Optimizing spherical navigator echoes for three-dimensional rigid-body motion detection
Spherical navigator (SNAV) echoes show promise in correcting for three‐dimensional rigid‐body motion. In this paper, several important parameters in the design and performance of the SNAV technique are discussed, including a novel sampling strategy, the optimal k‐space radius and sampling density of...
Gespeichert in:
| Veröffentlicht in: | Magnetic resonance in medicine Jg. 53; H. 5; S. 1080 - 1087 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.05.2005
|
| Schlagworte: | |
| ISSN: | 0740-3194, 1522-2594 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Spherical navigator (SNAV) echoes show promise in correcting for three‐dimensional rigid‐body motion. In this paper, several important parameters in the design and performance of the SNAV technique are discussed, including a novel sampling strategy, the optimal k‐space radius and sampling density of the navigator, and the execution of the SNAV trajectory by the scanner hardware. A variable‐sampling density (VSD) helical‐spiral SNAV trajectory, which can acquire data on the entire spherical shell without exceeding the maximum slew rate of the scanner, is presented. To ensure that the VSD SNAV trajectory was properly executed by the scanner hardware, the gradient waveforms were verified using a self‐encoding technique. The ability of the VSD SNAV to measure rotational and translational motion was studied with in vitro experiments at various k‐space radii and sampling densities. The results of this study show that the best accuracy was attained at k‐space radii of 1.4 and 1.6 cm−1, with 2400 to 4000 samples acquired over the sphere. Magn Reson Med 53:1080–1087, 2005. © 2005 Wiley‐Liss, Inc. |
|---|---|
| AbstractList | Spherical navigator (SNAV) echoes show promise in correcting for three‐dimensional rigid‐body motion. In this paper, several important parameters in the design and performance of the SNAV technique are discussed, including a novel sampling strategy, the optimal
k
‐space radius and sampling density of the navigator, and the execution of the SNAV trajectory by the scanner hardware. A variable‐sampling density (VSD) helical‐spiral SNAV trajectory, which can acquire data on the entire spherical shell without exceeding the maximum slew rate of the scanner, is presented. To ensure that the VSD SNAV trajectory was properly executed by the scanner hardware, the gradient waveforms were verified using a self‐encoding technique. The ability of the VSD SNAV to measure rotational and translational motion was studied with in vitro experiments at various
k
‐space radii and sampling densities. The results of this study show that the best accuracy was attained at
k
‐space radii of 1.4 and 1.6 cm
−1
, with 2400 to 4000 samples acquired over the sphere. Magn Reson Med 53:1080–1087, 2005. © 2005 Wiley‐Liss, Inc. Spherical navigator (SNAV) echoes show promise in correcting for three-dimensional rigid-body motion. In this paper, several important parameters in the design and performance of the SNAV technique are discussed, including a novel sampling strategy, the optimal k-space radius and sampling density of the navigator, and the execution of the SNAV trajectory by the scanner hardware. A variable-sampling density (VSD) helical-spiral SNAV trajectory, which can acquire data on the entire spherical shell without exceeding the maximum slew rate of the scanner, is presented. To ensure that the VSD SNAV trajectory was properly executed by the scanner hardware, the gradient waveforms were verified using a self-encoding technique. The ability of the VSD SNAV to measure rotational and translational motion was studied with in vitro experiments at various k-space radii and sampling densities. The results of this study show that the best accuracy was attained at k-space radii of 1.4 and 1.6 cm(-1), with 2400 to 4000 samples acquired over the sphere. Spherical navigator (SNAV) echoes show promise in correcting for three-dimensional rigid-body motion. In this paper, several important parameters in the design and performance of the SNAV technique are discussed, including a novel sampling strategy, the optimal k-space radius and sampling density of the navigator, and the execution of the SNAV trajectory by the scanner hardware. A variable-sampling density (VSD) helical-spiral SNAV trajectory, which can acquire data on the entire spherical shell without exceeding the maximum slew rate of the scanner, is presented. To ensure that the VSD SNAV trajectory was properly executed by the scanner hardware, the gradient waveforms were verified using a self-encoding technique. The ability of the VSD SNAV to measure rotational and translational motion was studied with in vitro experiments at various k-space radii and sampling densities. The results of this study show that the best accuracy was attained at k-space radii of 1.4 and 1.6 cm(-1), with 2400 to 4000 samples acquired over the sphere.Spherical navigator (SNAV) echoes show promise in correcting for three-dimensional rigid-body motion. In this paper, several important parameters in the design and performance of the SNAV technique are discussed, including a novel sampling strategy, the optimal k-space radius and sampling density of the navigator, and the execution of the SNAV trajectory by the scanner hardware. A variable-sampling density (VSD) helical-spiral SNAV trajectory, which can acquire data on the entire spherical shell without exceeding the maximum slew rate of the scanner, is presented. To ensure that the VSD SNAV trajectory was properly executed by the scanner hardware, the gradient waveforms were verified using a self-encoding technique. The ability of the VSD SNAV to measure rotational and translational motion was studied with in vitro experiments at various k-space radii and sampling densities. The results of this study show that the best accuracy was attained at k-space radii of 1.4 and 1.6 cm(-1), with 2400 to 4000 samples acquired over the sphere. Spherical navigator (SNAV) echoes show promise in correcting for three‐dimensional rigid‐body motion. In this paper, several important parameters in the design and performance of the SNAV technique are discussed, including a novel sampling strategy, the optimal k‐space radius and sampling density of the navigator, and the execution of the SNAV trajectory by the scanner hardware. A variable‐sampling density (VSD) helical‐spiral SNAV trajectory, which can acquire data on the entire spherical shell without exceeding the maximum slew rate of the scanner, is presented. To ensure that the VSD SNAV trajectory was properly executed by the scanner hardware, the gradient waveforms were verified using a self‐encoding technique. The ability of the VSD SNAV to measure rotational and translational motion was studied with in vitro experiments at various k‐space radii and sampling densities. The results of this study show that the best accuracy was attained at k‐space radii of 1.4 and 1.6 cm−1, with 2400 to 4000 samples acquired over the sphere. Magn Reson Med 53:1080–1087, 2005. © 2005 Wiley‐Liss, Inc. Spherical navigator (SNAV) echoes show promise in correcting for three-dimensional rigid-body motion. In this paper, several important parameters in the design and performance of the SNAV technique are discussed, including a novel sampling strategy, the optimal k-space radius and sampling density of the navigator, and the execution of the SNAV trajectory by the scanner hardware. A variable-sampling density (VSD) helical-spiral SNAV trajectory, which can acquire data on the entire spherical shell without exceeding the maximum slew rate of the scanner, is presented. To ensure that the VSD SNAV trajectory was properly executed by the scanner hardware, the gradient waveforms were verified using a self-encoding technique. The ability of the VSD SNAV to measure rotational and translational motion was studied with in vitro experiments at various k-space radii and sampling densities. The results of this study show that the best accuracy was attained at k-space radii of 1.4 and 1.6/cm, with 2400 to 4000 samples acquired over the sphere. |
| Author | Petrie, Daniel W. Yen, Yi-Fen Drangova, Maria Takahashi, Atsushi Costa, Andreu F. |
| Author_xml | – sequence: 1 givenname: Daniel W. surname: Petrie fullname: Petrie, Daniel W. organization: Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada – sequence: 2 givenname: Andreu F. surname: Costa fullname: Costa, Andreu F. organization: Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada – sequence: 3 givenname: Atsushi surname: Takahashi fullname: Takahashi, Atsushi organization: Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada – sequence: 4 givenname: Yi-Fen surname: Yen fullname: Yen, Yi-Fen organization: Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada – sequence: 5 givenname: Maria surname: Drangova fullname: Drangova, Maria email: mdrangov@imaging.robarts.ca organization: Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15844145$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU9vEzEQxS1URNOWA18A7QmJw7b-G-8eUQUtUkMlKJSb5bXHiWF3ndoObfj0dZq0BwTiNKOZ33vSzDtAe2MYAaFXBB8TjOnJEIdjijkXz9CECEprKlq-hyZYclwz0vJ9dJDSD4xx20r-Au0T0XBOuJig68tl9oP_7cd5lZYLiN7ovhr1Lz_XOcQKzCJAqlxp8yIC1NYPMCYfxoJFP_e27oJdV0PIZVZZyGA23RF67nSf4OWuHqKvH95fnZ7XF5dnH0_fXdSGUylq56xstAXtGLBpZylogbFrOk7tZmckc9QJBq3jmhNCrCBE065rGTFTzdgherP1XcZws4KU1eCTgb7XI4RVUlMpZcNa8l-wfIk2DRUFfL0DV90AVi2jH3Rcq8efFeBkC5gYUorglPFZb47OUfteEaw2qaiSinpIpSje_qF4Mv0Lu3O_9T2s_w2q2efZo6LeKnzKcPek0PFnuZ5Joa4_nanZd_xN8C_nCrN7jgisug |
| CitedBy_id | crossref_primary_10_1016_j_neuroimage_2006_01_039 crossref_primary_10_1002_nbm_4225 crossref_primary_10_1002_mrm_29961 crossref_primary_10_1002_mrm_22082 crossref_primary_10_1002_mrm_22198 crossref_primary_10_1016_j_mri_2009_07_010 crossref_primary_10_1002_mrm_22496 crossref_primary_10_1002_mrm_24310 crossref_primary_10_1002_mrm_27796 crossref_primary_10_1002_mrm_22797 crossref_primary_10_1088_1361_6560_ab10b2 crossref_primary_10_1002_mrm_24423 crossref_primary_10_1016_j_acra_2006_05_010 crossref_primary_10_1016_j_mri_2016_06_006 crossref_primary_10_1002_mrm_22629 crossref_primary_10_1002_mrm_20977 |
| Cites_doi | 10.1002/mrm.1910320614 10.1109/42.75611 10.1002/mrm.1910340514 10.1016/S1361-8415(01)80026-8 10.1002/mrm.10259 10.1002/mrm.1910340323 10.1002/mrm.20306 10.1002/mrm.10012 10.1002/mrm.1910390411 |
| ContentType | Journal Article |
| Copyright | Copyright © 2005 Wiley‐Liss, Inc. Copyright 2005 Wiley-Liss, Inc. |
| Copyright_xml | – notice: Copyright © 2005 Wiley‐Liss, Inc. – notice: Copyright 2005 Wiley-Liss, Inc. |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 |
| DOI | 10.1002/mrm.20445 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Engineering Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 1522-2594 |
| EndPage | 1087 |
| ExternalDocumentID | 15844145 10_1002_mrm_20445 MRM20445 ark_67375_WNG_MX0V54SH_0 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Whitaker Foundation funderid: RG‐00–0409 – fundername: Ontario Research and Development Challenge Fund – fundername: Canadian Institutes of Health Research funderid: MGP‐49536 – fundername: Natural Sciences and Engineering Research Council of Canada |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT 24P AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RGB RWI WRC WUP AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 |
| ID | FETCH-LOGICAL-c4275-ffd78adeaf3e36bd2ea500f8b42dffd7c73f2f53e9f4a4111d511a2bb931c6a33 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000228796900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0740-3194 |
| IngestDate | Fri Sep 05 14:04:32 EDT 2025 Mon Oct 06 18:07:03 EDT 2025 Wed Feb 19 01:41:20 EST 2025 Sat Nov 29 06:27:12 EST 2025 Tue Nov 18 22:04:58 EST 2025 Wed Jan 22 16:36:07 EST 2025 Sun Sep 21 06:18:47 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | Copyright 2005 Wiley-Liss, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4275-ffd78adeaf3e36bd2ea500f8b42dffd7c73f2f53e9f4a4111d511a2bb931c6a33 |
| Notes | Natural Sciences and Engineering Research Council of Canada istex:27424F3BAF3E5A5905DF98E171BA8680001277E2 ArticleID:MRM20445 Ontario Research and Development Challenge Fund ark:/67375/WNG-MX0V54SH-0 Canadian Institutes of Health Research - No. MGP-49536 Whitaker Foundation - No. RG-00-0409 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.20445 |
| PMID | 15844145 |
| PQID | 19428825 |
| PQPubID | 23462 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_67778391 proquest_miscellaneous_19428825 pubmed_primary_15844145 crossref_citationtrail_10_1002_mrm_20445 crossref_primary_10_1002_mrm_20445 wiley_primary_10_1002_mrm_20445_MRM20445 istex_primary_ark_67375_WNG_MX0V54SH_0 |
| PublicationCentury | 2000 |
| PublicationDate | May 2005 |
| PublicationDateYYYYMMDD | 2005-05-01 |
| PublicationDate_xml | – month: 05 year: 2005 text: May 2005 |
| PublicationDecade | 2000 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken – name: United States |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn. Reson. Med |
| PublicationYear | 2005 |
| Publisher | Wiley Subscription Services, Inc., A Wiley Company |
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
| References | Alley MT, Glover GH, Pelc NJ. Gradient characterization using a Fourier-transform technique. Magn Reson Med 1998; 39: 581-587. Press WH, Flannery BP, Teukolsky SA, Vetterling WT. Numerical recipes in C, 2nd ed. New York: Cambridge University Press; 1992. Pratt WK. Digital image processing. New York : Wiley; 1991. Costa A, Petrie D, Yen YF, Drangova M. Using the axis of rotation of polar navigator echoes to rapidly measure 3D rigid body motion. Magn Reson Med 2005; 53: 150-158. Ward HA, Riederer SJ, Jack CR. Real-time autoshimming for echo planar timecourse imaging. Magn Reson Med 2002; 48: 771-780. Welch EB, Manduca A, Grimm RC, Ward HA, Jack CR. Spherical navigator echoes for full 3D rigid body motion measurement in MRI. Magn Reson Med 2002; 47: 32-41. Takahashi A, Peters T. Compensation of multi-dimensional selective excitation pulses using measured k-space trajectories. Magn Reson Med 1995; 34: 446-456. Wong ST, Roos MS. A strategy for sampling on a sphere applied to 3D selective RF pulse design. Magn Reson Med 1994; 32: 778-784. Pauly JM, LeRoux P, Nishimura DG, Macovski A. Parameter relations for the Shinnar-LeRoux selective excitation pulse design algorithm. IEEE Trans Med Imaging 1991; 10: 53-65. Maintz JB, Viergever MA. A survey of medical image registration. Med Image Anal 1998; 2: 1-36. Fu ZW, Wang Y, Grimm RC, Rossman PJ, Felmlee JP, Riederer SJ, Ehman RL. Orbital navigator echoes for motion measurements in magnetic resonance imaging. Magn Reson Med 1995; 34: 746-753. 2002; 47 2005; 53 1998; 39 2002; 48 2004 1998; 2 2003 1992 1991 1991; 10 1995; 34 1994; 32 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_4_2 e_1_2_6_3_2 e_1_2_6_6_2 Press WH (e_1_2_6_8_2) 1992 e_1_2_6_5_2 e_1_2_6_12_2 Pratt WK (e_1_2_6_14_2) 1991 e_1_2_6_13_2 e_1_2_6_2_2 e_1_2_6_10_2 e_1_2_6_11_2 e_1_2_6_16_2 e_1_2_6_17_2 e_1_2_6_15_2 |
| References_xml | – reference: Costa A, Petrie D, Yen YF, Drangova M. Using the axis of rotation of polar navigator echoes to rapidly measure 3D rigid body motion. Magn Reson Med 2005; 53: 150-158. – reference: Welch EB, Manduca A, Grimm RC, Ward HA, Jack CR. Spherical navigator echoes for full 3D rigid body motion measurement in MRI. Magn Reson Med 2002; 47: 32-41. – reference: Alley MT, Glover GH, Pelc NJ. Gradient characterization using a Fourier-transform technique. Magn Reson Med 1998; 39: 581-587. – reference: Fu ZW, Wang Y, Grimm RC, Rossman PJ, Felmlee JP, Riederer SJ, Ehman RL. Orbital navigator echoes for motion measurements in magnetic resonance imaging. Magn Reson Med 1995; 34: 746-753. – reference: Wong ST, Roos MS. A strategy for sampling on a sphere applied to 3D selective RF pulse design. Magn Reson Med 1994; 32: 778-784. – reference: Ward HA, Riederer SJ, Jack CR. Real-time autoshimming for echo planar timecourse imaging. Magn Reson Med 2002; 48: 771-780. – reference: Maintz JB, Viergever MA. A survey of medical image registration. Med Image Anal 1998; 2: 1-36. – reference: Press WH, Flannery BP, Teukolsky SA, Vetterling WT. Numerical recipes in C, 2nd ed. New York: Cambridge University Press; 1992. – reference: Pauly JM, LeRoux P, Nishimura DG, Macovski A. Parameter relations for the Shinnar-LeRoux selective excitation pulse design algorithm. IEEE Trans Med Imaging 1991; 10: 53-65. – reference: Takahashi A, Peters T. Compensation of multi-dimensional selective excitation pulses using measured k-space trajectories. Magn Reson Med 1995; 34: 446-456. – reference: Pratt WK. Digital image processing. New York : Wiley; 1991. – volume: 2 start-page: 1 year: 1998 end-page: 36 article-title: A survey of medical image registration publication-title: Med Image Anal – volume: 47 start-page: 32 year: 2002 end-page: 41 article-title: Spherical navigator echoes for full 3D rigid body motion measurement in MRI publication-title: Magn Reson Med – volume: 32 start-page: 778 year: 1994 end-page: 784 article-title: A strategy for sampling on a sphere applied to 3D selective RF pulse design publication-title: Magn Reson Med – start-page: 2153 year: 2004 – start-page: 1030 year: 2003 – start-page: 1056 year: 2003 – start-page: 2155 year: 2004 – start-page: 2154 year: 2004 – volume: 34 start-page: 746 year: 1995 end-page: 753 article-title: Orbital navigator echoes for motion measurements in magnetic resonance imaging publication-title: Magn Reson Med – volume: 10 start-page: 53 year: 1991 end-page: 65 article-title: Parameter relations for the Shinnar–LeRoux selective excitation pulse design algorithm publication-title: IEEE Trans Med Imaging – volume: 34 start-page: 446 year: 1995 end-page: 456 article-title: Compensation of multi‐dimensional selective excitation pulses using measured k‐space trajectories publication-title: Magn Reson Med – year: 1991 – volume: 48 start-page: 771 year: 2002 end-page: 780 article-title: Real‐time autoshimming for echo planar timecourse imaging publication-title: Magn Reson Med – volume: 53 start-page: 150 year: 2005 end-page: 158 article-title: Using the axis of rotation of polar navigator echoes to rapidly measure 3D rigid body motion publication-title: Magn Reson Med – year: 1992 – volume: 39 start-page: 581 year: 1998 end-page: 587 article-title: Gradient characterization using a Fourier‐transform technique publication-title: Magn Reson Med – ident: e_1_2_6_7_2 doi: 10.1002/mrm.1910320614 – ident: e_1_2_6_5_2 – ident: e_1_2_6_9_2 doi: 10.1109/42.75611 – volume-title: Numerical recipes in C year: 1992 ident: e_1_2_6_8_2 – ident: e_1_2_6_6_2 doi: 10.1002/mrm.1910340514 – ident: e_1_2_6_13_2 doi: 10.1016/S1361-8415(01)80026-8 – volume-title: Digital image processing year: 1991 ident: e_1_2_6_14_2 – ident: e_1_2_6_3_2 – ident: e_1_2_6_12_2 doi: 10.1002/mrm.10259 – ident: e_1_2_6_11_2 doi: 10.1002/mrm.1910340323 – ident: e_1_2_6_15_2 doi: 10.1002/mrm.20306 – ident: e_1_2_6_4_2 – ident: e_1_2_6_2_2 doi: 10.1002/mrm.10012 – ident: e_1_2_6_16_2 doi: 10.1002/mrm.20306 – ident: e_1_2_6_10_2 doi: 10.1002/mrm.1910390411 – ident: e_1_2_6_17_2 |
| SSID | ssj0009974 |
| Score | 1.8954972 |
| Snippet | Spherical navigator (SNAV) echoes show promise in correcting for three‐dimensional rigid‐body motion. In this paper, several important parameters in the design... Spherical navigator (SNAV) echoes show promise in correcting for three-dimensional rigid-body motion. In this paper, several important parameters in the design... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1080 |
| SubjectTerms | Algorithms Imaging, Three-Dimensional k-space Magnetic Resonance Imaging - methods Motion motion correction optimization Phantoms, Imaging pulse sequence design Rotation spherical navigator echo |
| Title | Optimizing spherical navigator echoes for three-dimensional rigid-body motion detection |
| URI | https://api.istex.fr/ark:/67375/WNG-MX0V54SH-0/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.20445 https://www.ncbi.nlm.nih.gov/pubmed/15844145 https://www.proquest.com/docview/19428825 https://www.proquest.com/docview/67778391 |
| Volume | 53 |
| WOSCitedRecordID | wos000228796900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: WIN dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61XUBceJTX8igWQqiXqInjxIk4IWApErugQulKPVh2bEsVNIuSbQWc-An8Rn4JM052V5VaCYlbHhNp5Hn4czz-BuCptoV3dDJX-LyKhMtsVKJgxHmSInrA0HRFaDYhJ5NiOi0_rMHzxVmYjh9i-cONIiPkawpwbdqdFWnocUMHyYXI1mFAh6pw5TV4tTfaf7fi3C07EmYpKNWUYkEsFPOd5cdnpqMBjez387DmWega5p7R9f_S-gZc6yEne9H5yE1Yc_UmXBn3m-qbcDlUgVbtLTh8jwnk-OgnTmesJb4BsiCr9SnxcMwa5jBXupYhzmVz9AH359dvS90BOmYPRj22LD4zM_uDde2BmHXzUOxV34b90etPL3ejvvtCVAkus8h7KwttnfapS3NjuaPmCb4wglt6V8nUc5-lrvRCC0yZFrGb5saUaVLlOk3vwEY9q909YJnNy8RLm3jtRZ47Qy0549JKaWKjpRzC9sIIquqpyalDxlfVkSpzhcOmwrAN4clS9FvHx3Ge0LNgyaWEbr5QAZvM1MHkjRpP48-Z-Lir4iE8XphaYVjRXomu3eykVeguHBcf2cUSuZQS0WUyhLudj6z0QVAnElJjO7jCxYqq8d44XNz_d9EHcDXQx4aiy4ewMW9O3CO4VJ3Oj9pmC9bltNjqIwHvDt5O_gIB8Q8k |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VXaBc-CjQLl-1EEK9RE1sJ04kLghYFrFZUGnLShwsJ7alCpqtkm0FnPgJ_EZ-CR4nu6tKrYTELUom0sieGb_E4_cAnimdWoMnc7lNyoCbWAeZMwwojZhDDy41TerFJsRkkk6n2cc1eLE4C9PyQyx_uGFm-HqNCY4_pHdXrKHHNZ4k5zy-An2eMJH2oP96b3gwXpHuZi0Ls-BYazK-YBYK6e7y5XPrUR-H9vtFYPM8dvWLz_DW_7l9G252oJO8bKPkDqyZagOu5922-gZc832gZXMXvnxwJeT46Kdb0EiDjAM4h6RSZ8jEMauJcdXSNMQhXTJ3UWD-_PqtUR-g5fYgqLKl3b1ipn-QViCIaDP37V7VPTgYvtl_NQo6_YWg5FTEgbVapEobZZlhSaGpQfkEmxacanxWCmapjZnJLFfcFU3t0JuiRZGxqEwUY_ehV80qswUk1kkWWaEjqyxPElOgKGeYaSGKsFBCDGBnMQuy7MjJUSPjm2xplal0wyb9sA3g6dL0pGXkuMjouZ_KpYWqv2ILm4jl58lbmU_Dw5h_GslwANuLuZYusXC3RFVmdtpIFy_UfX7El1skQgiHL6MBbLZBsvLHwToeoRs7PhYud1Tme7m_ePDvptuwPtrPx3L8bvL-IdzwZLK-BfMR9Ob1qXkMV8uz-VFTP-kS4i9mUREd |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7UVosv1tZW11sHEelLaDKZZBLwRbRrS7uxeOtCH4ZJZgaKNluSbVGf_An-Rn-J50z2QqEFoW8hOYFhzmW-ZM58H8BLbTJn6WSucGkVCJuYIEfDgPMoRvSAqWkzLzYhiyIbDvPDBXg9PQvT8UPMfrhRZvh6TQluz4zbnrOGnjZ0klyI5BYsCcTh1NB1tFfMKXfzjoNZCqo0uZjyCoV8e_bqpdVoiSb2x1VQ8zJy9UtPf-Vmg74P9yaQk73pYmQVFmy9BsuDyab6GtzxXaBV-wCOP2ABOT35hcsZa4lvgDzIan1BPByjhlmslbZliHPZGGPA_v39x5A6QMfswUhjy-C9cmR-sk4eiBk79s1e9Tp86e98frsbTNQXgkpwmQTOGZlpY7WLbZyWhlsST3BZKbihZ5WMHXdJbHMntMCSaRC7aV6WeRxVqY7jDVisR7V9BCwxaR45aSKnnUhTW5IkZ5gbKcuw1FL2YGvqBVVNqMlJIeO76kiVucJpU37aevBiZnrW8XFcZfTKu3JmoZtv1MAmE3VUvFeDYfg1EZ92VdiDzamvFaYV7ZXo2o7OW4XxwvHjI7neIpVSIrqMevCwC5L5eBDUiYiGseVj4fqBqsHHgb94_P-mm7B8-K6vDvaK_Sdw1zPJ-v7Lp7A4bs7tM7hdXYxP2ua5z4Z_r24Pcw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+spherical+navigator+echoes+for+three-dimensional+rigid-body+motion+detection&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Petrie%2C+Daniel+W&rft.au=Costa%2C+Andreu+F&rft.au=Takahashi%2C+Atsushi&rft.au=Yen%2C+Yi-Fen&rft.date=2005-05-01&rft.issn=0740-3194&rft.volume=53&rft.issue=5&rft.spage=1080&rft_id=info:doi/10.1002%2Fmrm.20445&rft_id=info%3Apmid%2F15844145&rft.externalDocID=15844145 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |