Predicting the fire resistance of timber members loaded in tension
SUMMARY The paper presents a numerical model for predicting the fire resistance of timber members. Fire resistance is evaluated in a two‐step process implemented in the Abaqus finite element code: first, a time‐dependent thermal analysis of the member exposed to fire and then a structural analysis u...
Uloženo v:
| Vydáno v: | Fire and materials Ročník 37; číslo 2; s. 114 - 129 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Chichester, UK
John Wiley & Sons, Ltd
01.03.2013
Wiley Wiley Subscription Services, Inc |
| Témata: | |
| ISSN: | 0308-0501, 1099-1018 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | SUMMARY
The paper presents a numerical model for predicting the fire resistance of timber members. Fire resistance is evaluated in a two‐step process implemented in the Abaqus finite element code: first, a time‐dependent thermal analysis of the member exposed to fire and then a structural analysis under a constant load are performed. The structural analysis considers the reduction in mechanical properties (modulus of elasticity and strength) of timber with temperature. The analysis terminates when the member can no longer redistribute stresses from the hottest to the coldest parts, leading to structural failure. The model was used to simulate fire tests carried out on specimens made from laminated veneer lumber loaded in tension. Experimental data in terms of temperature, charring depth, displacement and failure time were compared with the numerical results obtained by assuming the thermal properties and degradation of mechanical properties with temperature as suggested by Eurocode 5, showing an overall acceptable approximation. The fire resistance of the timber member was then predicted depending upon the applied tensile loads using the numerical model and analytical formulas. The proposed finite element model can be used to predict the fire resistance of timber structures as an alternative to expensive and complicated experimental tests. Copyright © 2012 John Wiley & Sons, Ltd. |
|---|---|
| AbstractList | SUMMARY
The paper presents a numerical model for predicting the fire resistance of timber members. Fire resistance is evaluated in a two‐step process implemented in the Abaqus finite element code: first, a time‐dependent thermal analysis of the member exposed to fire and then a structural analysis under a constant load are performed. The structural analysis considers the reduction in mechanical properties (modulus of elasticity and strength) of timber with temperature. The analysis terminates when the member can no longer redistribute stresses from the hottest to the coldest parts, leading to structural failure. The model was used to simulate fire tests carried out on specimens made from laminated veneer lumber loaded in tension. Experimental data in terms of temperature, charring depth, displacement and failure time were compared with the numerical results obtained by assuming the thermal properties and degradation of mechanical properties with temperature as suggested by Eurocode 5, showing an overall acceptable approximation. The fire resistance of the timber member was then predicted depending upon the applied tensile loads using the numerical model and analytical formulas. The proposed finite element model can be used to predict the fire resistance of timber structures as an alternative to expensive and complicated experimental tests. Copyright © 2012 John Wiley & Sons, Ltd. SUMMARY The paper presents a numerical model for predicting the fire resistance of timber members. Fire resistance is evaluated in a two-step process implemented in the Abaqus finite element code: first, a time-dependent thermal analysis of the member exposed to fire and then a structural analysis under a constant load are performed. The structural analysis considers the reduction in mechanical properties (modulus of elasticity and strength) of timber with temperature. The analysis terminates when the member can no longer redistribute stresses from the hottest to the coldest parts, leading to structural failure. The model was used to simulate fire tests carried out on specimens made from laminated veneer lumber loaded in tension. Experimental data in terms of temperature, charring depth, displacement and failure time were compared with the numerical results obtained by assuming the thermal properties and degradation of mechanical properties with temperature as suggested by Eurocode 5, showing an overall acceptable approximation. The fire resistance of the timber member was then predicted depending upon the applied tensile loads using the numerical model and analytical formulas. The proposed finite element model can be used to predict the fire resistance of timber structures as an alternative to expensive and complicated experimental tests. Copyright © 2012 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT] SUMMARY The paper presents a numerical model for predicting the fire resistance of timber members. Fire resistance is evaluated in a two-step process implemented in the Abaqus finite element code: first, a time-dependent thermal analysis of the member exposed to fire and then a structural analysis under a constant load are performed. The structural analysis considers the reduction in mechanical properties (modulus of elasticity and strength) of timber with temperature. The analysis terminates when the member can no longer redistribute stresses from the hottest to the coldest parts, leading to structural failure. The model was used to simulate fire tests carried out on specimens made from laminated veneer lumber loaded in tension. Experimental data in terms of temperature, charring depth, displacement and failure time were compared with the numerical results obtained by assuming the thermal properties and degradation of mechanical properties with temperature as suggested by Eurocode 5, showing an overall acceptable approximation. The fire resistance of the timber member was then predicted depending upon the applied tensile loads using the numerical model and analytical formulas. The proposed finite element model can be used to predict the fire resistance of timber structures as an alternative to expensive and complicated experimental tests. Copyright [copy 2012 John Wiley & Sons, Ltd. The paper presents a numerical model for predicting the fire resistance of timber members. Fire resistance is evaluated in a two‐step process implemented in the Abaqus finite element code: first, a time‐dependent thermal analysis of the member exposed to fire and then a structural analysis under a constant load are performed. The structural analysis considers the reduction in mechanical properties (modulus of elasticity and strength) of timber with temperature. The analysis terminates when the member can no longer redistribute stresses from the hottest to the coldest parts, leading to structural failure. The model was used to simulate fire tests carried out on specimens made from laminated veneer lumber loaded in tension. Experimental data in terms of temperature, charring depth, displacement and failure time were compared with the numerical results obtained by assuming the thermal properties and degradation of mechanical properties with temperature as suggested by Eurocode 5, showing an overall acceptable approximation. The fire resistance of the timber member was then predicted depending upon the applied tensile loads using the numerical model and analytical formulas. The proposed finite element model can be used to predict the fire resistance of timber structures as an alternative to expensive and complicated experimental tests. Copyright © 2012 John Wiley & Sons, Ltd. |
| Author | Buchanan, Andrew H. De Nicolo, Barbara Moss, Peter J. Clemente, Isaia Menis, Agnese Fragiacomo, Massimo |
| Author_xml | – sequence: 1 givenname: Massimo surname: Fragiacomo fullname: Fragiacomo, Massimo organization: Department of Architecture, Design and Urban Planning, University of Sassari, Alghero, Italy – sequence: 2 givenname: Agnese surname: Menis fullname: Menis, Agnese email: Correspondence to: Agnese Menis, Department of Structural Engineering, University of Cagliari, Cagliari, Italy., ag.menis@gmail.com organization: Department of Structural Engineering, University of Cagliari, Cagliari, Italy – sequence: 3 givenname: Peter J. surname: Moss fullname: Moss, Peter J. organization: Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch, New Zealand – sequence: 4 givenname: Isaia surname: Clemente fullname: Clemente, Isaia organization: Department of Civil Engineering and Architecture, University of Trieste, Trieste, Italy – sequence: 5 givenname: Andrew H. surname: Buchanan fullname: Buchanan, Andrew H. organization: Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch, New Zealand – sequence: 6 givenname: Barbara surname: De Nicolo fullname: De Nicolo, Barbara organization: Department of Structural Engineering, University of Cagliari, Cagliari, Italy |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26885802$$DView record in Pascal Francis |
| BookMark | eNqF0V1rFTEQBuAgFTytgj9hQQRv9nTysUn2sqfYKrZWUOllyG4mmrqbrUkO2n_vLqetKBav5ubJy2TefbIXp4iEPKewpgDs0NtxzShVj8iKQtvWFKjeIyvgoGtogD4h-zlfAYDWSq7I5kNCF_oS4peqfMXKh4RVwhxysbHHavJVCWOHqRpxGbkaJuvQVSFWBWMOU3xKHns7ZHx2Ow_I55PXn47f1GcXp2-Pj87qXjClage8450XyNqOAnqluWvBNtJCa63wStlWW-scc1y3GiQI56kWUlBJ-07zA_Jql3udpu9bzMWMIfc4DDbitM2GSkWFYrSl_6eCC5ivBAt98Re9mrYpzh8xlOlmDmV8US9vlc29HXyajxOyuU5htOnGMKl1o4HNbr1zfZpyTuhNH4ot85VKsmEwFMzSkplbMktLvze9f3CX-Q9a7-iPMODNg86cHJ3_6ecu8ee9t-mbkYqrxly-PzXs3aVU5x83ZsN_Adkcrqo |
| CODEN | FMATDV |
| CitedBy_id | crossref_primary_10_3390_buildings12122265 crossref_primary_10_1016_j_engstruct_2020_111608 crossref_primary_10_1016_j_jobe_2024_108781 crossref_primary_10_1016_j_engstruct_2025_120592 crossref_primary_10_1016_j_conbuildmat_2017_06_128 crossref_primary_10_1061__ASCE_ST_1943_541X_0000851 crossref_primary_10_1016_j_firesaf_2014_05_006 crossref_primary_10_1016_j_istruc_2020_12_086 crossref_primary_10_1016_j_conbuildmat_2020_121380 crossref_primary_10_1016_j_firesaf_2019_01_001 crossref_primary_10_1007_s10694_016_0578_2 crossref_primary_10_1016_j_firesaf_2017_11_008 crossref_primary_10_1016_j_firesaf_2018_02_001 crossref_primary_10_3390_buildings13030725 crossref_primary_10_3390_buildings14071898 crossref_primary_10_1016_j_indcrop_2022_115847 crossref_primary_10_2749_101686612X13363929517659 crossref_primary_10_1061__ASCE_ST_1943_541X_0000787 crossref_primary_10_1007_s10694_014_0421_6 crossref_primary_10_1016_j_jobe_2024_109808 crossref_primary_10_3390_app14041477 crossref_primary_10_1016_j_ijadhadh_2023_103358 |
| Cites_doi | 10.1260/2040‐2317.2.3.231 10.1002/fam.1078 10.1002/fam.898 10.1007/s10694‐009‐0092‐x 10.1002/fam.999 10.1002/fam.985 10.1016/j.buildenv.2008.02.010 10.1016/j.conbuildmat.2010.12.002 10.1002/fam.873 10.1002/fam.848 10.1002/fam.819 10.1260/2040‐2317.1.3.145 |
| ContentType | Journal Article |
| Copyright | Copyright © 2012 John Wiley & Sons, Ltd. 2014 INIST-CNRS Copyright © 2013 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: Copyright © 2012 John Wiley & Sons, Ltd. – notice: 2014 INIST-CNRS – notice: Copyright © 2013 John Wiley & Sons, Ltd. |
| DBID | BSCLL AAYXX CITATION IQODW 7QF 7QQ 7SC 7SE 7SP 7SR 7T2 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1002/fam.2117 |
| DatabaseName | Istex CrossRef Pascal-Francis Aluminium Industry Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Health and Safety Science Abstracts (Full archive) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Health & Safety Science Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Materials Research Database Health & Safety Science Abstracts CrossRef Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences |
| EISSN | 1099-1018 |
| EndPage | 129 |
| ExternalDocumentID | 2886627611 26885802 10_1002_fam_2117 FAM2117 ark_67375_WNG_2KW67MSB_B |
| Genre | article |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EDH EJD F00 F01 F04 FEDTE FOJGT G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ ITG ITH IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6K MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ O66 O9- OIG P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ UB1 V2E V8K W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQZ WTY WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~V8 ~WT AAYXX BANNL CITATION O8X IQODW 7QF 7QQ 7SC 7SE 7SP 7SR 7T2 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c4277-d03b3bf4e29b10ef783d90a56a09aa4f77a98aadd2d38980604df18464161cb83 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000314938900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0308-0501 |
| IngestDate | Sun Nov 23 09:45:01 EST 2025 Tue Oct 07 09:22:48 EDT 2025 Fri Jul 25 10:43:10 EDT 2025 Mon Jul 21 09:16:16 EDT 2025 Sat Nov 29 02:17:52 EST 2025 Tue Nov 18 22:08:15 EST 2025 Thu Sep 25 07:33:46 EDT 2025 Sun Sep 21 06:19:04 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Wood Construction materials Combustion Wood construction Experimental study Forecast model Modeling Building functional element Finite element method Fire resistance experimental testing Abaqus finite element model Fire test charring Numerical simulation Thermal analysis timber thermal-structural analysis Comparative study Structural analysis |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4277-d03b3bf4e29b10ef783d90a56a09aa4f77a98aadd2d38980604df18464161cb83 |
| Notes | ark:/67375/WNG-2KW67MSB-B istex:03C239EB77942C0A7FA684A2B1F996DA4914482A ArticleID:FAM2117 ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 content type line 23 |
| PQID | 1285167231 |
| PQPubID | 866405 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_1671472191 proquest_miscellaneous_1434021101 proquest_journals_1285167231 pascalfrancis_primary_26885802 crossref_citationtrail_10_1002_fam_2117 crossref_primary_10_1002_fam_2117 wiley_primary_10_1002_fam_2117_FAM2117 istex_primary_ark_67375_WNG_2KW67MSB_B |
| PublicationCentury | 2000 |
| PublicationDate | March 2013 |
| PublicationDateYYYYMMDD | 2013-03-01 |
| PublicationDate_xml | – month: 03 year: 2013 text: March 2013 |
| PublicationDecade | 2010 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: Chichester – name: Bognor Regis |
| PublicationTitle | Fire and materials |
| PublicationTitleAlternate | Fire Mater |
| PublicationYear | 2013 |
| Publisher | John Wiley & Sons, Ltd Wiley Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley – name: Wiley Subscription Services, Inc |
| References | Frangi A, Fontana M. Charring rates and temperature profiles of wood sections. Fire and Materials 2003; 27(2):91-102. DOI: 10.1002/fam.819 Yang T-H, Wang S-Y, Tsai M-J, Lin C-Y. The charring depth and charring rate of glued laminated timber after a standard fire exposure test. Building and Environment 2009; 44(2):231-236. DOI: 10.1016/j.buildenv.2008.02.010 Buchanan AH. Structural design for fire safety. Wiley: Chichester, U.K., 2002. Frangi A, König J. Effect of increased charring on the narrow side of rectangular timber cross-sections exposed to fire on three or four sides. Fire and Materials 2011. DOI: 10.1002/fam.1078 Fragiacomo M, Menis A, Moss PJ, Buchanan AH, Clemente I. Numerical and experimental evaluation of the temperature distribution within laminated veneer lumber (LVL) exposed to fire. Journal of Structural Fire Engineering 2010; 1(3):145-159. DOI: 10.1260/2040-2317.1.3.145 Janssens ML. Modeling of the thermal degradation of structural wood members exposed to fire. Fire and Materials 2004; 28(2-4):199-207. DOI: 10.1002/fam.848 ISO 834-1. Fire-resistance tests. Elements of building construction. - Part 1: General requirements. International Organization for Standardization: Geneva, Switzerland, 1999. Cachim PB, Franssen J-M. Comparison between the charring rate model and the conductive model of Eurocode 5. Fire and Materials 2009; 33(3):129-143. DOI: 10.1002/fam.985 Cachim PB, Franssen J-M. Assessment of Eurocode 5 charring rate calculation methods. Fire Technology 2010; 46(1):169-181. DOI: 10.1007/s10694-009-0092-x König J. Effective thermal actions and thermal properties of timber members in natural fires. Fire and Materials 2006; 30(1):51-63. DOI: 10.1002/fam.898 O'Neill J, Carradine D, Moss PJ, Fragiacomo M, Dhakal R, Buchanan AH. Design of timber-concrete composite floors for fire resistance. Journal of Structural Fire Engineering 2011; 2(3):231-242. DOI: 10.1260/2040-2317.2.3.231 König J. Structural fire design according to Eurocode 5-design rules and their background. Fire and Materials 2005; 29(3):147-163. DOI: 10.1002/fam.873 Hopkin DJ, El-Rimawi J, Silberschmidt V, Lennon T. An effective thermal property framework for softwood in parametric design fire: comparison of the Eurocode 5 parametric charring approach and advanced calculation models. Construction and Building Materials 2011; 25(5):2584-2595. DOI: 10.1016/j.conbuildmat.2010.12.002 SNZ. 1993. Code of practice for timber design. NZS 3603:1993. Standards New Zealand: Wellington, New Zealand, 1993. Moss PJ, Buchanan AH, Fragiacomo M, Lau PH, Chuo T. Fire performance of bolted connections in laminated veneer lumber. Fire and Materials 2009; 33(5):223-243. DOI: 10.1002/fam.999 2009; 33 2009; 44 2006; 30 2010; 1 2011; 2 2010; 46 2001 2011 2010 2004; 28 2009 2008 2003; 27 2006 2005 2004 1993 2003 2002 2011; 25 2005; 29 1999 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 ISO 834‐1 (e_1_2_9_21_1) 1999 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_2_1 Buchanan AH (e_1_2_9_4_1) 2002 e_1_2_9_9_1 e_1_2_9_26_1 SNZ (e_1_2_9_10_1) 1993 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
| References_xml | – reference: Frangi A, König J. Effect of increased charring on the narrow side of rectangular timber cross-sections exposed to fire on three or four sides. Fire and Materials 2011. DOI: 10.1002/fam.1078 – reference: Fragiacomo M, Menis A, Moss PJ, Buchanan AH, Clemente I. Numerical and experimental evaluation of the temperature distribution within laminated veneer lumber (LVL) exposed to fire. Journal of Structural Fire Engineering 2010; 1(3):145-159. DOI: 10.1260/2040-2317.1.3.145 – reference: König J. Structural fire design according to Eurocode 5-design rules and their background. Fire and Materials 2005; 29(3):147-163. DOI: 10.1002/fam.873 – reference: Frangi A, Fontana M. Charring rates and temperature profiles of wood sections. Fire and Materials 2003; 27(2):91-102. DOI: 10.1002/fam.819 – reference: ISO 834-1. Fire-resistance tests. Elements of building construction. - Part 1: General requirements. International Organization for Standardization: Geneva, Switzerland, 1999. – reference: Janssens ML. Modeling of the thermal degradation of structural wood members exposed to fire. Fire and Materials 2004; 28(2-4):199-207. DOI: 10.1002/fam.848 – reference: SNZ. 1993. Code of practice for timber design. NZS 3603:1993. Standards New Zealand: Wellington, New Zealand, 1993. – reference: Cachim PB, Franssen J-M. Assessment of Eurocode 5 charring rate calculation methods. Fire Technology 2010; 46(1):169-181. DOI: 10.1007/s10694-009-0092-x – reference: Cachim PB, Franssen J-M. Comparison between the charring rate model and the conductive model of Eurocode 5. Fire and Materials 2009; 33(3):129-143. DOI: 10.1002/fam.985 – reference: König J. Effective thermal actions and thermal properties of timber members in natural fires. Fire and Materials 2006; 30(1):51-63. DOI: 10.1002/fam.898 – reference: Moss PJ, Buchanan AH, Fragiacomo M, Lau PH, Chuo T. Fire performance of bolted connections in laminated veneer lumber. Fire and Materials 2009; 33(5):223-243. DOI: 10.1002/fam.999 – reference: O'Neill J, Carradine D, Moss PJ, Fragiacomo M, Dhakal R, Buchanan AH. Design of timber-concrete composite floors for fire resistance. Journal of Structural Fire Engineering 2011; 2(3):231-242. DOI: 10.1260/2040-2317.2.3.231 – reference: Hopkin DJ, El-Rimawi J, Silberschmidt V, Lennon T. An effective thermal property framework for softwood in parametric design fire: comparison of the Eurocode 5 parametric charring approach and advanced calculation models. Construction and Building Materials 2011; 25(5):2584-2595. DOI: 10.1016/j.conbuildmat.2010.12.002 – reference: Yang T-H, Wang S-Y, Tsai M-J, Lin C-Y. The charring depth and charring rate of glued laminated timber after a standard fire exposure test. Building and Environment 2009; 44(2):231-236. DOI: 10.1016/j.buildenv.2008.02.010 – reference: Buchanan AH. Structural design for fire safety. Wiley: Chichester, U.K., 2002. – volume: 44 start-page: 231 issue: 2 year: 2009 end-page: 236 article-title: The charring depth and charring rate of glued laminated timber after a standard fire exposure test publication-title: Building and Environment – year: 2009 – year: 2011 article-title: Effect of increased charring on the narrow side of rectangular timber cross‐sections exposed to fire on three or four sides publication-title: Fire and Materials – volume: 30 start-page: 51 issue: 1 year: 2006 end-page: 63 article-title: Effective thermal actions and thermal properties of timber members in natural fires publication-title: Fire and Materials – year: 2005 – year: 2002 – volume: 33 start-page: 223 issue: 5 year: 2009 end-page: 243 article-title: Fire performance of bolted connections in laminated veneer lumber publication-title: Fire and Materials – year: 2001 – year: 2008 – year: 2006 – year: 2004 – year: 2003 – volume: 28 start-page: 199 issue: 2–4 year: 2004 end-page: 207 article-title: Modeling of the thermal degradation of structural wood members exposed to fire publication-title: Fire and Materials – volume: 29 start-page: 147 issue: 3 year: 2005 end-page: 163 article-title: Structural fire design according to Eurocode 5—design rules and their background publication-title: Fire and Materials – volume: 27 start-page: 91 issue: 2 year: 2003 end-page: 102 article-title: Charring rates and temperature profiles of wood sections publication-title: Fire and Materials – volume: 25 start-page: 2584 issue: 5 year: 2011 end-page: 2595 article-title: An effective thermal property framework for softwood in parametric design fire: comparison of the Eurocode 5 parametric charring approach and advanced calculation models publication-title: Construction and Building Materials – volume: 2 start-page: 231 issue: 3 year: 2011 end-page: 242 article-title: Design of timber–concrete composite floors for fire resistance publication-title: Journal of Structural Fire Engineering – year: 1993 – volume: 1 start-page: 145 issue: 3 year: 2010 end-page: 159 article-title: Numerical and experimental evaluation of the temperature distribution within laminated veneer lumber (LVL) exposed to fire publication-title: Journal of Structural Fire Engineering – volume: 33 start-page: 129 issue: 3 year: 2009 end-page: 143 article-title: Comparison between the charring rate model and the conductive model of Eurocode 5 publication-title: Fire and Materials – start-page: 223 year: 2002 end-page: 242 – year: 2010 – year: 1999 – volume: 46 start-page: 169 issue: 1 year: 2010 end-page: 181 article-title: Assessment of Eurocode 5 charring rate calculation methods publication-title: Fire Technology – volume-title: Structural design for fire safety year: 2002 ident: e_1_2_9_4_1 – ident: e_1_2_9_29_1 doi: 10.1260/2040‐2317.2.3.231 – ident: e_1_2_9_14_1 – ident: e_1_2_9_33_1 doi: 10.1002/fam.1078 – ident: e_1_2_9_28_1 – ident: e_1_2_9_3_1 – ident: e_1_2_9_6_1 – ident: e_1_2_9_25_1 – ident: e_1_2_9_7_1 doi: 10.1002/fam.898 – ident: e_1_2_9_20_1 – ident: e_1_2_9_16_1 – ident: e_1_2_9_19_1 – ident: e_1_2_9_34_1 doi: 10.1007/s10694‐009‐0092‐x – ident: e_1_2_9_13_1 – ident: e_1_2_9_17_1 doi: 10.1002/fam.999 – ident: e_1_2_9_32_1 – volume-title: Code of practice for timber design. NZS 3603:1993 year: 1993 ident: e_1_2_9_10_1 – ident: e_1_2_9_2_1 – ident: e_1_2_9_8_1 doi: 10.1002/fam.985 – ident: e_1_2_9_5_1 – ident: e_1_2_9_27_1 – ident: e_1_2_9_31_1 doi: 10.1016/j.buildenv.2008.02.010 – ident: e_1_2_9_9_1 doi: 10.1016/j.conbuildmat.2010.12.002 – ident: e_1_2_9_35_1 doi: 10.1002/fam.873 – ident: e_1_2_9_12_1 doi: 10.1002/fam.848 – ident: e_1_2_9_11_1 doi: 10.1002/fam.819 – ident: e_1_2_9_24_1 doi: 10.1260/2040‐2317.1.3.145 – ident: e_1_2_9_30_1 – ident: e_1_2_9_15_1 – volume-title: Fire‐resistance tests. Elements of building construction. ‐ Part 1: General requirements year: 1999 ident: e_1_2_9_21_1 – ident: e_1_2_9_18_1 – ident: e_1_2_9_22_1 – ident: e_1_2_9_23_1 – ident: e_1_2_9_26_1 |
| SSID | ssj0008876 |
| Score | 2.088202 |
| Snippet | SUMMARY
The paper presents a numerical model for predicting the fire resistance of timber members. Fire resistance is evaluated in a two‐step process... The paper presents a numerical model for predicting the fire resistance of timber members. Fire resistance is evaluated in a two‐step process implemented in... SUMMARY The paper presents a numerical model for predicting the fire resistance of timber members. Fire resistance is evaluated in a two-step process... |
| SourceID | proquest pascalfrancis crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 114 |
| SubjectTerms | Abaqus Applied sciences Building codes Building insulation Building structure Buildings Buildings. Public works charring Computation methods. Tables. Charts Computer simulation Construction (buildings and works) Exact sciences and technology experimental testing External envelopes Finite element method finite element model Fire resistance Fires Lumber Materials Mathematical analysis Mathematical models Mechanical properties Sound insulation Structural analysis Structural analysis. Stresses Thermal analysis Thermal properties thermal-structural analysis Timber Wood Wood structure |
| Title | Predicting the fire resistance of timber members loaded in tension |
| URI | https://api.istex.fr/ark:/67375/WNG-2KW67MSB-B/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffam.2117 https://www.proquest.com/docview/1285167231 https://www.proquest.com/docview/1434021101 https://www.proquest.com/docview/1671472191 |
| Volume | 37 |
| WOSCitedRecordID | wos000314938900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-1018 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008876 issn: 0308-0501 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLfgjgd44BtxMKYgofF0LE2TJn3cAQcS22kCxvYWpU0indhadL0h_nzstld2EiAknqKqjpo6sf1z7doAL1RAjZe6OFXkrkpZqqlDS4SXykcyQKaNmH451IuFOTvLj_usSvoXpqsPMXxwI8lo9TUJuCua_V9FQ6O7eIXei74OY4HHVo1g_Obj_ORw0MP4lC5SSQF-xZNN6Vku9jdzt4zRmPj6g5IjXYP8iV1jiy3keRW_tgZofud_ln4Xbvewkx105-QeXAvVfbh1pRjhA5gdryhoQ2nQDFEhi6gMGTrjBDDxZLA6svWS2oewi0BDw85r54Nny4q1afB19RBO5m8_v34_7TssTEtJsVvP0yItogwiLxIeojapz7lTmeO5czJq7XLjUAUKj8DGUKEd3EGELOQWlYVJH8GoqqvwGFjBtedJ4Y03TvosL4QIociUllJz1KETeLlhtS378uPUBePcdoWThUWuWOLKBJ4PlN-6khu_odlrd2sgcKuvlKKmlT1dvLPiw2mmjz7N7GwCu1vbOUwQmTHKcDGBnc3-2l58G4tGWyWZRuyLixluo-BRNMVVob5EGpmi743o6W80mU4k-tg50uy1J-KPb2TnB0c0PvlXwqdwU7StOSgfbgdG69VleAY3yu_rZbPa7YXhJ8x0Ctg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NFQl44ButMIaR0Hgqcxw7dsTTCpShtdUEG9ub5cSOVG1LUNsh_nzukiasEiAknqIoFyU538fvfJc7gFcqoMWLXTFQFK5KmauBQ0-Ep8oX5IBMnTH9OtbTqTk7S4824G37L0zTH6LbcCPNqO01KThtSO_96hpauMs3GL7oG9CTKEUo3r33n0cn484Q42OaVCVl-BWP2t6zXOy19655ox4x9gdVR7oFMqhoJlusQc_rALb2QKN7__Xu9-HuCniy_UZSHsBGKB_CnWvtCB_B8GhOaRsqhGaIC1mB5pBhOE4QE2WDVQVbzmiACLsMdFiwi8r54NmsZHUhfFU-hpPRh-N3B4PVjIVBLil763mcxVkhg0iziIdCm9in3KnE8dQ5WWjtUuPQCAqP0MZQqx1cQwQtFBjlmYmfwGZZlWELWMa151HmjTdO-iTNhAghS5SWUnO0on143fLa5qsG5DQH48I2rZOFRa5Y4kofXnaU35qmG7-h2a2XqyNw83MqUtPKnk4_WnF4mujJl6Ed9mFnbT27G0RijDJc9GG7XWC7UuCFRbetokQj-sWX6S6j6lE-xZWhukIaGWP0jfjpbzSJjiRG2SnS7NYi8ccvsqP9CR2f_ivhC7h1cDwZ2_Gn6eEzuC3qQR1UHbcNm8v5VXgON_Pvy9livrPSjJ_BGQ7I |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdGixA88I0ojGEkNJ7KHMeOHfG0MgJoXVUBY3uznNiWKrZkajvEn89dvlglQEg8WVHOinP23f0ud7kj5KX0oPFiG8YS3VUhCjm2YIngUrqABkjXEdOvUzWb6dPTdL5F3nT_wjT1IfoPbigZtb5GAfcXLuz9qhoa7PlrcF_UNTIU2ENmQIYHn7Ljaa-I4TFNqBIj_JJFXe1Zxve6uRvWaIiM_YHZkXYFDApNZ4sN6HkVwNYWKLvzX2u_S263wJPuNyflHtny5X1y60o5wgdkMl9i2AYToSngQhpAHVJwxxFiwtmgVaDrBTYQoecehxU9q6zzji5KWifCV-VDcpy9-_L2w7jtsTAuBEZvHYvzOA_C8zSPmA9Kxy5lViaWpdaKoJRNtQUlyB1AG42ldmAPAbSgY1TkOn5EBmVV-seE5kw5FuVOO22FS9Kcc-_zRCohFAMtOiKvOl6boi1Ajn0wzkxTOpkb4IpBrozIi57yoim68Rua3Xq7egK7_IZJakqak9l7ww9PEnX0eWImI7KzsZ_9BJ5oLTXjI7LdbbBpBXhlwGzLKFGAfmEx_W0QPYyn2NJXl0AjYvC-AT_9jSZRkQAvOwWa3fpI_PGNTLZ_hOOTfyV8Tm7MDzIz_Tg7fEpu8rpPBybHbZPBennpn5Hrxff1YrXcaQXjJzbdDkM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+fire+resistance+of+timber+members+loaded+in+tension&rft.jtitle=Fire+and+materials&rft.au=Fragiacomo%2C+Massimo&rft.au=Menis%2C+Agnese&rft.au=Moss%2C+Peter+J.&rft.au=Clemente%2C+Isaia&rft.date=2013-03-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0308-0501&rft.eissn=1099-1018&rft.volume=37&rft.issue=2&rft.spage=114&rft.epage=129&rft_id=info:doi/10.1002%2Ffam.2117&rft.externalDBID=10.1002%252Ffam.2117&rft.externalDocID=FAM2117 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-0501&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-0501&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-0501&client=summon |