Exploiting Symmetry Reduces the Cost of Training QAOA

A promising approach to the practical application of the quantum approximate optimization algorithm (QAOA) is finding QAOA parameters classically in simulation and sampling the solutions from QAOA with optimized parameters on a quantum computer. Doing so requires repeated evaluations of QAOA energy...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on quantum engineering Ročník 2; s. 1 - 9
Hlavní autori: Shaydulin, Ruslan, Wild, Stefan M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2689-1808, 2689-1808
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A promising approach to the practical application of the quantum approximate optimization algorithm (QAOA) is finding QAOA parameters classically in simulation and sampling the solutions from QAOA with optimized parameters on a quantum computer. Doing so requires repeated evaluations of QAOA energy in simulation. In this article, we propose a novel approach for accelerating the evaluation of QAOA energy by leveraging the symmetry of the problem. We show a connection between classical symmetries of the objective function and the symmetries of the terms of the cost Hamiltonian with respect to the QAOA energy. We show how by considering only the terms that are not connected by symmetry, we can significantly reduce the cost of evaluating the QAOA energy. Our approach is general and applies to any known subgroup of symmetries and is not limited to graph problems. Our results are directly applicable to nonlocal QAOA generalization recursive QAOA. We outline how available fast graph automorphism solvers can be leveraged for computing the symmetries of the problem in practice. We implement the proposed approach on the MaxCut problem using a state-of-the-art tensor network simulator and a graph automorphism solver on a benchmark of 48 graphs with up to 10 000 nodes. Our approach provides an improvement for <inline-formula><tex-math notation="LaTeX">p=1</tex-math></inline-formula> on 71.7% of the graphs considered, with a median speedup of 4.06, on a benchmark, where 62.5% of the graphs are known to be hard for automorphism solvers.
AbstractList A promising approach to the practical application of the quantum approximate optimization algorithm (QAOA) is finding QAOA parameters classically in simulation and sampling the solutions from QAOA with optimized parameters on a quantum computer. Doing so requires repeated evaluations of QAOA energy in simulation. In this article, we propose a novel approach for accelerating the evaluation of QAOA energy by leveraging the symmetry of the problem. We show a connection between classical symmetries of the objective function and the symmetries of the terms of the cost Hamiltonian with respect to the QAOA energy. We show how by considering only the terms that are not connected by symmetry, we can significantly reduce the cost of evaluating the QAOA energy. Our approach is general and applies to any known subgroup of symmetries and is not limited to graph problems. Our results are directly applicable to nonlocal QAOA generalization recursive QAOA. We outline how available fast graph automorphism solvers can be leveraged for computing the symmetries of the problem in practice. We implement the proposed approach on the MaxCut problem using a state-of-the-art tensor network simulator and a graph automorphism solver on a benchmark of 48 graphs with up to 10 000 nodes. Our approach provides an improvement for <tex-math notation="LaTeX">$p=1$</tex-math> on 71.7% of the graphs considered, with a median speedup of 4.06, on a benchmark, where 62.5% of the graphs are known to be hard for automorphism solvers.
A promising approach to the practical application of the quantum approximate optimization algorithm (QAOA) is finding QAOA parameters classically in simulation and sampling the solutions from QAOA with optimized parameters on a quantum computer. Doing so requires repeated evaluations of QAOA energy in simulation. In this article, we propose a novel approach for accelerating the evaluation of QAOA energy by leveraging the symmetry of the problem. We show a connection between classical symmetries of the objective function and the symmetries of the terms of the cost Hamiltonian with respect to the QAOA energy. We show how by considering only the terms that are not connected by symmetry, we can significantly reduce the cost of evaluating the QAOA energy. Our approach is general and applies to any known subgroup of symmetries and is not limited to graph problems. Our results are directly applicable to nonlocal QAOA generalization recursive QAOA. We outline how available fast graph automorphism solvers can be leveraged for computing the symmetries of the problem in practice. We implement the proposed approach on the MaxCut problem using a state-of-the-art tensor network simulator and a graph automorphism solver on a benchmark of 48 graphs with up to 10 000 nodes. Our approach provides an improvement for <inline-formula><tex-math notation="LaTeX">p=1</tex-math></inline-formula> on 71.7% of the graphs considered, with a median speedup of 4.06, on a benchmark, where 62.5% of the graphs are known to be hard for automorphism solvers.
A promising approach to the practical application of the quantum approximate optimization algorithm (QAOA) is finding QAOA parameters classically in simulation and sampling the solutions from QAOA with optimized parameters on a quantum computer. Doing so requires repeated evaluations of QAOA energy in simulation. In this article, we propose a novel approach for accelerating the evaluation of QAOA energy by leveraging the symmetry of the problem. We show a connection between classical symmetries of the objective function and the symmetries of the terms of the cost Hamiltonian with respect to the QAOA energy. We show how by considering only the terms that are not connected by symmetry, we can significantly reduce the cost of evaluating the QAOA energy. Our approach is general and applies to any known subgroup of symmetries and is not limited to graph problems. Our results are directly applicable to nonlocal QAOA generalization recursive QAOA. We outline how available fast graph automorphism solvers can be leveraged for computing the symmetries of the problem in practice. We implement the proposed approach on the MaxCut problem using a state-of-the-art tensor network simulator and a graph automorphism solver on a benchmark of 48 graphs with up to 10 000 nodes. Our approach provides an improvement for [Formula Omitted] on 71.7% of the graphs considered, with a median speedup of 4.06, on a benchmark, where 62.5% of the graphs are known to be hard for automorphism solvers.
A promising approach to the practical application of the quantum approximate optimization algorithm (QAOA) is finding QAOA parameters classically in simulation and sampling the solutions from QAOA with optimized parameters on a quantum computer. Doing so requires repeated evaluations of QAOA energy in simulation. In this article, we propose a novel approach for accelerating the evaluation of QAOA energy by leveraging the symmetry of the problem. We show a connection between classical symmetries of the objective function and the symmetries of the terms of the cost Hamiltonian with respect to the QAOA energy. We show how by considering only the terms that are not connected by symmetry, we can significantly reduce the cost of evaluating the QAOA energy. Our approach is general and applies to any known subgroup of symmetries and is not limited to graph problems. Our results are directly applicable to nonlocal QAOA generalization recursive QAOA. We outline how available fast graph automorphism solvers can be leveraged for computing the symmetries of the problem in practice. We implement the proposed approach on the MaxCut problem using a state-of-the-art tensor network simulator and a graph automorphism solver on a benchmark of 48 graphs with up to 10 000 nodes. Our approach provides an improvement for p=1 on 71.7% of the graphs considered, with a median speedup of 4.06, on a benchmark, where 62.5% of the graphs are known to be hard for automorphism solvers.
Author Shaydulin, Ruslan
Wild, Stefan M.
Author_xml – sequence: 1
  givenname: Ruslan
  orcidid: 0000-0002-8657-2848
  surname: Shaydulin
  fullname: Shaydulin, Ruslan
  email: rshaydu@g.clemson.edu
  organization: Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA
– sequence: 2
  givenname: Stefan M.
  orcidid: 0000-0002-6099-2772
  surname: Wild
  fullname: Wild, Stefan M.
  email: wild@anl.gov
  organization: Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA
BackLink https://www.osti.gov/servlets/purl/1817859$$D View this record in Osti.gov
BookMark eNp9kc2LUzEUxYOM4DjOXnDz0HVrbr7fspSqAwPDaF2HNLlvJqV9qUkK0__e1DeKuHCVm8vvHDj3vCYXYxqRkLdA5wC0_7i-X80ZZTDnVCmm5QtyyZTpZ2CoufhrfkWuS9lSSpkEUJRdErl6OuxSrHF86L6d9nus-dR9xXD0WLr6iN0yldqloVtnF8czdb-4W7whLwe3K3j9_F6R759W6-WX2e3d55vl4nbmBVN1htIpwQYhFVdOu83GBA7Ida9NEJopR1VArb10sJG98Vr13DBOXRBCmoHzK3Iz-YbktvaQ497lk00u2l-LlB-syzX6HdrBaU-D8VwFEKJNUvdhY6D9BmCaNa_3k1cLFG3xsaJ_9Gkc0VcLBrSRfYM-TNAhpx9HLNVu0zGPLaNlkoNURoNolJoon1MpGQfb3FyNaaztSjsL1J5rsa0We67FPtfShPQf4e9M_5G8myQREf_g7U5UMsZ_ApI_lYk
CODEN ITQEA9
CitedBy_id crossref_primary_10_1103_PhysRevA_111_022418
crossref_primary_10_1038_s41534_023_00718_4
crossref_primary_10_1109_TQE_2021_3140190
crossref_primary_10_1088_2058_9565_ad152e
crossref_primary_10_1145_3620668
crossref_primary_10_1140_epjqt_s40507_024_00265_7
crossref_primary_10_3390_sym14122593
crossref_primary_10_3390_math10152601
crossref_primary_10_1016_j_physrep_2024_03_002
crossref_primary_10_1007_s11128_021_03342_3
crossref_primary_10_1088_2058_9565_aca3ce
crossref_primary_10_3390_math11092176
crossref_primary_10_1002_qute_202500199
crossref_primary_10_1088_1361_6633_ad85f0
Cites_doi 10.1109/MC.2019.2908942
10.1103/PhysRevX.10.021067
10.1145/3425607
10.1137/1.9781611972870.13
10.1038/s41567-020-01105-y
10.1038/s41586-019-1666-5
10.1103/PRXQuantum.1.020304
10.1016/j.jsc.2013.09.003
10.1103/PhysRevA.101.012320
10.1002/qute.201900029
10.1088/2058-9565/abe519
10.1088/2058-9565/ab8c2b
10.1155/2014/934637
10.1002/rsa.10054
10.1007/s10107-009-0273-x
10.1609/aaai.v34i03.5616
10.1007/BF01895716
10.1007/BFb0062536
10.1109/HPEC.2019.8916288
10.1109/IGSC48788.2019.8957201
10.1088/2058-9565/ab7559
10.1145/2897518.2897542
10.1038/ncomms5213
10.1145/996566.996712
10.1016/0022-0000(91)90023-X
10.1103/PhysRevLett.125.260505
10.3390/a12020034
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
CorporateAuthor Argonne National Lab. (ANL), Argonne, IL (United States)
CorporateAuthor_xml – name: Argonne National Lab. (ANL), Argonne, IL (United States)
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
OIOZB
OTOTI
DOA
DOI 10.1109/TQE.2021.3066275
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
OSTI.GOV - Hybrid
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2689-1808
EndPage 9
ExternalDocumentID oai_doaj_org_article_fa7c0d8c36d1440d8579db81d14f1272
1817859
10_1109_TQE_2021_3066275
9380522
Genre orig-research
GrantInformation_xml – fundername: Office of Science
  funderid: 10.13039/100006132
– fundername: Office of Advanced Scientific Computing Research AIDE-QC
– fundername: Argonne Laboratory Directed Research and Development program
  grantid: DE-AC02-06CH11357
– fundername: U.S. Department of Energy
  funderid: 10.13039/100000015
GroupedDBID 0R~
97E
AAFWJ
ABAZT
ABJNI
ABVLG
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IEDLZ
JAVBF
M~E
OCL
OK1
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
OIOZB
OTOTI
ID FETCH-LOGICAL-c426t-e5a642f45636a7abb8d31e37978d4726a06de77c5a1b598c76938230ad4458f33
IEDL.DBID RIE
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001369087800015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2689-1808
IngestDate Fri Oct 03 12:45:22 EDT 2025
Thu May 18 22:37:13 EDT 2023
Fri Jul 25 07:50:45 EDT 2025
Tue Nov 18 22:32:09 EST 2025
Sat Nov 29 02:54:09 EST 2025
Wed Aug 27 04:55:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-e5a642f45636a7abb8d31e37978d4726a06de77c5a1b598c76938230ad4458f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
AC02-06CH11357
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
ORCID 0000-0002-6099-2772
0000-0002-8657-2848
0000000260992772
0000000286572848
OpenAccessLink https://ieeexplore.ieee.org/document/9380522
PQID 2531568714
PQPubID 5075780
PageCount 9
ParticipantIDs proquest_journals_2531568714
crossref_primary_10_1109_TQE_2021_3066275
doaj_primary_oai_doaj_org_article_fa7c0d8c36d1440d8579db81d14f1272
ieee_primary_9380522
crossref_citationtrail_10_1109_TQE_2021_3066275
osti_scitechconnect_1817859
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle IEEE transactions on quantum engineering
PublicationTitleAbbrev TQE
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
bravyi (ref17) 2020
ref15
hadfield (ref44) 2018
do (ref41) 0; 325
margot (ref50) 1958
ref10
ref19
mckay (ref47) 2020
shaydulin (ref39) 0
bravyi (ref16) 2019
huang (ref12) 2019
babai (ref32) 2015
verdon (ref9) 2019
ref46
ref45
ref42
farhi (ref38) 2020
lykov (ref11) 2020
ref43
brandao (ref22) 2018
ref49
ref8
ref7
mckay (ref27) 1981; 30
hadfield (ref21) 2018
ref4
crooks (ref35) 2018
ref6
ref5
shaydulin (ref20) 2020
ref40
(ref48) 0
ref34
farhi (ref37) 2020
ref36
ref31
ref30
ref33
piperno (ref28) 2008
ref2
ref1
farhi (ref3) 2014
ref24
ref23
ref26
ref25
lykov (ref18) 2020
ref29
szegedy (ref14) 2019
References_xml – ident: ref45
  doi: 10.1109/MC.2019.2908942
– volume: 325
  start-page: 2338
  year: 0
  ident: ref41
  article-title: Planning for compilation of a quantum algorithm for graph coloring
  publication-title: Proc 24th Eur Conf Artif Intell Ser Front Artif Intell Appl
– year: 2019
  ident: ref14
  article-title: What do QAOA energies reveal about graphs
– ident: ref36
  doi: 10.1103/PhysRevX.10.021067
– year: 2015
  ident: ref32
  article-title: Graph isomorphism in quasipolynomial time
– year: 2020
  ident: ref18
– year: 2019
  ident: ref9
  article-title: Learning to learn with quantum neural networks via classical neural networks
– ident: ref8
  doi: 10.1145/3425607
– ident: ref30
  doi: 10.1137/1.9781611972870.13
– ident: ref4
  doi: 10.1038/s41567-020-01105-y
– ident: ref1
  doi: 10.1038/s41586-019-1666-5
– year: 2008
  ident: ref28
  article-title: Search space contraction in canonical labeling of graphs
– year: 2020
  ident: ref47
  article-title: Nauty and Traces user's guide (version 2.7)
– year: 2020
  ident: ref11
  article-title: Tensor network quantum simulator with step-dependent parallelization
– year: 2014
  ident: ref3
  article-title: A quantum approximate optimization algorithm
– ident: ref46
  doi: 10.1103/PRXQuantum.1.020304
– ident: ref19
  doi: 10.1016/j.jsc.2013.09.003
– year: 2020
  ident: ref17
  article-title: Hybrid quantum-classical algorithms for approximate graph coloring
– ident: ref42
  doi: 10.1103/PhysRevA.101.012320
– ident: ref40
  doi: 10.1002/qute.201900029
– ident: ref2
  doi: 10.1088/2058-9565/abe519
– ident: ref13
  doi: 10.1088/2058-9565/ab8c2b
– ident: ref31
  doi: 10.1155/2014/934637
– volume: 30
  start-page: 45
  year: 1981
  ident: ref27
  article-title: Practical graph isomorphism
  publication-title: Congressus Numerantium
– year: 0
  ident: ref48
  article-title: [Online]. Available
– year: 2018
  ident: ref44
  article-title: Quantum algorithms for scientific computing and approximate optimization
– ident: ref24
  doi: 10.1002/rsa.10054
– ident: ref49
  doi: 10.1007/s10107-009-0273-x
– year: 2019
  ident: ref12
  article-title: Alibaba cloud quantum development platform: Applications to quantum algorithm design
– ident: ref10
  doi: 10.1609/aaai.v34i03.5616
– ident: ref25
  doi: 10.1007/BF01895716
– ident: ref26
  doi: 10.1007/BFb0062536
– start-page: 647
  year: 1958
  ident: ref50
  article-title: Symmetry in integer linear programming
  publication-title: 50 Years of Integer Programming 19582008
– ident: ref5
  doi: 10.1109/HPEC.2019.8916288
– year: 2020
  ident: ref37
  article-title: The quantum approximate optimization algorithm needs to see the whole graph: A typical case
– ident: ref6
  doi: 10.1109/IGSC48788.2019.8957201
– year: 2019
  ident: ref16
  article-title: Obstacles to state preparation and variational optimization from symmetry protection
– ident: ref7
  doi: 10.1088/2058-9565/ab7559
– ident: ref33
  doi: 10.1145/2897518.2897542
– ident: ref34
  doi: 10.1038/ncomms5213
– year: 2020
  ident: ref20
  article-title: Classical symmetries and QAOA
– year: 0
  ident: ref39
  article-title: Community detection across emerging quantum architectures
  publication-title: Proc 3rd Int Workshop Post Moore's Era Supercomputing
– year: 2020
  ident: ref38
  article-title: The quantum approximate optimization algorithm needs to see the whole graph: Worst case examples
– ident: ref29
  doi: 10.1145/996566.996712
– year: 2018
  ident: ref22
  article-title: For fixed control parameters the quantum approximate optimization algorithm's objective function value concentrates for typical instances
– year: 2018
  ident: ref21
  article-title: On the representation of Boolean and real functions as Hamiltonians for quantum computing
– ident: ref23
  doi: 10.1016/0022-0000(91)90023-X
– ident: ref15
  doi: 10.1103/PhysRevLett.125.260505
– ident: ref43
  doi: 10.3390/a12020034
– year: 2018
  ident: ref35
  article-title: Performance of the quantum approximate optimization algorithm on the maximum cut problem
SSID ssj0002511602
Score 2.4082792
Snippet A promising approach to the practical application of the quantum approximate optimization algorithm (QAOA) is finding QAOA parameters classically in simulation...
SourceID doaj
osti
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Approximation algorithms
Automorphisms
Benchmarks
Graph theory
Graphs
Hardware
Linear programming
Optimization
Parameters
quantum approximate optimization algorithm
quantum approximate optimization algorithm (QAOA)
Quantum computers
quantum computing
quantum optimization
Qubit
Simulation
Solvers
Subgroups
Symmetry
Tensors
Training
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KSCGXkkdL3DzQIZcenLUtybKPm5CQQ8ij3ZbchF6GQLMbdt1A_n1mZGVJCDSXnIyNJKxvrNE31vANwEGnFLo9L_LKtTwXZeC5NUjkDN4Hr5AwRyHtP-fq4qK5uWmvXpT6opywQR54AG7UGeUK3zheezqH9I1UrbfIskrRlZWK3hdZz4tginwwEeeaUne2k6jmaHJ9gtFgVR7yQfP81T4U5fpTfRW8zHB1vfHNccM5XYcviSmy8fCGG_ApTDfhc8zYdIstkDF77payltmvx7u70M8f2U8SYg0LhqyOHeP4bNaxSSoCwa7Hl-Ov8Pv0ZHJ8lqcaCLnDvbPPgzQYIXRIc3htlLG28RwBVRj8eaGq2hS1D0o5aUor28ZRaUM6OzNeCNl0nH-DlelsGraBlRb9suJK2tILUxVGYk9rhHV1obrCZTB6RkS7JBBOdSr-6hgoFK1GDDVhqBOGGfxY9rgfxDH-0_aIQF62I1nr-ACNrZOx9XvGzmCLTLQcBOdaIIHMYIdMppE0kPKtoxQh12skL6qRbQa7z5bUaYEudIW-R9YYLYrvH_FiO7BGkx3-zezCSj__F_Zg1T30t4v5fvw2nwAetuGD
  priority: 102
  providerName: Directory of Open Access Journals
Title Exploiting Symmetry Reduces the Cost of Training QAOA
URI https://ieeexplore.ieee.org/document/9380522
https://www.proquest.com/docview/2531568714
https://www.osti.gov/servlets/purl/1817859
https://doaj.org/article/fa7c0d8c36d1440d8579db81d14f1272
Volume 2
WOSCitedRecordID wos001369087800015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2689-1808
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511602
  issn: 2689-1808
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2689-1808
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511602
  issn: 2689-1808
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VCiQuvApqaKl84IJEuklsZ5LjUm3FAQqFBfVmObYjVaK7aDdF6oXfzozjRkIgJC55ybasmXj8jT3-BuBlj0hmz6u8cq3MVRlk3lkCcpbeg0cCzJFI--s7PDtrLi7ajzvwejoLE0KIwWfhmB_jXr5fu2teKpu1kgn4yeDeQcTxrNa0nsJQueZgnf1Eozlbni_I_6vKYzmynP8280SC_pRRhW5rGk9_WOM4xZw-_L_OPYIHCUqK-aj7x7ATVk_gXgzpdNs90DG87pLDmsXnm6urMGxuxCdmag1bQbBPnFB3xLoXy5QlQpzPP8yfwpfTxfLkbZ6SJOSOJtchD9qSC9ETDpK1Rdt1jZckcSTv0CusalvUPiA6bctOt43j3Ie8uWa9UrrppXwGu6v1KuyDKDsy3ChRd6VXtiqsppqdVZ2rC-wLl8HsVoDGJQZxTmTxzURPomgNidywyE0SeQavphrfR_aMf5R9wzqZyjHvdfxAUjZpGJneoit842TteVfaNxpb3xHmLlVfVlhlsMeamRpJSsnggDVsCFUwNa7jGCI3GEI32Og2g8NbxZs0gremIuOka3In1fO_t3kA97n743LMIewOm-vwAu66H8PldnMUfXu6vv-5OIo_6i-L6OEH
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VBQQXXgU1bQEfuCCRbhLbcXJcqlZFLAuFBfVm-RWpEt1Fu2ml_ntmHDcSAiFxykO25czE42_s8TcArzul0Ox5kVeu5bkoA8-tQSBn8Dl4hYA5Eml_n6n5vDk_bz9vwdvxLEwIIQafhUO6jXv5fuWuaKls0nIi4EeDe0cKUZXDaa1xRYXAck3hOruJSHOyODtGD7AqD_nAc_7b3BMp-lNOFbyscET9YY_jJHPy6P-69xgeJjDJpoP2n8BWWD6FezGo0212QMYAuwsKbGZfby4vQ7--YV-IqzVsGAI_doTdYauOLVKeCHY2_TR9Bt9OjhdHp3lKk5A7nF77PEiDTkSHSIjXRhlrG89R5gr9Qy9UVZui9kEpJ01pZds4yn5I22vGCyGbjvPnsL1cLcMusNKi6VZcSVt6YarCSKxpjbCuLlRXuAwmtwLULnGIUyqLHzr6EkWrUeSaRK6TyDN4M9b4OfBn_KPsO9LJWI6Yr-MLlLJOA0l3RrnCN47XnvalfSNV6y2i7lJ0ZaWqDHZIM2MjSSkZ7JOGNeIKIsd1FEXkeo34RjWyzeDgVvE6jeGNrtA8yRodSrH39zZfwf3TxceZnr2ff9iHB_Qpw-LMAWz366vwAu666_5is34Zf9RfzOXiKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploiting+Symmetry+Reduces+the+Cost+of+Training+QAOA&rft.jtitle=IEEE+transactions+on+quantum+engineering&rft.au=Shaydulin%2C+Ruslan&rft.au=Wild%2C+Stefan+M.&rft.date=2021&rft.pub=IEEE&rft.eissn=2689-1808&rft.volume=2&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1109%2FTQE.2021.3066275&rft.externalDocID=9380522
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2689-1808&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2689-1808&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2689-1808&client=summon