Combining optical and radar satellite image time series to map natural vegetation: savannas as an example

Up‐to‐date land cover maps are important for biodiversity monitoring as they are central to habitat and ecosystem distribution assessments. Satellite remote sensing is a key technology for generating these maps. Until recently, land cover mapping has been limited to static approaches, which have pri...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Remote sensing in ecology and conservation Ročník 6; číslo 3; s. 316 - 326
Hlavní autori: Lopes, Mailys, Frison, Pierre‐Louis, Durant, Sarah M., Schulte to Bühne, Henrike, Ipavec, Audrey, Lapeyre, Vincent, Pettorelli, Nathalie, Horning, Ned
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford John Wiley & Sons, Inc 01.09.2020
Wiley
Predmet:
ISSN:2056-3485, 2056-3485
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Up‐to‐date land cover maps are important for biodiversity monitoring as they are central to habitat and ecosystem distribution assessments. Satellite remote sensing is a key technology for generating these maps. Until recently, land cover mapping has been limited to static approaches, which have primarily led to the production of either global maps at coarse spatial resolutions or geographically restricted maps at high spatial resolutions. The recent availability of optical (Sentinel‐2) and radar (Sentinel‐1) satellite image time series (SITS) which provide access to high spatial and very high temporal resolutions, is a game changer, offering opportunities to map land cover using both temporal and spatial information. These data moreover open interesting perspectives for land cover mapping based on data combination approach. However, the usefulness of combining dense time series (more than 30 images per year) and data combination approaches to map natural vegetation has so far not been assessed. To address this gap, this contribution tests the idea that the combined consideration of optical and radar data combination and time series analyses can significantly improve natural vegetation mapping in the Pendjari National Park, a Sahelian savanna protected area in Benin. Results highlight that the combination of Sentinel‐1 and Sentinel‐2 SITS performs as well as Sentinel‐2 SITS alone in terms of classification accuracy. Land cover maps are however qualitatively better when considering the data combination approach. Our results also clearly show that the use of dense/hypertemporal optical time series significantly improves classification outcomes compared to using multitemporal only a few images per year) or monotemporal data. Altogether, this work thus demonstrates the ability of dense SITS to improve discrimination of natural vegetation types using information on their phenology, leading to more detailed and more reliable maps for environmental management. This contribution tests the idea that the combined consideration of data combination and time series analyses can significantly improve natural vegetation mapping in savannas. Results demonstrate the ability of dense satellite image time series to improve discrimination of natural vegetation types using information on their phenology, leading to more detailed and more reliable maps for environmental management.
AbstractList Up‐to‐date land cover maps are important for biodiversity monitoring as they are central to habitat and ecosystem distribution assessments. Satellite remote sensing is a key technology for generating these maps. Until recently, land cover mapping has been limited to static approaches, which have primarily led to the production of either global maps at coarse spatial resolutions or geographically restricted maps at high spatial resolutions. The recent availability of optical (Sentinel‐2) and radar (Sentinel‐1) satellite image time series ( SITS ) which provide access to high spatial and very high temporal resolutions, is a game changer, offering opportunities to map land cover using both temporal and spatial information. These data moreover open interesting perspectives for land cover mapping based on data combination approach. However, the usefulness of combining dense time series (more than 30 images per year) and data combination approaches to map natural vegetation has so far not been assessed. To address this gap, this contribution tests the idea that the combined consideration of optical and radar data combination and time series analyses can significantly improve natural vegetation mapping in the Pendjari National Park, a Sahelian savanna protected area in Benin. Results highlight that the combination of Sentinel‐1 and Sentinel‐2 SITS performs as well as Sentinel‐2 SITS alone in terms of classification accuracy. Land cover maps are however qualitatively better when considering the data combination approach. Our results also clearly show that the use of dense/hypertemporal optical time series significantly improves classification outcomes compared to using multitemporal only a few images per year) or monotemporal data. Altogether, this work thus demonstrates the ability of dense SITS to improve discrimination of natural vegetation types using information on their phenology, leading to more detailed and more reliable maps for environmental management.
Up‐to‐date land cover maps are important for biodiversity monitoring as they are central to habitat and ecosystem distribution assessments. Satellite remote sensing is a key technology for generating these maps. Until recently, land cover mapping has been limited to static approaches, which have primarily led to the production of either global maps at coarse spatial resolutions or geographically restricted maps at high spatial resolutions. The recent availability of optical (Sentinel‐2) and radar (Sentinel‐1) satellite image time series (SITS) which provide access to high spatial and very high temporal resolutions, is a game changer, offering opportunities to map land cover using both temporal and spatial information. These data moreover open interesting perspectives for land cover mapping based on data combination approach. However, the usefulness of combining dense time series (more than 30 images per year) and data combination approaches to map natural vegetation has so far not been assessed. To address this gap, this contribution tests the idea that the combined consideration of optical and radar data combination and time series analyses can significantly improve natural vegetation mapping in the Pendjari National Park, a Sahelian savanna protected area in Benin. Results highlight that the combination of Sentinel‐1 and Sentinel‐2 SITS performs as well as Sentinel‐2 SITS alone in terms of classification accuracy. Land cover maps are however qualitatively better when considering the data combination approach. Our results also clearly show that the use of dense/hypertemporal optical time series significantly improves classification outcomes compared to using multitemporal only a few images per year) or monotemporal data. Altogether, this work thus demonstrates the ability of dense SITS to improve discrimination of natural vegetation types using information on their phenology, leading to more detailed and more reliable maps for environmental management.
Up‐to‐date land cover maps are important for biodiversity monitoring as they are central to habitat and ecosystem distribution assessments. Satellite remote sensing is a key technology for generating these maps. Until recently, land cover mapping has been limited to static approaches, which have primarily led to the production of either global maps at coarse spatial resolutions or geographically restricted maps at high spatial resolutions. The recent availability of optical (Sentinel‐2) and radar (Sentinel‐1) satellite image time series (SITS) which provide access to high spatial and very high temporal resolutions, is a game changer, offering opportunities to map land cover using both temporal and spatial information. These data moreover open interesting perspectives for land cover mapping based on data combination approach. However, the usefulness of combining dense time series (more than 30 images per year) and data combination approaches to map natural vegetation has so far not been assessed. To address this gap, this contribution tests the idea that the combined consideration of optical and radar data combination and time series analyses can significantly improve natural vegetation mapping in the Pendjari National Park, a Sahelian savanna protected area in Benin. Results highlight that the combination of Sentinel‐1 and Sentinel‐2 SITS performs as well as Sentinel‐2 SITS alone in terms of classification accuracy. Land cover maps are however qualitatively better when considering the data combination approach. Our results also clearly show that the use of dense/hypertemporal optical time series significantly improves classification outcomes compared to using multitemporal only a few images per year) or monotemporal data. Altogether, this work thus demonstrates the ability of dense SITS to improve discrimination of natural vegetation types using information on their phenology, leading to more detailed and more reliable maps for environmental management. This contribution tests the idea that the combined consideration of data combination and time series analyses can significantly improve natural vegetation mapping in savannas. Results demonstrate the ability of dense satellite image time series to improve discrimination of natural vegetation types using information on their phenology, leading to more detailed and more reliable maps for environmental management.
Abstract Up‐to‐date land cover maps are important for biodiversity monitoring as they are central to habitat and ecosystem distribution assessments. Satellite remote sensing is a key technology for generating these maps. Until recently, land cover mapping has been limited to static approaches, which have primarily led to the production of either global maps at coarse spatial resolutions or geographically restricted maps at high spatial resolutions. The recent availability of optical (Sentinel‐2) and radar (Sentinel‐1) satellite image time series (SITS) which provide access to high spatial and very high temporal resolutions, is a game changer, offering opportunities to map land cover using both temporal and spatial information. These data moreover open interesting perspectives for land cover mapping based on data combination approach. However, the usefulness of combining dense time series (more than 30 images per year) and data combination approaches to map natural vegetation has so far not been assessed. To address this gap, this contribution tests the idea that the combined consideration of optical and radar data combination and time series analyses can significantly improve natural vegetation mapping in the Pendjari National Park, a Sahelian savanna protected area in Benin. Results highlight that the combination of Sentinel‐1 and Sentinel‐2 SITS performs as well as Sentinel‐2 SITS alone in terms of classification accuracy. Land cover maps are however qualitatively better when considering the data combination approach. Our results also clearly show that the use of dense/hypertemporal optical time series significantly improves classification outcomes compared to using multitemporal only a few images per year) or monotemporal data. Altogether, this work thus demonstrates the ability of dense SITS to improve discrimination of natural vegetation types using information on their phenology, leading to more detailed and more reliable maps for environmental management.
Author Frison, Pierre‐Louis
Durant, Sarah M.
Lapeyre, Vincent
Ipavec, Audrey
Pettorelli, Nathalie
Schulte to Bühne, Henrike
Horning, Ned
Lopes, Mailys
Author_xml – sequence: 1
  givenname: Mailys
  surname: Lopes
  fullname: Lopes, Mailys
  organization: Université Paris Est, IGN
– sequence: 2
  givenname: Pierre‐Louis
  surname: Frison
  fullname: Frison, Pierre‐Louis
  organization: Université Paris Est, IGN
– sequence: 3
  givenname: Sarah M.
  surname: Durant
  fullname: Durant, Sarah M.
  organization: Zoological Society of London
– sequence: 4
  givenname: Henrike
  surname: Schulte to Bühne
  fullname: Schulte to Bühne, Henrike
  organization: Zoological Society of London
– sequence: 5
  givenname: Audrey
  surname: Ipavec
  fullname: Ipavec, Audrey
  organization: Zoological Society of London
– sequence: 6
  givenname: Vincent
  surname: Lapeyre
  fullname: Lapeyre, Vincent
  organization: Zoological Society of London
– sequence: 7
  givenname: Nathalie
  surname: Pettorelli
  fullname: Pettorelli, Nathalie
  email: nathalie.pettorelli@ioz.ac.uk
  organization: Zoological Society of London
– sequence: 8
  givenname: Ned
  surname: Horning
  fullname: Horning, Ned
BackLink https://hal.inrae.fr/hal-02622073$$DView record in HAL
BookMark eNp1kV2L1DAUhous4Lou-BMC3uhFx3w1bb1bhnV3YUDw4zqcpqdjhjapSWbW_febWhEVhUAOh-d9T07e58WZ8w6L4iWjG0Ypfxsi8g0T7ZPinNNKlUI21dlv9bPiMsYDpZQpXrO6OS_s1k-dddbtiZ-TNTAScD0J0EMgERKOo01I7AR7JMlOSCIGi5EkTyaYiYN0DFl0wj0mSNa7d1l2AucgkuU4gt9hmkd8UTwdYIx4-fO-KL68v_68vS13H27utle70khetyWYRpmOA3AcetZRKXsAlFgbpSjvgGLTc1PXXdv0gxCoqKqwkjSLhlxTcVHcrb69h4OeQ356eNAerP7R8GGvIeRNR9TSKMbamklZtxLz9Eq2MAiFgiM1ncpeb1avrzD-YXV7tdNLj3LFOa3FiWX21crOwX87Ykz64I_B5VU1l1KKVohKZur1SpngYww4_LJlVC8Z6iVDnTPM6OYv1Nj1i1MAO_5LUK6Cezviw3-N9cdP13zhHwHM162t
CitedBy_id crossref_primary_10_1016_j_rsase_2022_100834
crossref_primary_10_1016_j_foreco_2024_122399
crossref_primary_10_3390_rs13224668
crossref_primary_10_3390_rs14133104
crossref_primary_10_26848_rbgf_v17_5_p3715_3735
crossref_primary_10_1007_s00477_021_02014_z
crossref_primary_10_1016_j_ecoinf_2025_103408
crossref_primary_10_1080_22797254_2022_2083984
crossref_primary_10_3390_rs14030492
crossref_primary_10_1016_j_jag_2024_104193
crossref_primary_10_1007_s10980_023_01686_y
crossref_primary_10_1016_j_engappai_2023_106152
crossref_primary_10_1360_N072024_0156
crossref_primary_10_3390_rs14051179
crossref_primary_10_1002_rse2_212
crossref_primary_10_1007_s11430_024_1509_3
crossref_primary_10_1002_rse2_239
crossref_primary_10_1016_j_rsase_2025_101615
crossref_primary_10_1117_1_JRS_16_034524
crossref_primary_10_1016_j_rse_2021_112849
crossref_primary_10_3390_rs14061522
crossref_primary_10_1002_rse2_199
crossref_primary_10_3390_rs12233862
crossref_primary_10_3390_rs13193870
crossref_primary_10_1016_j_jenvman_2022_114867
crossref_primary_10_1111_aje_13278
crossref_primary_10_3390_rs12233927
crossref_primary_10_1007_s40333_023_0027_2
Cites_doi 10.1016/j.rse.2013.07.011
10.1080/01431161.2014.964349
10.1080/01431169608949139
10.3390/rs61212409
10.1080/0143116031000139818
10.1177/0309133307079054
10.3390/rs8010070
10.1038/523403a
10.1002/rse2.102
10.1371/journal.pone.0020619
10.1186/s40965-017-0031-6
10.3390/rs11040433
10.3390/rs6065279
10.1016/j.rse.2017.06.031
10.1080/01431161.2010.532831
10.1109/TBDATA.2018.2846265
10.1109/TGRS.2006.872932
10.1109/TGRS.2009.2026052
10.1109/TGRS.2003.817270
10.1016/j.isprsjprs.2016.03.008
10.1080/014311697218962
10.1016/j.rse.2010.03.002
10.1016/j.rse.2017.10.005
10.1109/36.964973
10.3390/rs10040499
10.1016/j.jag.2013.12.015
10.3390/rs8121020
10.1073/pnas.1611122114
10.1016/j.ecoinf.2015.08.006
10.1016/j.isprsjprs.2008.07.006
10.1364/AO.40.005954
10.1080/014311698215748
10.1371/journal.pone.0083500
10.3390/rs9010095
10.1080/01431160117096
10.1016/j.jag.2016.05.006
10.1016/j.rse.2016.10.010
10.1016/j.jag.2016.06.019
10.1016/S0034-4257(01)00343-1
10.2307/3001968
10.3390/rs11030232
10.1111/2041-210X.12942
10.1080/19479830903561035
10.1080/17445647.2017.1372316
10.3390/land7040116
10.1016/j.rse.2014.10.014
10.1080/07038992.2014.945827
10.1016/j.jag.2018.03.005
10.1093/acprof:osobl/9780199693160.001.0001
ContentType Journal Article
Copyright 2020 The Authors. published by John Wiley & Sons Ltd behalf of Zoological Society of London.
2020. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: 2020 The Authors. published by John Wiley & Sons Ltd behalf of Zoological Society of London.
– notice: 2020. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID 24P
AAYXX
CITATION
7ST
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
HCIFZ
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
SOI
1XC
VOOES
DOA
DOI 10.1002/rse2.139
DatabaseName Open Access资源_Wiley Online Library Open Access
CrossRef
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
SciTech Collection (ProQuest)
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Environment Abstracts
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database



Database_xml – sequence: 1
  dbid: 24P
  name: Open Access资源_Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: PIMPY
  name: ProQuest - Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 2056-3485
EndPage 326
ExternalDocumentID oai_doaj_org_article_4c61197144794e279549af36e32e0cb6
oai:HAL:hal-02622073v1
10_1002_rse2_139
RSE2139
Genre article
GeographicLocations Benin
West Africa
GeographicLocations_xml – name: Benin
– name: West Africa
GroupedDBID 0R~
1OC
24P
5VS
8FE
8FH
AAHBH
AAHHS
ACCFJ
ACCMX
ACXQS
ADBBV
ADKYN
ADZMN
AEEZP
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
EBS
EJD
GODZA
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
LK5
M7R
O9-
OK1
PCBAR
PIMPY
PROAC
ROL
WIN
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IEP
M~E
PHGZM
PHGZT
7ST
ABUWG
AZQEC
C1K
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
SOI
1XC
VOOES
ID FETCH-LOGICAL-c4279-ac86cb2aa2efd1b044daae4e7c6602ba0e8d2c77b98df33e6065e5406cbf60603
IEDL.DBID 24P
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000507765800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2056-3485
IngestDate Fri Oct 03 12:37:30 EDT 2025
Sat Nov 01 14:43:23 EDT 2025
Wed Aug 13 10:43:29 EDT 2025
Sat Nov 29 03:30:12 EST 2025
Tue Nov 18 21:38:57 EST 2025
Wed Jan 22 16:32:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords satellite image time series
sentinel-1
natural vegetation classification
sentinel-2
data combination
savanna
Language English
License Attribution-NonCommercial
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4279-ac86cb2aa2efd1b044daae4e7c6602ba0e8d2c77b98df33e6065e5406cbf60603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1594-6208
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frse2.139
PQID 2444393354
PQPubID 4370293
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_4c61197144794e279549af36e32e0cb6
hal_primary_oai_HAL_hal_02622073v1
proquest_journals_2444393354
crossref_primary_10_1002_rse2_139
crossref_citationtrail_10_1002_rse2_139
wiley_primary_10_1002_rse2_139_RSE2139
PublicationCentury 2000
PublicationDate September 2020
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Remote sensing in ecology and conservation
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2017; 2
2009b; 47
1945; 1
2018; 204
2019; 11
2015; 30
2016; 187
2014; 28
2007; 31
2017; 114
2001; 40
2017; 9
2018; 7
2018; 9
1998; 19
2010; 1
2001
2010; 114
2006; 27
1997; 18
2016; 116
2014; 9
2007; 1
2017; 202
2014; 6
2003; 41
2007; 18
1996; 17
2019; 5
2015; 523
2009a; 64
2008
2016; 52
1996
2011; 32
2002; 81
2004
1992
2001; 22
2014; 40
2011; 6
2018; 69
2006; 44
2013; 138
2015; 156
2017; 13
2001; 9
2019
2018
2017
2014; 35
2001; 39
2013
2018; 10
2016; 8
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
Lee J.‐S. (e_1_2_8_31_1) 2001; 9
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Sasaki Y. (e_1_2_8_47_1) 2007; 1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
Archibald S. (e_1_2_8_2_1) 2007; 18
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Solbrig O. T. (e_1_2_8_52_1) 1996
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_50_1
References_xml – volume: 2
  start-page: 15
  year: 2017
  article-title: Orfeo ToolBox: open source processing of remote sensing images
  publication-title: Open Geospatial Data Soft. Stand.
– volume: 18
  start-page: 603
  year: 1997
  end-page: 627
  article-title: Multi‐variate optimal speckle reduction in SAR imagery
  publication-title: Int. J. Remote Sens.
– volume: 13
  start-page: 718
  year: 2017
  end-page: 726
  article-title: Fusion of Sentinel‐1A and Sentinel‐2A data for land cover mapping: a case study in the lower Magdalena region, Colombia
  publication-title: J. Maps
– year: 2001
– volume: 138
  start-page: 215
  year: 2013
  end-page: 231
  article-title: Toward structural assessment of semi‐arid African savannahs and woodlands: the potential of multitemporal polarimetric RADARSAT‐2 fine beam images
  publication-title: Remote Sens. Environ.
– volume: 10
  start-page: 499
  year: 2018
  article-title: Optimisation of savannah land cover characterisation with optical and SAR data
  publication-title: Remote Sens.
– volume: 52
  start-page: 54
  year: 2016
  end-page: 64
  article-title: L-band synthetic aperture radar imagery performs better than optical datasets at retrieving woody fractional cover in deciduous, dry savannahs
  publication-title: Int J Appl Earth Obs Geoinf.
– volume: 11
  start-page: 232
  year: 2019
  article-title: Mapping cropping practices on a national scale using intra‐annual Landsat time series binning
  publication-title: Remote Sens.
– volume: 9
  start-page: 1
  year: 2014
  end-page: 11
  article-title: The lion in West Africa is critically endangered
  publication-title: PLoS ONE
– volume: 41
  start-page: 2519
  year: 2003
  end-page: 2530
  article-title: Statistical and operational performance assessment of multitemporal SAR image filtering
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 18
  start-page: 583
  year: 2007
  end-page: 594
  article-title: Leaf green‐up in a semi‐arid African savanna ‐separating tree and grass responses to environmental cues
  publication-title: J. Veg. Sci.
– volume: 39
  start-page: 2373
  year: 2001
  end-page: 2379
  article-title: Filtering of multichannel SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 35
  start-page: 6599
  year: 2014
  end-page: 6647
  article-title: Earth observation satellite sensors for biodiversity monitoring: potentials and bottlenecks
  publication-title: Int. J. Remote Sens.
– volume: 28
  start-page: 252
  year: 2014
  end-page: 259
  article-title: Early season monitoring of corn and soybeans with TerraSAR‐X and RADARSAT‐2
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 1
  start-page: 5
  year: 2010
  end-page: 24
  article-title: Multi‐source remote sensing data fusion: status and trends
  publication-title: Int. J. Image Data Fusion
– year: 2018
– volume: 6
  start-page: 5279
  year: 2014
  end-page: 5305
  article-title: Mapping land management regimes in western Ukraine using optical and SAR data
  publication-title: Remote Sens.
– start-page: 1
  year: 1996
  end-page: 27
– volume: 187
  start-page: 156
  year: 2016
  end-page: 168
  article-title: Assessing the robustness of random forests to map land cover with high resolution satellite image time series over large areas
  publication-title: Remote Sens. Environ.
– volume: 19
  start-page: 823
  year: 1998
  end-page: 854
  article-title: Review article multisensor image fusion in remote sensing: concepts, methods and applications
  publication-title: Int. J. Remote Sens.
– year: 2008
– volume: 1
  start-page: 80
  year: 1945
  end-page: 83
  article-title: Individual comparisons by ranking methods
  publication-title: Biometrics Bull.
– volume: 27
  start-page: 903
  year: 2006
  end-page: 918
  article-title: Fusion of multisensor multitemporal satellite data for land cover mapping
  publication-title: Int. J. Remote Sens.
– year: 2004
– volume: 1
  start-page: 1
  year: 2007
  end-page: 5
  article-title: The truth of the F‐measure
  publication-title: Teach Tutor mater
– volume: 17
  start-page: 3201
  year: 1996
  end-page: 3218
  article-title: Monitoring global vegetation dynamics with ERS‐1 wind scatterometer data
  publication-title: Int. J. Remote Sens.
– year: 2019
– volume: 523
  start-page: 403
  year: 2015
  article-title: Environmental science: agree on biodiversity metrics to track from space
  publication-title: Nature
– volume: 9
  start-page: 849
  year: 2018
  end-page: 865
  article-title: Better together: integrating and fusing multispectral and radar satellite imagery to inform biodiversity monitoring, ecological research and conservation science
  publication-title: Methods Ecol. Evol.
– volume: 64
  start-page: 434
  year: 2009a
  end-page: 449
  article-title: Integration of optical and Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 204
  start-page: 509
  year: 2018
  end-page: 523
  article-title: Sentinel‐2 cropland mapping using pixel‐based and object‐based time‐weighted dynamic time warping analysis
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 433
  year: 2019
  article-title: Validation of copernicus Sentinel‐2 cloud masks obtained from MAJA, Sen2Cor, and FMask processors using reference cloud masks generated with a supervised active learning procedure
  publication-title: Remote Sens.
– volume: 9
  start-page: 95
  year: 2017
  article-title: Operational high resolution land cover map production at the country scale using satellite image time series
  publication-title: Remote Sens.
– volume: 5
  start-page: 247
  year: 2019
  end-page: 258
  article-title: A comparison of satellite remote sensing data fusion methods to map peat swamp forest loss in Sumatra, Indonesia
  publication-title: Remote Sens. Ecol. Conserv.
– volume: 9
  start-page: 2343
  year: 2001
  end-page: 2351
  article-title: Quantitative comparison of classification capability: fully polarimetric versus dual and single‐polarization SAR
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 202
  start-page: 18
  year: 2017
  end-page: 27
  article-title: Google earth engine: planetary‐scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
– volume: 81
  start-page: 194
  year: 2002
  end-page: 204
  article-title: Season‐long daily measurements of multifrequency (ka, ku, x, c, and l) and full‐polarization backscatter signatures over paddy rice field and their relationship with biological variables
  publication-title: Remote Sens. Environ.
– volume: 30
  start-page: 207
  year: 2015
  end-page: 214
  article-title: Challenges and opportunities in harnessing satellite remote‐sensing for biodiversity monitoring
  publication-title: Ecol. Inform.
– volume: 6
  start-page: 12409
  year: 2014
  end-page: 12426
  article-title: Mapping forest height in Alaska using GLAS, Landsat composites, and airborne LiDAR
  publication-title: Remote Sens.
– volume: 40
  start-page: 192
  year: 2014
  end-page: 212
  article-title: Pixel‐based image compositing for large‐area dense time series applications and science
  publication-title: Can. J. Remote. Sens.
– year: 1992
– volume: 44
  start-page: 1926
  year: 2006
  end-page: 1928
  article-title: Time series of remote sensing data for land change science
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 40
  start-page: 5954
  year: 2001
  end-page: 5966
  article-title: Adaptive‐neighborhood speckle removal in multitemporal synthetic aperture radar images
  publication-title: Appl. Opt.
– volume: 32
  start-page: 8207
  year: 2011
  end-page: 8230
  article-title: Land‐cover classification in a moist tropical region of Brazil with Landsat thematic mapper imagery
  publication-title: Int. J. Remote Sens.
– volume: 156
  start-page: 490
  year: 2015
  end-page: 499
  article-title: Mining dense Landsat time series for separating cropland and pasture in a heterogeneous Brazilian savanna landscape
  publication-title: Remote Sens. Environ.
– volume: 8
  start-page: 1020
  year: 2016
  article-title: Land cover classification in complex and fragmented agricultural landscapes of the Ethiopian highlands
  publication-title: Remote Sens.
– volume: 114
  start-page: 1747
  year: 2010
  end-page: 1755
  article-title: A multi‐temporal method for cloud detection, applied to FORMOSAT‐2, VENuS, LANDSAT and SENTINEL‐2 images
  publication-title: Remote Sens. Environ.
– volume: 8
  start-page: 70
  year: 2016
  article-title: A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring
  publication-title: Remote Sens.
– volume: 7
  start-page: 116
  year: 2018
  article-title: Combined use of optical and synthetic aperture radar data for REDD+ applications in Malawi
  publication-title: Land
– volume: 22
  start-page: 2377
  year: 2001
  end-page: 2400
  article-title: Using remote sensing to assess biodiversity
  publication-title: Int. J. Remote Sens.
– volume: 52
  start-page: 361
  year: 2016
  end-page: 370
  article-title: Mapping Brazilian savanna vegetation gradients with Landsat time series
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 114
  start-page: 528
  year: 2017
  end-page: 533
  article-title: The global decline of cheetah Acinonyx jubatus and what it means for conservation
  publication-title: Proc. Natl Acad. Sci.
– volume: 47
  start-page: 3981
  year: 2009b
  end-page: 3992
  article-title: The contribution of ALOS PALSAR multipolarization and polarimetric data to crop classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2017
– volume: 6
  start-page: 1
  year: 2011
  end-page: 11
  article-title: Will elephants soon disappear from West African savannahs?
  publication-title: PLoS ONE
– volume: 31
  start-page: 235
  year: 2007
  end-page: 260
  article-title: Development of a large area biodiversity monitoring system driven by remote sensing
  publication-title: Prog. Phys. Geog.: Earth Environ.
– volume: 69
  start-page: 133
  year: 2018
  end-page: 147
  article-title: Mapping croplands, cropping patterns, and crop types using MODIS time‐series data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 116
  start-page: 55
  year: 2016
  end-page: 72
  article-title: Optical remotely sensed time series data for land cover classification: a review
  publication-title: ISPRS J. Photogramm. Remote Sens.
– year: 2013
– ident: e_1_2_8_34_1
  doi: 10.1016/j.rse.2013.07.011
– ident: e_1_2_8_28_1
  doi: 10.1080/01431161.2014.964349
– ident: e_1_2_8_15_1
  doi: 10.1080/01431169608949139
– ident: e_1_2_8_42_1
  doi: 10.3390/rs61212409
– ident: e_1_2_8_60_1
  doi: 10.1080/0143116031000139818
– ident: e_1_2_8_13_1
  doi: 10.1177/0309133307079054
– ident: e_1_2_8_27_1
  doi: 10.3390/rs8010070
– ident: e_1_2_8_50_1
  doi: 10.1038/523403a
– ident: e_1_2_8_11_1
  doi: 10.1002/rse2.102
– ident: e_1_2_8_5_1
  doi: 10.1371/journal.pone.0020619
– ident: e_1_2_8_19_1
  doi: 10.1186/s40965-017-0031-6
– ident: e_1_2_8_3_1
  doi: 10.3390/rs11040433
– ident: e_1_2_8_53_1
  doi: 10.3390/rs6065279
– ident: e_1_2_8_18_1
  doi: 10.1016/j.rse.2017.06.031
– volume: 18
  start-page: 583
  year: 2007
  ident: e_1_2_8_2_1
  article-title: Leaf green‐up in a semi‐arid African savanna ‐separating tree and grass responses to environmental cues
  publication-title: J. Veg. Sci.
– ident: e_1_2_8_32_1
  doi: 10.1080/01431161.2010.532831
– ident: e_1_2_8_55_1
  doi: 10.1109/TBDATA.2018.2846265
– ident: e_1_2_8_29_1
  doi: 10.1109/TGRS.2006.872932
– ident: e_1_2_8_36_1
  doi: 10.1109/TGRS.2009.2026052
– ident: e_1_2_8_56_1
  doi: 10.1109/TGRS.2003.817270
– ident: e_1_2_8_17_1
  doi: 10.1016/j.isprsjprs.2016.03.008
– volume: 9
  start-page: 2343
  year: 2001
  ident: e_1_2_8_31_1
  article-title: Quantitative comparison of classification capability: fully polarimetric versus dual and single‐polarization SAR
  publication-title: IEEE Trans. Geosci. Remote Sens.
– ident: e_1_2_8_7_1
  doi: 10.1080/014311697218962
– ident: e_1_2_8_20_1
  doi: 10.1016/j.rse.2010.03.002
– ident: e_1_2_8_4_1
  doi: 10.1016/j.rse.2017.10.005
– ident: e_1_2_8_45_1
  doi: 10.1109/36.964973
– ident: e_1_2_8_54_1
  doi: 10.3390/rs10040499
– ident: e_1_2_8_26_1
– volume: 1
  start-page: 1
  year: 2007
  ident: e_1_2_8_47_1
  article-title: The truth of the F‐measure
  publication-title: Teach Tutor mater
– start-page: 1
  volume-title: The Diversity of the Savanna Ecosystem
  year: 1996
  ident: e_1_2_8_52_1
– ident: e_1_2_8_37_1
  doi: 10.1016/j.jag.2013.12.015
– ident: e_1_2_8_14_1
  doi: 10.3390/rs8121020
– ident: e_1_2_8_6_1
– ident: e_1_2_8_12_1
  doi: 10.1073/pnas.1611122114
– ident: e_1_2_8_51_1
– ident: e_1_2_8_33_1
  doi: 10.1016/j.ecoinf.2015.08.006
– ident: e_1_2_8_35_1
  doi: 10.1016/j.isprsjprs.2008.07.006
– ident: e_1_2_8_9_1
  doi: 10.1364/AO.40.005954
– ident: e_1_2_8_44_1
  doi: 10.1080/014311698215748
– ident: e_1_2_8_21_1
– ident: e_1_2_8_22_1
  doi: 10.1371/journal.pone.0083500
– ident: e_1_2_8_24_1
  doi: 10.3390/rs9010095
– ident: e_1_2_8_39_1
  doi: 10.1080/01431160117096
– ident: e_1_2_8_40_1
  doi: 10.1016/j.jag.2016.05.006
– ident: e_1_2_8_41_1
  doi: 10.1016/j.rse.2016.10.010
– ident: e_1_2_8_16_1
– ident: e_1_2_8_49_1
  doi: 10.1016/j.jag.2016.06.019
– ident: e_1_2_8_25_1
  doi: 10.1016/S0034-4257(01)00343-1
– ident: e_1_2_8_58_1
  doi: 10.2307/3001968
– ident: e_1_2_8_46_1
  doi: 10.3390/rs11030232
– ident: e_1_2_8_48_1
  doi: 10.1111/2041-210X.12942
– ident: e_1_2_8_30_1
– ident: e_1_2_8_59_1
  doi: 10.1080/19479830903561035
– ident: e_1_2_8_10_1
  doi: 10.1080/17445647.2017.1372316
– ident: e_1_2_8_23_1
  doi: 10.3390/land7040116
– ident: e_1_2_8_38_1
  doi: 10.1016/j.rse.2014.10.014
– ident: e_1_2_8_57_1
  doi: 10.1080/07038992.2014.945827
– ident: e_1_2_8_8_1
  doi: 10.1016/j.jag.2018.03.005
– ident: e_1_2_8_43_1
  doi: 10.1093/acprof:osobl/9780199693160.001.0001
SSID ssj0001627178
Score 2.319716
Snippet Up‐to‐date land cover maps are important for biodiversity monitoring as they are central to habitat and ecosystem distribution assessments. Satellite remote...
Up-to-date land cover maps are important for biodiversity monitoring as they are central to habitat and ecosystem distribution assessments. Satellite remote...
Abstract Up‐to‐date land cover maps are important for biodiversity monitoring as they are central to habitat and ecosystem distribution assessments. Satellite...
SourceID doaj
hal
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 316
SubjectTerms Biodiversity
Classification
Data combination
Ecosystem assessment
Environmental management
Grasslands
Image classification
Land cover
Life Sciences
Mapping
National parks
Natural vegetation
natural vegetation classification
Phenology
Protected areas
Radar
Radar data
Radar imaging
Radar satellites
Remote sensing
satellite image time series
Satellite imagery
Satellites
savanna
Savannahs
Sentinel‐1
Sentinel‐2
Spatial data
Time series
Vegetation mapping
Vegetation surveys
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9RAEB5KseCLqK0YrbIWaZ9ik929TeJblSt9KEX8Ufq2bHbn7IHNHcn1sP-9M5tciaD4IoQkbDJhmZnNfrM7fAPwNg8u80bpNHhTptrnJnWmxrTyEkPwVS5jVuXleXFxUV5dVZ9Gpb44J6ynB-4Vd6y94Z0uwv3kOSgL3pZyM2VQScx8Hcm2s6IaBVNxdcVIilPKDdtsJo_bDuW7nGuCj-afSNNPs8o1J0GOEOYYp8aJ5vQxPBoQojjpe_YEtrB5CjvTyC59twtzGsF1rOogFsu4EC1cE0TrgmtF5yLB5grF_IZ-FIIrxwt2MuzEaiFu3FJEJk8SWuP3IdPwPYkRnm5cJ_hoBP50zBm8B99Op18_nqVDvYTUa1JM6nxpfC2dkzgLeZ1pHZxDjYU3JpO1y7AM0hdFXZVhphRS7DJBQmwkNKP7TD2D7WbR4HMQBBO9JtFqEvhc1RTYcORjSukVhXwJHG20aP1AJs41LX7YngZZWta3JX0n8Ob-zWVPoPGHdz6wIe6fM-V1bCBHsIMj2H85QgIHZMbfvnF2cm65jeJMSU6i1nkC-xsr22GwdpYQDsEypSY6gcNo-b_21H7-MpV0ffE_evwSHkqO3mPG2j5sr9pbfAUP_Ho179rX0aF_ATTi-Ew
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwELZgA4kXBoOJwpjMNMFTWGK7TrIXtE2d9jBV0wZob5ZjX7dKW1KSUsG_5851t05ivCBFSeTElqO73N1nn75jbCfzNnVaqsQ7XSTKZTqxuoKkdAK8d2UmQlbl95N8OCwuLsrTuODWxbTKhU0Mhto3jtbId9ENoe-Usq--TH4kVDWKdldjCY3HbJWYylDPVw8Gw9Ozu1UWLRCvFAvW2VTsth2IzxnVBl_yQ4GuH73LFSVDLkWay_FqcDhHa_871RfseQw1-f5cN16yR1Cvs6eDQFP9-xUboymoQnkI3kzCija3teet9bblnQ1MnVPg4xu0OJxK0HPSVuj4tOE3dsIDJSh2msFlTFncw24YmNe243TUHH5ZIh9-zb4dDb4eHiex8ELilMjLxLpCu0pYK2DksypVylsLCnKndSoqm0Lhhcvzqiz8SEpAENQHDP2w0wjvU7nBVuqmhjeMY7zpFHYt-57OZYUIiSCULoSTiB177NNCDMZFVnIqjnFt5nzKwpDADAqsxz7cvjmZM3H85Z0DkuTtc-LODg1Ne2nir2iU07R3ikgSbRHg9yJEtiOpQQpIXYVT2kY9uDfG8f6JoTYErEKgUZxlPba5kL2Jf31n7gTfYx-D6jw4U3N2PhB4ffvvcd6xZ4IAfkhq22Qr0_YnvGdP3Gw67tqtqO1_AJT9CQU
  priority: 102
  providerName: ProQuest
Title Combining optical and radar satellite image time series to map natural vegetation: savannas as an example
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frse2.139
https://www.proquest.com/docview/2444393354
https://hal.inrae.fr/hal-02622073
https://doaj.org/article/4c61197144794e279549af36e32e0cb6
Volume 6
WOSCitedRecordID wos000507765800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2056-3485
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001627178
  issn: 2056-3485
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: Directory of Open Access Scholarly Resources (ROAD)
  customDbUrl:
  eissn: 2056-3485
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001627178
  issn: 2056-3485
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2056-3485
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001627178
  issn: 2056-3485
  databaseCode: PCBAR
  dateStart: 20151001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest - Publicly Available Content Database
  customDbUrl:
  eissn: 2056-3485
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001627178
  issn: 2056-3485
  databaseCode: PIMPY
  dateStart: 20151001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2056-3485
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001627178
  issn: 2056-3485
  databaseCode: BENPR
  dateStart: 20151001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Open Access资源_Wiley Online Library Open Access
  customDbUrl:
  eissn: 2056-3485
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001627178
  issn: 2056-3485
  databaseCode: 24P
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2056-3485
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001627178
  issn: 2056-3485
  databaseCode: WIN
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swEBZbu0Ff9ns0XRe0MbYnr_ZJke2-tcOlhTaY7lf3JGTp0gVaJ9hZ2F72t_ekOGkLGwwGwXEUXVDs0-n7lMt3jL1JnImtEjJyVmWRtImKjKowyi2gczZPIGRVfjlOh8Ps7Cwvu6xK_1-YhT7EasPNz4wQr_0EN1W7cy0a2rQI7wm_3GXrSSJS79Egy-v9FQXEVEJBOlrjIyGzwVJ7NoadpfGt1SiI9tMa892nRN7AmzdRa1h2Dh7-z4AfsQcd2OR7C-94zO5g_YTdL4JQ9a-nbEzBoAoFIvhkGva0uakdb4wzDW9N0OqcIR9fUszhvgg99_6KLZ9N-KWZ8iAKSkZzPO-SFnfJjKB5bVruHzXHn8bLDz9jnw-KTx8Oo670QmQlpHlkbKZsBcYAjlxSxVI6Y1BiapWKoTIxZg5smlZ55kZCINGgARL4I6MRncfiOVurJzVuMk6I00oyzQfOH_OKOJInUSoDK4g99ti75S3QttMl9-UxLvRCURm0v3CaLlyPvVr1nC60OP7QZ9_fxdX7Xj07NEyac91NRi2t8r-eEpekaIT0fYkkm5FQKABjW9GQXpMP3PqMw71j7duIsgJQWJwnPba9dBHdzftWE1gihCfEQPbY2-AMfx2pPv1YAD1v_WvHF2wDPNkPCW7bbG3W_MCX7J6dz8Zt0w_e32fr-8WwPO2HrQU6nvwuqK08Oim_0auvR8MrKgcMng
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHQheuCMKAwzi8pQtcVw3QUJoQKdW66oKNjSePMc-HZVoWpJS2J_iN3LsJluRgLc9IEVJlORYdvLlXJyT7wA8jawOjYxFYI1MAmEiGWiZYZAajtaaNOI-q_Jjvz0YJIeH6XANftb_wri0ylonekVtp8bNkW-RGSLbGcct8Xr2NXBVo9zX1bqExhIWu3jynUK28lXvHT3fZ5zvdPbfdoOqqkBgBG-ngTaJNBnXmuPIRlkohNUaBbaNlCHPdIiJ5abdztLEjuIYycNvIfk1JDSi_TCmdi_AuiCwhw1YH_b2hp_OZnUkp_goqVluQ75VlMg3I1eLfMXu-fIAZM0-u-TLFc921T_2Bm7n2v92a67D1cqVZttL7N-ANcxvwqWOp-E-uQVjUnWZL3_BpjM_Y890blmhrS5YqT0T6RzZeEIalc3HE2TubcSSzadsomfMU56S0AKPq5TMlyRGgUeuS-aWnOEP7ciVb8PBuYzzDjTyaY53gZE_bQSJpi3r1mlGEaALEWXCTUyxcRNe1I9dmYp13RX_-KKWfNFcOYAoAkgTHp9eOVsyjfzhmjcOOafnHTe4PzAtjlWlapQw0n0bpkiZdC3SeFsi1aNYYswxNBl16Qnh7rc2utt95Y5RQM45Kf1F1ISNGmuq0mqlOgNaE557qP61p-r9hw6n7b1_t_MILnf39_qq3xvs3ocr3E1m-AS-DWjMi2_4AC6axXxcFg-rN43B0Xkj-BckLmeq
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHSBeuCMKAwzi8hSaOKmbICHUba02raqqwdDejGOfjEo0KUkp7K_x6zh2k61IwNsekKIkcmLLTj6fi3PyHYDngVG-FmHkGS1iL9KB8JRI0Us0R2N0EnAXVflx1BuP4-PjZLIBP5t_YWxYZSMTnaA2hbZr5B1SQ6Q7w7AbdbI6LGKyO3w3_-rZDFL2S2uTTmMFkQM8_U7uW_V2f5fe9QvOh4MPO3tenWHA0xHvJZ7SsdApV4pjZoLUjyKjFEbY00L4PFU-xobrXi9NYpOFIZK130WycahSRud-SO1egs1YiIS3YHOys90_PF_hEZx8pbhhvPV5p6yQvw5sXvI1HehSBZBm-2wDMdes3HVb2Sm74Y3_-THdhOu1ic36qzlxCzYwvw1XBo6e-_QOTEkEpi4tBivmbiWfqdywUhlVsko5htIFsumMJC1bTGfI7CzFii0KNlNz5qhQqdIST-pQzTdUjRySXFXMbjnDH8qSLt-FowsZ5z1o5UWO94GRna0jqpp0jd0nKXmG1nUUMdch-cxteNVAQOqajd0mBfkiVzzSXFqwSAJLG56e3TlfMZD84Z5ti6Kz65Yz3BUU5YmsRZCMtLDfjMmDJhmMNN5ulKgsFBhy9HVKXXpGGPytjb3-SNoyctQ5J2WwDNqw1eBO1tKukuega8NLB9u_9lQevh9wOj74dztP4CrBVo72xwcP4Rq3axwurm8LWovyGz6Cy3q5mFbl43rSMfh00QD-Bc8ZcCo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+optical+and+radar+satellite+image+time+series+to+map+natural+vegetation%3A+savannas+as+an+example&rft.jtitle=Remote+sensing+in+ecology+and+conservation&rft.au=Lopes%2C+Mailys&rft.au=Frison%2C+Pierre-Louis&rft.au=Durant%2C+Sarah.M.&rft.au=Schulte+To+B%C3%BChne%2C+Henrike&rft.date=2020-09-01&rft.pub=Wiley&rft.eissn=2056-3485&rft.volume=6&rft.issue=3&rft.spage=316&rft.epage=326&rft_id=info:doi/10.1002%2Frse2.139&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-02622073v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2056-3485&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2056-3485&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2056-3485&client=summon