Distributed Algorithms for Computation of Centrality Measures in Complex Networks

This paper is concerned with distributed computation of several commonly used centrality measures in complex networks. In particular, we propose deterministic algorithms, which converge in finite time, for the distributed computation of the degree, closeness and betweenness centrality measures in di...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on automatic control Ročník 62; číslo 5; s. 2080 - 2094
Hlavní autoři: Keyou You, Tempo, Roberto, Li Qiu
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.05.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9286, 1558-2523
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper is concerned with distributed computation of several commonly used centrality measures in complex networks. In particular, we propose deterministic algorithms, which converge in finite time, for the distributed computation of the degree, closeness and betweenness centrality measures in directed graphs. Regarding eigenvector centrality, we consider the PageRank problem as its typical variant, and design distributed randomized algorithms to compute PageRank for both fixed and time-varying graphs. A key feature of the proposed algorithms is that they do not require to know the network size, which can be simultaneously estimated at every node, and that they are clock-free. To address the PageRank problem of time-varying graphs, we introduce the concept of persistent graph, which eliminates the effect of spamming nodes. Moreover, we prove that these algorithms converge almost surely and in the sense of L^p. Finally, the effectiveness of the proposed algorithms is illustrated via extensive simulations using a classical benchmark.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2016.2604373