Root Polytopes and Growth Series of Root Lattices

The convex hull of the roots of a classical root lattice is called a root polytope. We determine explicit unimodular triangulations of the boundaries of the root polytopes associated to the root lattices An, Cn, and Dn, and we compute their f- and h-vectors. This leads us to recover formulae for the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on discrete mathematics Ročník 25; číslo 1; s. 360 - 378
Hlavní autoři: Ardila, Federico, Beck, Matthias, Hoşten, Serkan, Pfeifle, Julian, Seashore, Kim
Médium: Journal Article Publikace
Jazyk:angličtina
Vydáno: Philadelphia, PA Society for Industrial and Applied Mathematics 01.01.2011
Témata:
ISSN:0895-4801, 1095-7146
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The convex hull of the roots of a classical root lattice is called a root polytope. We determine explicit unimodular triangulations of the boundaries of the root polytopes associated to the root lattices An, Cn, and Dn, and we compute their f- and h-vectors. This leads us to recover formulae for the growth series of these root lattices, which were first conjectured by Conway, Mallows, and Sloane and Baake and Grimm and were proved by Conway and Sloane and Bacher, de la Harpe, and Venkov. We also prove the formula for the growth series of the root lattice Bn, which requires a modification of our technique. [PUBLICATION ABSTRACT]
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0895-4801
1095-7146
DOI:10.1137/090749293