
Wang, Qu
Wang, Rongrong
Li, Zhaohui
Luo, Haiyong
Shao, Wenhua
Author_xml – sequence: 1
  givenname: Rongrong
  orcidid: 0000-0002-6916-4332
  surname: Wang
  fullname: Wang, Rongrong
– sequence: 2
  givenname: Zhaohui
  surname: Li
  fullname: Li, Zhaohui
– sequence: 3
  givenname: Haiyong
  orcidid: 0000-0001-6827-4225
  surname: Luo
  fullname: Luo, Haiyong
– sequence: 4
  givenname: Fang
  surname: Zhao
  fullname: Zhao, Fang
– sequence: 5
  givenname: Wenhua
  surname: Shao
  fullname: Shao, Wenhua
– sequence: 6
  givenname: Qu
  orcidid: 0000-0001-6551-6807
  surname: Wang
  fullname: Wang, Qu
BookMark eNptUctOIzEQtBBIPC98gaW9Ic3i12TGxwjIghQE4iGOlsfuBIfBDrbnkL_HIWhBiL60u1Suru7eR9s-eEDomJK_nEtyGhNdB5N8C-0x0rBKMMm2v7130VFKC1KCcyqJ2ENhjO9CN6SMn1w1cXji_BziMjqf8W1ILrvgC4TH_TxEl59f8WNa1_dZmxew-Bx8cB_IeMgBvAkWItbe4uuhz66a6lWpbyEaWOYY_CHamek-wdFnPkCPk4uHs8tqevPv6mw8rYxgTa6YMFZ3UlvRMk6krZsZGEPpaKSBWTnirKPciK7gbS2ttrRua8uBSGo6ww0_QFcbXRv0QpV5XnVcqaCd-gBCnCsdszM9qKbprAXRcUprwTnotiatbpkdkZoUA0Xrz0ZrGcPbACmrRRiiL_ZVMSeI4KKVhXWyYZkYUoow-9-VErW-j_q6TyGTH2Tjsl4vO0ft-t--vAN9kJQr
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3111083
crossref_primary_10_3390_su13031183
crossref_primary_10_1109_JIOT_2022_3232817
crossref_primary_10_1109_LCOMM_2023_3272972
crossref_primary_10_3390_ijgi9040267
crossref_primary_10_1109_JIOT_2024_3484456
crossref_primary_10_1109_ACCESS_2019_2950728
crossref_primary_10_1109_JSEN_2022_3147309
crossref_primary_10_1109_JSEN_2022_3213836
crossref_primary_10_3390_su14074204
crossref_primary_10_1080_17489725_2020_1817582
crossref_primary_10_3390_s20010133
crossref_primary_10_3390_electronics8090989
crossref_primary_10_3390_electronics13224448
crossref_primary_10_3390_electronics14142807
crossref_primary_10_1016_j_dte_2024_100020
crossref_primary_10_1109_JIOT_2024_3521084
crossref_primary_10_3390_s22124622
crossref_primary_10_1016_j_future_2023_02_017
crossref_primary_10_1016_j_eswa_2024_123389
crossref_primary_10_1109_ACCESS_2022_3226816
crossref_primary_10_1109_JIOT_2020_3016146
crossref_primary_10_3390_s25072330
crossref_primary_10_1109_JSEN_2022_3153610
crossref_primary_10_1109_TIM_2020_2998645
crossref_primary_10_3390_rs13061106
crossref_primary_10_1109_ACCESS_2020_3026615
crossref_primary_10_1109_JIOT_2021_3114373
crossref_primary_10_1016_j_measurement_2023_112813
crossref_primary_10_1109_ACCESS_2020_2973212
crossref_primary_10_1016_j_eswa_2021_116455
crossref_primary_10_1108_SR_05_2024_0484
crossref_primary_10_1109_ACCESS_2024_3367356
crossref_primary_10_3390_s20061691
crossref_primary_10_1080_24751839_2021_1975425
crossref_primary_10_1109_ACCESS_2021_3095546
Cites_doi 10.1109/WIMOB.2007.4390815
10.1145/1390156.1390294
10.1109/CANDARW.2018.00045
10.1155/2016/1945695
10.1109/ACCESS.2018.2884193
10.1109/JSEN.2018.2885958
10.3390/rs11030294
10.1177/1550147718815637
10.1109/VTCFall.2018.8690989
10.1109/TMC.2013.29
10.1109/ACCESS.2017.2728789
10.1214/aos/1013203451
10.1109/TMC.2007.1025
10.3390/s17112678
10.1109/ICMLA.2017.0-185
10.1109/ISDFS.2018.8355353
10.1109/IPIN.2016.7743700
10.1145/2939672.2939785
10.1007/978-3-319-54042-9_57
10.1109/IPIN.2016.7743678
10.1109/CCDC.2016.7532172
10.1109/COMST.2015.2464084
10.3390/rs11060652
10.1109/SMC.2014.6974105
10.1145/1859995.1860016
10.1109/IPIN.2017.8115943
10.1201/b12207
10.3390/rs11050566
10.1109/ICC.2018.8422562
10.1109/ComComAp.2014.7017163
10.1109/WoWMoM.2017.7974313
10.1109/ICC.2017.7997235
10.1109/FOAN.2017.8215259
10.3390/s18103317
10.1109/LSENS.2017.2787651
10.1145/2462456.2464463
10.1007/BF02551274
10.1109/TVT.2018.2870160
10.1177/1550147718758263
10.1109/WCNC.2007.392
10.1109/ACCESS.2017.2720164
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.3390/rs11111293
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection (via ProQuest)
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_77bdde4b3115433ea8508a82d6050d48
10_3390_rs11111293
GeographicLocations Beijing China
New York
United States--US
China
GeographicLocations_xml – name: New York
– name: China
– name: Beijing China
– name: United States--US
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c427t-24cdab9ad482309d57fecc1166ae2d9632b13c4b57f859dad1585d3e091cbc3c3
IEDL.DBID DOA
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000472648000036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Mon Nov 10 04:33:36 EST 2025
Fri Jul 25 12:14:49 EDT 2025
Tue Nov 18 21:18:38 EST 2025
Sat Nov 29 07:16:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-24cdab9ad482309d57fecc1166ae2d9632b13c4b57f859dad1585d3e091cbc3c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6551-6807
0000-0001-6827-4225
0000-0002-6916-4332
OpenAccessLink https://doaj.org/article/77bdde4b3115433ea8508a82d6050d48
PQID 2304043489
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_77bdde4b3115433ea8508a82d6050d48
proquest_journals_2304043489
crossref_primary_10_3390_rs11111293
crossref_citationtrail_10_3390_rs11111293
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
ref_14
ref_11
ref_10
ref_54
ref_52
ref_51
Zhang (ref_12) 2017; 5
ref_17
ref_15
He (ref_13) 2016; 18
ref_25
ref_24
ref_23
Friedman (ref_53) 2001; 29
ref_22
ref_21
ref_20
ref_29
Sun (ref_42) 2018; 67
ref_27
ref_26
ref_36
ref_35
ref_34
ref_33
Shao (ref_4) 2016; 2016
ref_32
ref_31
Vincent (ref_43) 2010; 11
ref_39
ref_38
Khatab (ref_30) 2017; 2
Rizk (ref_28) 2018; 19
Shao (ref_37) 2018; 6
Ficco (ref_18) 2014; 13
ref_47
ref_46
ref_44
ref_41
Chai (ref_19) 2007; 6
ref_40
ref_1
ref_3
Cybenko (ref_45) 1989; 2
ref_2
Xiao (ref_16) 2017; 5
ref_49
ref_48
ref_9
ref_8
ref_5
ref_7
ref_6
References_xml – ident: ref_26
  doi: 10.1109/WIMOB.2007.4390815
– ident: ref_46
  doi: 10.1145/1390156.1390294
– ident: ref_33
  doi: 10.1109/CANDARW.2018.00045
– ident: ref_49
– volume: 2016
  start-page: 1
  year: 2016
  ident: ref_4
  article-title: Location Fingerprint Extraction for Magnetic Field Magnitude Based Indoor Positioning
  publication-title: J. Sens.
  doi: 10.1155/2016/1945695
– ident: ref_51
– volume: 6
  start-page: 74699
  year: 2018
  ident: ref_37
  article-title: Indoor Positioning Based on Fingerprint-Image and Deep Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2884193
– volume: 19
  start-page: 2305
  year: 2018
  ident: ref_28
  article-title: CellinDeep: Robust and Accurate Cellular-based Indoor Localization via Deep Learning
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2885958
– ident: ref_5
  doi: 10.3390/rs11030294
– ident: ref_1
  doi: 10.1177/1550147718815637
– ident: ref_39
  doi: 10.1109/VTCFall.2018.8690989
– volume: 13
  start-page: 737
  year: 2014
  ident: ref_18
  article-title: Calibrating Indoor Positioning Systemswith Low Efforts[M]
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2013.29
– ident: ref_35
– volume: 5
  start-page: 13756
  year: 2017
  ident: ref_12
  article-title: Path-loss-based fingerprint localization approach for location-based services in indoor environments
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2728789
– volume: 29
  start-page: 1189
  year: 2001
  ident: ref_53
  article-title: Greedy Function Approximation: A Gradient Boosting Machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– volume: 6
  start-page: 649
  year: 2007
  ident: ref_19
  article-title: Reducing the calibration effort for probabilistic indoor location estimation
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2007.1025
– ident: ref_27
– ident: ref_3
  doi: 10.3390/s17112678
– ident: ref_48
– ident: ref_29
  doi: 10.1109/ICMLA.2017.0-185
– ident: ref_24
  doi: 10.1109/ISDFS.2018.8355353
– ident: ref_2
  doi: 10.1109/IPIN.2016.7743700
– ident: ref_52
  doi: 10.1145/2939672.2939785
– ident: ref_34
  doi: 10.1007/978-3-319-54042-9_57
– ident: ref_17
  doi: 10.1109/IPIN.2016.7743678
– ident: ref_31
  doi: 10.1109/CCDC.2016.7532172
– volume: 18
  start-page: 466
  year: 2016
  ident: ref_13
  article-title: Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2015.2464084
– ident: ref_25
  doi: 10.3390/rs11060652
– ident: ref_23
  doi: 10.1109/SMC.2014.6974105
– ident: ref_11
  doi: 10.1145/1859995.1860016
– ident: ref_15
  doi: 10.1109/IPIN.2017.8115943
– ident: ref_47
– ident: ref_54
  doi: 10.1201/b12207
– ident: ref_6
  doi: 10.3390/rs11050566
– ident: ref_38
  doi: 10.1109/ICC.2018.8422562
– ident: ref_20
  doi: 10.1109/ComComAp.2014.7017163
– ident: ref_40
– ident: ref_14
– ident: ref_41
  doi: 10.1109/WoWMoM.2017.7974313
– ident: ref_44
– ident: ref_36
  doi: 10.1109/ICC.2017.7997235
– ident: ref_21
– ident: ref_32
  doi: 10.1109/FOAN.2017.8215259
– ident: ref_8
  doi: 10.3390/s18103317
– volume: 2
  start-page: 1
  year: 2017
  ident: ref_30
  article-title: A Fingerprint Method for Indoor Localization Using Autoencoder Based Deep Extreme Learning Machine
  publication-title: IEEE Sens. Lett.
  doi: 10.1109/LSENS.2017.2787651
– ident: ref_50
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref_43
  article-title: Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion
  publication-title: J. Mach. Learn. Res.
– ident: ref_9
  doi: 10.1145/2462456.2464463
– volume: 2
  start-page: 303
  year: 1989
  ident: ref_45
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Mathematics of Control, Signals and Systems
  doi: 10.1007/BF02551274
– volume: 67
  start-page: 10896
  year: 2018
  ident: ref_42
  article-title: Augmentation of Fingerprints for Indoor WiFi Localization Based on Gaussian Process Regression
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2018.2870160
– ident: ref_22
– ident: ref_7
  doi: 10.1177/1550147718758263
– ident: ref_10
  doi: 10.1109/WCNC.2007.392
– volume: 5
  start-page: 12751
  year: 2017
  ident: ref_16
  article-title: 3-D BLE Indoor Localization Based on Denoising Autoencoder
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2720164
SSID ssj0000331904
Score 2.422964
Snippet With the increasing demand for location-based services, Wi-Fi-based indoor positioning technology has attracted much attention in recent years because of its...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1293
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Communications networks
Data collection
Datasets
Deep learning
Feature extraction
Fingerprints
Indoor positioning
International conferences
Localization
Location based services
Machine learning
multi-layer perceptron
Multilayer perceptrons
Neural networks
Noise reduction
Position (location)
Regression analysis
Regression models
regression positioning
Remote sensing
Robustness
stacked denoising autoencoder
Teaching methods
Training
Wireless networks
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH5iZdJ2GYwNrRsgS-PCwSKJ3SY-TYVRcUBVhUBwixzbgUqQQJJO2n-_9xy3aNq0y64vlpXo8_vpl-8BHOpxYYS2ko_NKOPojw3PSp1xF4kiVU4Tx5QfNpHOZtntrZqHglsb2ipXNtEbalsbqpEfU_EykkJm6tvTM6epUXS7GkZovIJNYiqTA9g8OZvNL9dVlkjgEYtkz0sqML8_bloyEuTlfvNEnrD_D3vsncx0639fbxvehfCSTfrz8B42XLUDb8Kk8_ufH6CesMu6WLYdu1nw6YJNfVmPqnsdm4cGLhSxycMdbt_dPzLfVMAwKEV9t-y7q-qFl0yWXU0smNY1TFeW-V95-YXGGJ7N-3aZpq4-wvX07Or0nIehC9zIJO14Io3VhUL46ApO2VFaIspxPB5rl1hU16SIhZEFyrORstrGmHBY4TDuMAi7EbswqOrKfQKmiXsMdzOJsFKYRLu4LGOlVaqsELIcwtEKgNwERnIajPGQY2ZCYOUvYA3h63rtU8_D8ddVJ4TjegVxZ3tB3dzlQRXzNC3QpsuCeIakEE5nGKTqLLGY2UX42UPYW0GcB4Vu8xd8P__78Rd4izGV6rvJ9mDQNUu3D6_Nj27RNgfhfP4CmRTxNQ
  priority: 102
  providerName: ProQuest
Title A Robust Wi-Fi Fingerprint Positioning Algorithm Using Stacked Denoising Autoencoder and Multi-Layer Perceptron
URI https://www.proquest.com/docview/2304043489
https://doaj.org/article/77bdde4b3115433ea8508a82d6050d48
Volume 11
WOSCitedRecordID wos000472648000036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yBb2InzidI6AXD8G1ydbmuOmGgo4yFT8uJU1SN5itdJ3gxb_dl7SbEwUvXnp4DW15H8nvpS-_h9CxaEWSCsVISzZ9AuuxJH4sfKIbNPK4FoZjyjab8Pp9_-GBBwutvkxNWEEPXCju1PMiiEAWGVYYRqkWPkAK4bsKcHhDMXvMF1DPQjJl52AKrtVgBR8phbz-NJuYycGsbt9WIEvU_2MetotLbwOtl6gQt4uv2URLOtlCq2WD8uH7NkrbeJBG00mO70ekN8I9uxtnNuVyHJR1VyDC7fFzCun-8AXbWgAMWBLCVOFznaQjK2lP89SQVyqdYZEobE_gkisB0BsHRZVLliY76K7XvT27IGWvBCKZ6-XEZVKJiIPWzZ8zrppeDMZxnFZLaFdBlLmRQyWLQO43uRLKgTxBUQ1wQYK1JN1FlSRN9B7CwlCGwdOkSxWj0hXaiWOHC-5xRSmLq-hkpr9QlkTipp_FOISEwug6_NJ1FR3Nx74W9Bm_juoYM8xHGMprKwBHCEtHCP9yhCqqzYwYlnE4Cc2Wd4NR5vP9_3jHAVoDwMSLUrEaquTZVB-iFfmWjyZZHS13uv1gULeuWDdVpDfm-tGFa9B8gvvB5XXw-Amh6eed
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLVK58EYsFLAEHDhYTWzvJj4gtFBWXXW7ilAR5RQc22lXapM2yYL6p_iNjJ1kKwTi1gNXx7Iy8Zd5efwNwCs1zjRXRtCxHsUU7bGmca5iagOeRdIqxzHlm01Ei0V8dCSTDfjZ34VxZZW9TvSK2pTa5ch3XPIyEFzE8t35BXVdo9zpat9Co4XFvr38gSFb_Xa2i_v7mrHpx8MPe7TrKkC1YFFDmdBGZRLfz50xSTOKchQjDMdjZZlBPLIs5FpkOB6PpFEmRI_acIuGVaNcmuO6N2BTINjjAWwms4Pk6zqrE3CEdCBaHlTOZbBT1U4pOav6m-XzDQL-0P_eqE3v_G-f4y7c7txnMmnxfg82bHEftrpO7ieXD6CckE9ltqob8mVJp0sy9WlLl71sSNIVqOEQmZweozjNyRnxRRMEnW7UZ4bs2qJc-pHJqikdy6exFVGFIf6qMp0rjFFI0pYDVWXxED5fi7yPYFCUhX0MRDluNVxNM24E10zZMM9DqWQkDeciH8KbfsNT3TGuu8YfpylGXg4c6RU4hvByPfe85Rn566z3DjfrGY4b3A-U1XHaqZo0ijK0WSJzPEqCc6tidMJVzAxGrgGKPYTtHlJpp7Dq9ApPT_79-AVs7R0ezNP5bLH_FG6h_yjbyrltGDTVyj6Dm_p7s6yr592_QeDbdePvFz7MT7E
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQIuvBELBSwBBw7WJrY3iQ8IpV0iqlarqALRW3Bsp12pJCXJgvrX-HWM89gKgbj1wNWxrEz8ZV4efwPwSgW55soIGuh5RNEeaxoVKqLW43korXIcU12ziXC5jI6PZboFP8e7MK6sctSJnaI2lXY58plLXnqCi0jOiqEsIl0k786_UddByp20ju00eogc2IsfGL41b_cXuNevGUvef9z7QIcOA1QLFraUCW1ULvFd3XmTNPOwQJF8PwiUZQaxyXKfa5HjeDSXRhkfvWvDLRpZjTJqjuteg-0oCD02ge10bzc-2mR4PI7w9kTPicq59GZ14xSUs7C_WcGuWcAftqAzcMmd__nT3IXbg1tN4v4_uAdbtrwPN4cO76cXD6CKyVGVr5uWfF7RZEWSLp3pspotSYfCNRwi8dkJitOefiVdMQVBZxz1nCELW1arbiRet5Vj_zS2Jqo0pLvCTA8Vxi4k7cuE6qp8CJ-uRN5HMCmr0j4GohznGq6mGTeCa6asXxS-VDKUhnNRTOHNuPmZHpjYXUOQswwjMgeU7BIoU3i5mXve84_8ddauw9BmhuMM7waq-iQbVFAWhjnaMpE7fiXBuVUROucqYgYjWg_FnsLOCK9sUGRNdomtJ_9-_AJuIOiyw_3lwVO4hW6l7AvqdmDS1mv7DK7r7-2qqZ8PvwmBL1cNv18TIVgh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Robust+Wi-Fi+Fingerprint+Positioning+Algorithm+Using+Stacked+Denoising+Autoencoder+and+Multi-Layer+Perceptron&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Rongrong+Wang&rft.au=Zhaohui+Li&rft.au=Haiyong+Luo&rft.au=Fang+Zhao&rft.date=2019-06-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=11&rft.issue=11&rft.spage=1293&rft_id=info:doi/10.3390%2Frs11111293&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_77bdde4b3115433ea8508a82d6050d48
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon