Optimizing spherical navigator echoes for three-dimensional rigid-body motion detection

Spherical navigator (SNAV) echoes show promise in correcting for three‐dimensional rigid‐body motion. In this paper, several important parameters in the design and performance of the SNAV technique are discussed, including a novel sampling strategy, the optimal k‐space radius and sampling density of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine Jg. 53; H. 5; S. 1080 - 1087
Hauptverfasser: Petrie, Daniel W., Costa, Andreu F., Takahashi, Atsushi, Yen, Yi-Fen, Drangova, Maria
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.05.2005
Schlagworte:
ISSN:0740-3194, 1522-2594
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Spherical navigator (SNAV) echoes show promise in correcting for three‐dimensional rigid‐body motion. In this paper, several important parameters in the design and performance of the SNAV technique are discussed, including a novel sampling strategy, the optimal k‐space radius and sampling density of the navigator, and the execution of the SNAV trajectory by the scanner hardware. A variable‐sampling density (VSD) helical‐spiral SNAV trajectory, which can acquire data on the entire spherical shell without exceeding the maximum slew rate of the scanner, is presented. To ensure that the VSD SNAV trajectory was properly executed by the scanner hardware, the gradient waveforms were verified using a self‐encoding technique. The ability of the VSD SNAV to measure rotational and translational motion was studied with in vitro experiments at various k‐space radii and sampling densities. The results of this study show that the best accuracy was attained at k‐space radii of 1.4 and 1.6 cm−1, with 2400 to 4000 samples acquired over the sphere. Magn Reson Med 53:1080–1087, 2005. © 2005 Wiley‐Liss, Inc.
AbstractList Spherical navigator (SNAV) echoes show promise in correcting for three‐dimensional rigid‐body motion. In this paper, several important parameters in the design and performance of the SNAV technique are discussed, including a novel sampling strategy, the optimal k ‐space radius and sampling density of the navigator, and the execution of the SNAV trajectory by the scanner hardware. A variable‐sampling density (VSD) helical‐spiral SNAV trajectory, which can acquire data on the entire spherical shell without exceeding the maximum slew rate of the scanner, is presented. To ensure that the VSD SNAV trajectory was properly executed by the scanner hardware, the gradient waveforms were verified using a self‐encoding technique. The ability of the VSD SNAV to measure rotational and translational motion was studied with in vitro experiments at various k ‐space radii and sampling densities. The results of this study show that the best accuracy was attained at k ‐space radii of 1.4 and 1.6 cm −1 , with 2400 to 4000 samples acquired over the sphere. Magn Reson Med 53:1080–1087, 2005. © 2005 Wiley‐Liss, Inc.
Spherical navigator (SNAV) echoes show promise in correcting for three-dimensional rigid-body motion. In this paper, several important parameters in the design and performance of the SNAV technique are discussed, including a novel sampling strategy, the optimal k-space radius and sampling density of the navigator, and the execution of the SNAV trajectory by the scanner hardware. A variable-sampling density (VSD) helical-spiral SNAV trajectory, which can acquire data on the entire spherical shell without exceeding the maximum slew rate of the scanner, is presented. To ensure that the VSD SNAV trajectory was properly executed by the scanner hardware, the gradient waveforms were verified using a self-encoding technique. The ability of the VSD SNAV to measure rotational and translational motion was studied with in vitro experiments at various k-space radii and sampling densities. The results of this study show that the best accuracy was attained at k-space radii of 1.4 and 1.6 cm(-1), with 2400 to 4000 samples acquired over the sphere.
Spherical navigator (SNAV) echoes show promise in correcting for three-dimensional rigid-body motion. In this paper, several important parameters in the design and performance of the SNAV technique are discussed, including a novel sampling strategy, the optimal k-space radius and sampling density of the navigator, and the execution of the SNAV trajectory by the scanner hardware. A variable-sampling density (VSD) helical-spiral SNAV trajectory, which can acquire data on the entire spherical shell without exceeding the maximum slew rate of the scanner, is presented. To ensure that the VSD SNAV trajectory was properly executed by the scanner hardware, the gradient waveforms were verified using a self-encoding technique. The ability of the VSD SNAV to measure rotational and translational motion was studied with in vitro experiments at various k-space radii and sampling densities. The results of this study show that the best accuracy was attained at k-space radii of 1.4 and 1.6 cm(-1), with 2400 to 4000 samples acquired over the sphere.Spherical navigator (SNAV) echoes show promise in correcting for three-dimensional rigid-body motion. In this paper, several important parameters in the design and performance of the SNAV technique are discussed, including a novel sampling strategy, the optimal k-space radius and sampling density of the navigator, and the execution of the SNAV trajectory by the scanner hardware. A variable-sampling density (VSD) helical-spiral SNAV trajectory, which can acquire data on the entire spherical shell without exceeding the maximum slew rate of the scanner, is presented. To ensure that the VSD SNAV trajectory was properly executed by the scanner hardware, the gradient waveforms were verified using a self-encoding technique. The ability of the VSD SNAV to measure rotational and translational motion was studied with in vitro experiments at various k-space radii and sampling densities. The results of this study show that the best accuracy was attained at k-space radii of 1.4 and 1.6 cm(-1), with 2400 to 4000 samples acquired over the sphere.
Spherical navigator (SNAV) echoes show promise in correcting for three‐dimensional rigid‐body motion. In this paper, several important parameters in the design and performance of the SNAV technique are discussed, including a novel sampling strategy, the optimal k‐space radius and sampling density of the navigator, and the execution of the SNAV trajectory by the scanner hardware. A variable‐sampling density (VSD) helical‐spiral SNAV trajectory, which can acquire data on the entire spherical shell without exceeding the maximum slew rate of the scanner, is presented. To ensure that the VSD SNAV trajectory was properly executed by the scanner hardware, the gradient waveforms were verified using a self‐encoding technique. The ability of the VSD SNAV to measure rotational and translational motion was studied with in vitro experiments at various k‐space radii and sampling densities. The results of this study show that the best accuracy was attained at k‐space radii of 1.4 and 1.6 cm−1, with 2400 to 4000 samples acquired over the sphere. Magn Reson Med 53:1080–1087, 2005. © 2005 Wiley‐Liss, Inc.
Spherical navigator (SNAV) echoes show promise in correcting for three-dimensional rigid-body motion. In this paper, several important parameters in the design and performance of the SNAV technique are discussed, including a novel sampling strategy, the optimal k-space radius and sampling density of the navigator, and the execution of the SNAV trajectory by the scanner hardware. A variable-sampling density (VSD) helical-spiral SNAV trajectory, which can acquire data on the entire spherical shell without exceeding the maximum slew rate of the scanner, is presented. To ensure that the VSD SNAV trajectory was properly executed by the scanner hardware, the gradient waveforms were verified using a self-encoding technique. The ability of the VSD SNAV to measure rotational and translational motion was studied with in vitro experiments at various k-space radii and sampling densities. The results of this study show that the best accuracy was attained at k-space radii of 1.4 and 1.6/cm, with 2400 to 4000 samples acquired over the sphere.
Author Petrie, Daniel W.
Yen, Yi-Fen
Drangova, Maria
Takahashi, Atsushi
Costa, Andreu F.
Author_xml – sequence: 1
  givenname: Daniel W.
  surname: Petrie
  fullname: Petrie, Daniel W.
  organization: Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada
– sequence: 2
  givenname: Andreu F.
  surname: Costa
  fullname: Costa, Andreu F.
  organization: Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada
– sequence: 3
  givenname: Atsushi
  surname: Takahashi
  fullname: Takahashi, Atsushi
  organization: Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada
– sequence: 4
  givenname: Yi-Fen
  surname: Yen
  fullname: Yen, Yi-Fen
  organization: Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada
– sequence: 5
  givenname: Maria
  surname: Drangova
  fullname: Drangova, Maria
  email: mdrangov@imaging.robarts.ca
  organization: Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15844145$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9vEzEQxS1URNOWA18A7QmJw7b-G-8eUQUtUkMlKJSb5bXHiWF3ndoObfj0dZq0BwTiNKOZ33vSzDtAe2MYAaFXBB8TjOnJEIdjijkXz9CECEprKlq-hyZYclwz0vJ9dJDSD4xx20r-Au0T0XBOuJig68tl9oP_7cd5lZYLiN7ovhr1Lz_XOcQKzCJAqlxp8yIC1NYPMCYfxoJFP_e27oJdV0PIZVZZyGA23RF67nSf4OWuHqKvH95fnZ7XF5dnH0_fXdSGUylq56xstAXtGLBpZylogbFrOk7tZmckc9QJBq3jmhNCrCBE065rGTFTzdgherP1XcZws4KU1eCTgb7XI4RVUlMpZcNa8l-wfIk2DRUFfL0DV90AVi2jH3Rcq8efFeBkC5gYUorglPFZb47OUfteEaw2qaiSinpIpSje_qF4Mv0Lu3O_9T2s_w2q2efZo6LeKnzKcPek0PFnuZ5Joa4_nanZd_xN8C_nCrN7jgisug
CitedBy_id crossref_primary_10_1016_j_neuroimage_2006_01_039
crossref_primary_10_1002_nbm_4225
crossref_primary_10_1002_mrm_29961
crossref_primary_10_1002_mrm_22082
crossref_primary_10_1002_mrm_22198
crossref_primary_10_1016_j_mri_2009_07_010
crossref_primary_10_1002_mrm_22496
crossref_primary_10_1002_mrm_24310
crossref_primary_10_1002_mrm_27796
crossref_primary_10_1002_mrm_22797
crossref_primary_10_1088_1361_6560_ab10b2
crossref_primary_10_1002_mrm_24423
crossref_primary_10_1016_j_acra_2006_05_010
crossref_primary_10_1016_j_mri_2016_06_006
crossref_primary_10_1002_mrm_22629
crossref_primary_10_1002_mrm_20977
Cites_doi 10.1002/mrm.1910320614
10.1109/42.75611
10.1002/mrm.1910340514
10.1016/S1361-8415(01)80026-8
10.1002/mrm.10259
10.1002/mrm.1910340323
10.1002/mrm.20306
10.1002/mrm.10012
10.1002/mrm.1910390411
ContentType Journal Article
Copyright Copyright © 2005 Wiley‐Liss, Inc.
Copyright 2005 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2005 Wiley‐Liss, Inc.
– notice: Copyright 2005 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
DOI 10.1002/mrm.20445
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic

Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1087
ExternalDocumentID 15844145
10_1002_mrm_20445
MRM20445
ark_67375_WNG_MX0V54SH_0
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Whitaker Foundation
  funderid: RG‐00–0409
– fundername: Ontario Research and Development Challenge Fund
– fundername: Canadian Institutes of Health Research
  funderid: MGP‐49536
– fundername: Natural Sciences and Engineering Research Council of Canada
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGB
RWI
WRC
WUP
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c4275-ffd78adeaf3e36bd2ea500f8b42dffd7c73f2f53e9f4a4111d511a2bb931c6a33
IEDL.DBID DRFUL
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000228796900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
IngestDate Fri Sep 05 14:04:32 EDT 2025
Mon Oct 06 18:07:03 EDT 2025
Wed Feb 19 01:41:20 EST 2025
Sat Nov 29 06:27:12 EST 2025
Tue Nov 18 22:04:58 EST 2025
Wed Jan 22 16:36:07 EST 2025
Sun Sep 21 06:18:47 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Copyright 2005 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4275-ffd78adeaf3e36bd2ea500f8b42dffd7c73f2f53e9f4a4111d511a2bb931c6a33
Notes Natural Sciences and Engineering Research Council of Canada
istex:27424F3BAF3E5A5905DF98E171BA8680001277E2
ArticleID:MRM20445
Ontario Research and Development Challenge Fund
ark:/67375/WNG-MX0V54SH-0
Canadian Institutes of Health Research - No. MGP-49536
Whitaker Foundation - No. RG-00-0409
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.20445
PMID 15844145
PQID 19428825
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_67778391
proquest_miscellaneous_19428825
pubmed_primary_15844145
crossref_citationtrail_10_1002_mrm_20445
crossref_primary_10_1002_mrm_20445
wiley_primary_10_1002_mrm_20445_MRM20445
istex_primary_ark_67375_WNG_MX0V54SH_0
PublicationCentury 2000
PublicationDate May 2005
PublicationDateYYYYMMDD 2005-05-01
PublicationDate_xml – month: 05
  year: 2005
  text: May 2005
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2005
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Alley MT, Glover GH, Pelc NJ. Gradient characterization using a Fourier-transform technique. Magn Reson Med 1998; 39: 581-587.
Press WH, Flannery BP, Teukolsky SA, Vetterling WT. Numerical recipes in C, 2nd ed. New York: Cambridge University Press; 1992.
Pratt WK. Digital image processing. New York : Wiley; 1991.
Costa A, Petrie D, Yen YF, Drangova M. Using the axis of rotation of polar navigator echoes to rapidly measure 3D rigid body motion. Magn Reson Med 2005; 53: 150-158.
Ward HA, Riederer SJ, Jack CR. Real-time autoshimming for echo planar timecourse imaging. Magn Reson Med 2002; 48: 771-780.
Welch EB, Manduca A, Grimm RC, Ward HA, Jack CR. Spherical navigator echoes for full 3D rigid body motion measurement in MRI. Magn Reson Med 2002; 47: 32-41.
Takahashi A, Peters T. Compensation of multi-dimensional selective excitation pulses using measured k-space trajectories. Magn Reson Med 1995; 34: 446-456.
Wong ST, Roos MS. A strategy for sampling on a sphere applied to 3D selective RF pulse design. Magn Reson Med 1994; 32: 778-784.
Pauly JM, LeRoux P, Nishimura DG, Macovski A. Parameter relations for the Shinnar-LeRoux selective excitation pulse design algorithm. IEEE Trans Med Imaging 1991; 10: 53-65.
Maintz JB, Viergever MA. A survey of medical image registration. Med Image Anal 1998; 2: 1-36.
Fu ZW, Wang Y, Grimm RC, Rossman PJ, Felmlee JP, Riederer SJ, Ehman RL. Orbital navigator echoes for motion measurements in magnetic resonance imaging. Magn Reson Med 1995; 34: 746-753.
2002; 47
2005; 53
1998; 39
2002; 48
2004
1998; 2
2003
1992
1991
1991; 10
1995; 34
1994; 32
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
Press WH (e_1_2_6_8_2) 1992
e_1_2_6_5_2
e_1_2_6_12_2
Pratt WK (e_1_2_6_14_2) 1991
e_1_2_6_13_2
e_1_2_6_2_2
e_1_2_6_10_2
e_1_2_6_11_2
e_1_2_6_16_2
e_1_2_6_17_2
e_1_2_6_15_2
References_xml – reference: Costa A, Petrie D, Yen YF, Drangova M. Using the axis of rotation of polar navigator echoes to rapidly measure 3D rigid body motion. Magn Reson Med 2005; 53: 150-158.
– reference: Welch EB, Manduca A, Grimm RC, Ward HA, Jack CR. Spherical navigator echoes for full 3D rigid body motion measurement in MRI. Magn Reson Med 2002; 47: 32-41.
– reference: Alley MT, Glover GH, Pelc NJ. Gradient characterization using a Fourier-transform technique. Magn Reson Med 1998; 39: 581-587.
– reference: Fu ZW, Wang Y, Grimm RC, Rossman PJ, Felmlee JP, Riederer SJ, Ehman RL. Orbital navigator echoes for motion measurements in magnetic resonance imaging. Magn Reson Med 1995; 34: 746-753.
– reference: Wong ST, Roos MS. A strategy for sampling on a sphere applied to 3D selective RF pulse design. Magn Reson Med 1994; 32: 778-784.
– reference: Ward HA, Riederer SJ, Jack CR. Real-time autoshimming for echo planar timecourse imaging. Magn Reson Med 2002; 48: 771-780.
– reference: Maintz JB, Viergever MA. A survey of medical image registration. Med Image Anal 1998; 2: 1-36.
– reference: Press WH, Flannery BP, Teukolsky SA, Vetterling WT. Numerical recipes in C, 2nd ed. New York: Cambridge University Press; 1992.
– reference: Pauly JM, LeRoux P, Nishimura DG, Macovski A. Parameter relations for the Shinnar-LeRoux selective excitation pulse design algorithm. IEEE Trans Med Imaging 1991; 10: 53-65.
– reference: Takahashi A, Peters T. Compensation of multi-dimensional selective excitation pulses using measured k-space trajectories. Magn Reson Med 1995; 34: 446-456.
– reference: Pratt WK. Digital image processing. New York : Wiley; 1991.
– volume: 2
  start-page: 1
  year: 1998
  end-page: 36
  article-title: A survey of medical image registration
  publication-title: Med Image Anal
– volume: 47
  start-page: 32
  year: 2002
  end-page: 41
  article-title: Spherical navigator echoes for full 3D rigid body motion measurement in MRI
  publication-title: Magn Reson Med
– volume: 32
  start-page: 778
  year: 1994
  end-page: 784
  article-title: A strategy for sampling on a sphere applied to 3D selective RF pulse design
  publication-title: Magn Reson Med
– start-page: 2153
  year: 2004
– start-page: 1030
  year: 2003
– start-page: 1056
  year: 2003
– start-page: 2155
  year: 2004
– start-page: 2154
  year: 2004
– volume: 34
  start-page: 746
  year: 1995
  end-page: 753
  article-title: Orbital navigator echoes for motion measurements in magnetic resonance imaging
  publication-title: Magn Reson Med
– volume: 10
  start-page: 53
  year: 1991
  end-page: 65
  article-title: Parameter relations for the Shinnar–LeRoux selective excitation pulse design algorithm
  publication-title: IEEE Trans Med Imaging
– volume: 34
  start-page: 446
  year: 1995
  end-page: 456
  article-title: Compensation of multi‐dimensional selective excitation pulses using measured k‐space trajectories
  publication-title: Magn Reson Med
– year: 1991
– volume: 48
  start-page: 771
  year: 2002
  end-page: 780
  article-title: Real‐time autoshimming for echo planar timecourse imaging
  publication-title: Magn Reson Med
– volume: 53
  start-page: 150
  year: 2005
  end-page: 158
  article-title: Using the axis of rotation of polar navigator echoes to rapidly measure 3D rigid body motion
  publication-title: Magn Reson Med
– year: 1992
– volume: 39
  start-page: 581
  year: 1998
  end-page: 587
  article-title: Gradient characterization using a Fourier‐transform technique
  publication-title: Magn Reson Med
– ident: e_1_2_6_7_2
  doi: 10.1002/mrm.1910320614
– ident: e_1_2_6_5_2
– ident: e_1_2_6_9_2
  doi: 10.1109/42.75611
– volume-title: Numerical recipes in C
  year: 1992
  ident: e_1_2_6_8_2
– ident: e_1_2_6_6_2
  doi: 10.1002/mrm.1910340514
– ident: e_1_2_6_13_2
  doi: 10.1016/S1361-8415(01)80026-8
– volume-title: Digital image processing
  year: 1991
  ident: e_1_2_6_14_2
– ident: e_1_2_6_3_2
– ident: e_1_2_6_12_2
  doi: 10.1002/mrm.10259
– ident: e_1_2_6_11_2
  doi: 10.1002/mrm.1910340323
– ident: e_1_2_6_15_2
  doi: 10.1002/mrm.20306
– ident: e_1_2_6_4_2
– ident: e_1_2_6_2_2
  doi: 10.1002/mrm.10012
– ident: e_1_2_6_16_2
  doi: 10.1002/mrm.20306
– ident: e_1_2_6_10_2
  doi: 10.1002/mrm.1910390411
– ident: e_1_2_6_17_2
SSID ssj0009974
Score 1.8954972
Snippet Spherical navigator (SNAV) echoes show promise in correcting for three‐dimensional rigid‐body motion. In this paper, several important parameters in the design...
Spherical navigator (SNAV) echoes show promise in correcting for three-dimensional rigid-body motion. In this paper, several important parameters in the design...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1080
SubjectTerms Algorithms
Imaging, Three-Dimensional
k-space
Magnetic Resonance Imaging - methods
Motion
motion correction
optimization
Phantoms, Imaging
pulse sequence design
Rotation
spherical navigator echo
Title Optimizing spherical navigator echoes for three-dimensional rigid-body motion detection
URI https://api.istex.fr/ark:/67375/WNG-MX0V54SH-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.20445
https://www.ncbi.nlm.nih.gov/pubmed/15844145
https://www.proquest.com/docview/19428825
https://www.proquest.com/docview/67778391
Volume 53
WOSCitedRecordID wos000228796900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61XUBceJTX8igWQqiXqInjxIk4IWApErugQulKPVh2bEsVNIuSbQWc-An8Rn4JM052V5VaCYlbHhNp5Hn4czz-BuCptoV3dDJX-LyKhMtsVKJgxHmSInrA0HRFaDYhJ5NiOi0_rMHzxVmYjh9i-cONIiPkawpwbdqdFWnocUMHyYXI1mFAh6pw5TV4tTfaf7fi3C07EmYpKNWUYkEsFPOd5cdnpqMBjez387DmWega5p7R9f_S-gZc6yEne9H5yE1Yc_UmXBn3m-qbcDlUgVbtLTh8jwnk-OgnTmesJb4BsiCr9SnxcMwa5jBXupYhzmVz9AH359dvS90BOmYPRj22LD4zM_uDde2BmHXzUOxV34b90etPL3ejvvtCVAkus8h7KwttnfapS3NjuaPmCb4wglt6V8nUc5-lrvRCC0yZFrGb5saUaVLlOk3vwEY9q909YJnNy8RLm3jtRZ47Qy0549JKaWKjpRzC9sIIquqpyalDxlfVkSpzhcOmwrAN4clS9FvHx3Ge0LNgyaWEbr5QAZvM1MHkjRpP48-Z-Lir4iE8XphaYVjRXomu3eykVeguHBcf2cUSuZQS0WUyhLudj6z0QVAnElJjO7jCxYqq8d44XNz_d9EHcDXQx4aiy4ewMW9O3CO4VJ3Oj9pmC9bltNjqIwHvDt5O_gIB8Q8k
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VXaBc-CjQLl-1EEK9RE1sJ04kLghYFrFZUGnLShwsJ7alCpqtkm0FnPgJ_EZ-CR4nu6tKrYTELUom0sieGb_E4_cAnimdWoMnc7lNyoCbWAeZMwwojZhDDy41TerFJsRkkk6n2cc1eLE4C9PyQyx_uGFm-HqNCY4_pHdXrKHHNZ4k5zy-An2eMJH2oP96b3gwXpHuZi0Ls-BYazK-YBYK6e7y5XPrUR-H9vtFYPM8dvWLz_DW_7l9G252oJO8bKPkDqyZagOu5922-gZc832gZXMXvnxwJeT46Kdb0EiDjAM4h6RSZ8jEMauJcdXSNMQhXTJ3UWD-_PqtUR-g5fYgqLKl3b1ipn-QViCIaDP37V7VPTgYvtl_NQo6_YWg5FTEgbVapEobZZlhSaGpQfkEmxacanxWCmapjZnJLFfcFU3t0JuiRZGxqEwUY_ehV80qswUk1kkWWaEjqyxPElOgKGeYaSGKsFBCDGBnMQuy7MjJUSPjm2xplal0wyb9sA3g6dL0pGXkuMjouZ_KpYWqv2ILm4jl58lbmU_Dw5h_GslwANuLuZYusXC3RFVmdtpIFy_UfX7El1skQgiHL6MBbLZBsvLHwToeoRs7PhYud1Tme7m_ePDvptuwPtrPx3L8bvL-IdzwZLK-BfMR9Ob1qXkMV8uz-VFTP-kS4i9mUREd
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7UVosv1tZW11sHEelLaDKZZBLwRbRrS7uxeOtCH4ZJZgaKNluSbVGf_An-Rn-J50z2QqEFoW8hOYFhzmW-ZM58H8BLbTJn6WSucGkVCJuYIEfDgPMoRvSAqWkzLzYhiyIbDvPDBXg9PQvT8UPMfrhRZvh6TQluz4zbnrOGnjZ0klyI5BYsCcTh1NB1tFfMKXfzjoNZCqo0uZjyCoV8e_bqpdVoiSb2x1VQ8zJy9UtPf-Vmg74P9yaQk73pYmQVFmy9BsuDyab6GtzxXaBV-wCOP2ABOT35hcsZa4lvgDzIan1BPByjhlmslbZliHPZGGPA_v39x5A6QMfswUhjy-C9cmR-sk4eiBk79s1e9Tp86e98frsbTNQXgkpwmQTOGZlpY7WLbZyWhlsST3BZKbihZ5WMHXdJbHMntMCSaRC7aV6WeRxVqY7jDVisR7V9BCwxaR45aSKnnUhTW5IkZ5gbKcuw1FL2YGvqBVVNqMlJIeO76kiVucJpU37aevBiZnrW8XFcZfTKu3JmoZtv1MAmE3VUvFeDYfg1EZ92VdiDzamvFaYV7ZXo2o7OW4XxwvHjI7neIpVSIrqMevCwC5L5eBDUiYiGseVj4fqBqsHHgb94_P-mm7B8-K6vDvaK_Sdw1zPJ-v7Lp7A4bs7tM7hdXYxP2ua5z4Z_r24Pcw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+spherical+navigator+echoes+for+three-dimensional+rigid-body+motion+detection&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Petrie%2C+Daniel+W&rft.au=Costa%2C+Andreu+F&rft.au=Takahashi%2C+Atsushi&rft.au=Yen%2C+Yi-Fen&rft.date=2005-05-01&rft.issn=0740-3194&rft.volume=53&rft.issue=5&rft.spage=1080&rft_id=info:doi/10.1002%2Fmrm.20445&rft_id=info%3Apmid%2F15844145&rft.externalDocID=15844145
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon