Riemannian Procrustes Analysis: Transfer Learning for Brain-Computer Interfaces

Objective: This paper presents a Transfer Learning approach for dealing with the statistical variability of electroencephalographic (EEG) signals recorded on different sessions and/or from different subjects. This is a common problem faced by brain-computer interfaces (BCI) and poses a challenge for...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering Vol. 66; no. 8; pp. 2390 - 2401
Main Authors: Rodrigues, Pedro Luiz Coelho, Jutten, Christian, Congedo, Marco
Format: Journal Article
Language:English
Published: United States IEEE 01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects:
ISSN:0018-9294, 1558-2531, 1558-2531
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Objective: This paper presents a Transfer Learning approach for dealing with the statistical variability of electroencephalographic (EEG) signals recorded on different sessions and/or from different subjects. This is a common problem faced by brain-computer interfaces (BCI) and poses a challenge for systems that try to reuse data from previous recordings to avoid a calibration phase for new users or new sessions for the same user. Method: We propose a method based on Procrustes analysis for matching the statistical distributions of two datasets using simple geometrical transformations (translation, scaling, and rotation) over the data points. We use symmetric positive definite matrices (SPD) as statistical features for describing the EEG signals, so the geometrical operations on the data points respect the intrinsic geometry of the SPD manifold. Because of its geometry-aware nature, we call our method the Riemannian Procrustes analysis (RPA). We assess the improvement in transfer learning via RPA by performing classification tasks on simulated data and on eight publicly available BCI datasets covering three experimental paradigms (243 subjects in total). Results: Our results show that the classification accuracy with RPA is superior in comparison to other geometry-aware methods proposed in the literature. We also observe improvements in ensemble classification strategies when the statistics of the datasets are matched via RPA. Conclusion and significance: We present a simple yet powerful method for matching the statistical distributions of two datasets, thus paving the way to BCI systems capable of reusing data from previous sessions and avoid the need of a calibration procedure.
AbstractList This paper presents a Transfer Learning approach for dealing with the statistical variability of electroencephalographic (EEG) signals recorded on different sessions and/or from different subjects. This is a common problem faced by brain-computer interfaces (BCI) and poses a challenge for systems that try to reuse data from previous recordings to avoid a calibration phase for new users or new sessions for the same user. We propose a method based on Procrustes analysis for matching the statistical distributions of two datasets using simple geometrical transformations (translation, scaling, and rotation) over the data points. We use symmetric positive definite matrices (SPD) as statistical features for describing the EEG signals, so the geometrical operations on the data points respect the intrinsic geometry of the SPD manifold. Because of its geometry-aware nature, we call our method the Riemannian Procrustes analysis (RPA). We assess the improvement in transfer learning via RPA by performing classification tasks on simulated data and on eight publicly available BCI datasets covering three experimental paradigms (243 subjects in total). Our results show that the classification accuracy with RPA is superior in comparison to other geometry-aware methods proposed in the literature. We also observe improvements in ensemble classification strategies when the statistics of the datasets are matched via RPA. We present a simple yet powerful method for matching the statistical distributions of two datasets, thus paving the way to BCI systems capable of reusing data from previous sessions and avoid the need of a calibration procedure.
Objective: This paper presents a Transfer Learning approach for dealing with the statistical variability of EEG signals recorded on different sessions and/or from different subjects. This is a common problem faced by Brain-Computer Interfaces (BCI) and poses a challenge for systems that try to reuse data from previous recordings to avoid a calibration phase for new users or new sessions for the same user. Method: We propose a method based on Procrustes analysis for matching the statistical distributions of two datasets using simple geometrical transformations (translation, scaling and rotation) over the data points. We use symmetric positive definite matrices (SPD) as statistical features for describing the EEG signals, so the geometrical operations on the data points respect the intrinsic geometry of the SPD manifold. Because of its geometry-aware nature, we call our method the Riemannian Procrustes Analysis (RPA). We assess the improvement in Transfer Learning via RPA by performing classification tasks on simulated data and on eight publicly available BCI datasets covering three experimental paradigms (243 subjects in total). Results: Our results show that the classification accuracy with RPA is superior in comparison to other geometry-aware methods proposed in the literature. We also observe improvements in ensemble classification strategies when the statistics of the datasets are matched via RPA. Conclusion and significance: We present a simple yet powerful method for matching the statistical distributions of two datasets, thus paving the way to BCI systems capable of reusing data from previous sessions and avoid the need of a calibration procedure.
Objective: This paper presents a Transfer Learning approach for dealing with the statistical variability of electroencephalographic (EEG) signals recorded on different sessions and/or from different subjects. This is a common problem faced by brain-computer interfaces (BCI) and poses a challenge for systems that try to reuse data from previous recordings to avoid a calibration phase for new users or new sessions for the same user. Method: We propose a method based on Procrustes analysis for matching the statistical distributions of two datasets using simple geometrical transformations (translation, scaling, and rotation) over the data points. We use symmetric positive definite matrices (SPD) as statistical features for describing the EEG signals, so the geometrical operations on the data points respect the intrinsic geometry of the SPD manifold. Because of its geometry-aware nature, we call our method the Riemannian Procrustes analysis (RPA). We assess the improvement in transfer learning via RPA by performing classification tasks on simulated data and on eight publicly available BCI datasets covering three experimental paradigms (243 subjects in total). Results: Our results show that the classification accuracy with RPA is superior in comparison to other geometry-aware methods proposed in the literature. We also observe improvements in ensemble classification strategies when the statistics of the datasets are matched via RPA. Conclusion and significance: We present a simple yet powerful method for matching the statistical distributions of two datasets, thus paving the way to BCI systems capable of reusing data from previous sessions and avoid the need of a calibration procedure.
This paper presents a Transfer Learning approach for dealing with the statistical variability of electroencephalographic (EEG) signals recorded on different sessions and/or from different subjects. This is a common problem faced by brain-computer interfaces (BCI) and poses a challenge for systems that try to reuse data from previous recordings to avoid a calibration phase for new users or new sessions for the same user.OBJECTIVEThis paper presents a Transfer Learning approach for dealing with the statistical variability of electroencephalographic (EEG) signals recorded on different sessions and/or from different subjects. This is a common problem faced by brain-computer interfaces (BCI) and poses a challenge for systems that try to reuse data from previous recordings to avoid a calibration phase for new users or new sessions for the same user.We propose a method based on Procrustes analysis for matching the statistical distributions of two datasets using simple geometrical transformations (translation, scaling, and rotation) over the data points. We use symmetric positive definite matrices (SPD) as statistical features for describing the EEG signals, so the geometrical operations on the data points respect the intrinsic geometry of the SPD manifold. Because of its geometry-aware nature, we call our method the Riemannian Procrustes analysis (RPA). We assess the improvement in transfer learning via RPA by performing classification tasks on simulated data and on eight publicly available BCI datasets covering three experimental paradigms (243 subjects in total).METHODWe propose a method based on Procrustes analysis for matching the statistical distributions of two datasets using simple geometrical transformations (translation, scaling, and rotation) over the data points. We use symmetric positive definite matrices (SPD) as statistical features for describing the EEG signals, so the geometrical operations on the data points respect the intrinsic geometry of the SPD manifold. Because of its geometry-aware nature, we call our method the Riemannian Procrustes analysis (RPA). We assess the improvement in transfer learning via RPA by performing classification tasks on simulated data and on eight publicly available BCI datasets covering three experimental paradigms (243 subjects in total).Our results show that the classification accuracy with RPA is superior in comparison to other geometry-aware methods proposed in the literature. We also observe improvements in ensemble classification strategies when the statistics of the datasets are matched via RPA.RESULTSOur results show that the classification accuracy with RPA is superior in comparison to other geometry-aware methods proposed in the literature. We also observe improvements in ensemble classification strategies when the statistics of the datasets are matched via RPA.We present a simple yet powerful method for matching the statistical distributions of two datasets, thus paving the way to BCI systems capable of reusing data from previous sessions and avoid the need of a calibration procedure.CONCLUSION AND SIGNIFICANCEWe present a simple yet powerful method for matching the statistical distributions of two datasets, thus paving the way to BCI systems capable of reusing data from previous sessions and avoid the need of a calibration procedure.
Author Jutten, Christian
Rodrigues, Pedro Luiz Coelho
Congedo, Marco
Author_xml – sequence: 1
  givenname: Pedro Luiz Coelho
  orcidid: 0000-0003-3534-317X
  surname: Rodrigues
  fullname: Rodrigues, Pedro Luiz Coelho
  email: pedro.rodrigues@gipsa-lab.fr
  organization: CNRS, Grenoble INP, GIPSA-lab, Université Grenoble Alpes, Grenoble, France
– sequence: 2
  givenname: Christian
  orcidid: 0000-0002-4477-4847
  surname: Jutten
  fullname: Jutten, Christian
  organization: CNRS, Grenoble INP, GIPSA-labUniversité Grenoble Alpes
– sequence: 3
  givenname: Marco
  orcidid: 0000-0003-2196-0409
  surname: Congedo
  fullname: Congedo, Marco
  organization: CNRS, Grenoble INP, GIPSA-labUniversité Grenoble Alpes
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30596565$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01971856$$DView record in HAL
BookMark eNp9kV9rFDEUxYNU7Lb6AUSQAV_sw6z5P4lv26W2hZWKrM8hk72jKTPJNpkR-u3NsNs-9MGXhNzzOzdwzhk6CTEAQu8JXhKC9Zft5ferJcVELalSusHiFVoQIVRNBSMnaIGLVGuq-Sk6y_m-PLni8g06ZVhoKaRYoLufHgYbgreh-pGiS1MeIVerYPvH7PPXaptsyB2kagM2BR9-V11M1WWyPtTrOOynsWi3oZyddZDfoted7TO8O97n6Ne3q-36pt7cXd-uV5vacSrHuiUCKOO25TuQFFgrhZPApHQdaZ0rI9tqDULRjjeKdXhX5FbahrhGNpizc3Rx2PvH9maf_GDTo4nWm5vVxswzTHRDlJB_SWE_H9h9ig8T5NEMPjvoexsgTtlQIinXjGJR0E8v0Ps4pRJGoagkSkmh5oUfj9TUDrB7_v8p1gI0B8ClmHOCzjg_2tHHMJbgekOwmQs0c4FmLtAcCyxO8sL5tPx_ng8HjweAZ14JpZji7B8Or6RZ
CODEN IEBEAX
CitedBy_id crossref_primary_10_1016_j_neuroimage_2022_119521
crossref_primary_10_1088_1741_2552_abcb6e
crossref_primary_10_3390_brainsci13020303
crossref_primary_10_1109_TBME_2021_3105912
crossref_primary_10_1109_TNSRE_2020_2985996
crossref_primary_10_1134_S1019331622040189
crossref_primary_10_1007_s10015_025_01024_2
crossref_primary_10_1016_j_neucom_2024_129239
crossref_primary_10_3389_fnins_2021_733546
crossref_primary_10_1016_j_chaos_2025_116326
crossref_primary_10_1109_TCDS_2022_3193731
crossref_primary_10_3390_brainsci12050659
crossref_primary_10_1109_TIM_2024_3420350
crossref_primary_10_1016_j_neunet_2022_06_008
crossref_primary_10_1016_j_jneumeth_2020_108855
crossref_primary_10_1007_s11042_024_18648_4
crossref_primary_10_1088_1741_2552_acacca
crossref_primary_10_1109_TCDS_2020_3007453
crossref_primary_10_1088_1741_2552_ad680b
crossref_primary_10_1109_ACCESS_2020_2980992
crossref_primary_10_3389_fnins_2022_865201
crossref_primary_10_3389_fnhum_2022_1049985
crossref_primary_10_1109_ACCESS_2020_3048683
crossref_primary_10_3389_fnhum_2024_1320457
crossref_primary_10_1016_j_neucom_2023_01_087
crossref_primary_10_1016_j_inffus_2024_102637
crossref_primary_10_1109_TNSRE_2020_3023761
crossref_primary_10_1093_pnasnexus_pgae076
crossref_primary_10_1016_j_neuroimage_2022_119666
crossref_primary_10_1109_TBME_2020_3010854
crossref_primary_10_1109_TNSRE_2024_3404432
crossref_primary_10_3389_fnhum_2024_1421922
crossref_primary_10_1016_j_bspc_2024_106311
crossref_primary_10_1088_1741_2552_ad4f18
crossref_primary_10_1109_JBHI_2020_3025865
crossref_primary_10_1016_j_bspc_2020_102101
crossref_primary_10_1007_s12204_022_2488_4
crossref_primary_10_3389_fnins_2023_1270785
crossref_primary_10_1088_1741_2552_aca220
crossref_primary_10_1016_j_artint_2025_104347
crossref_primary_10_3390_s22218303
crossref_primary_10_1109_TNSRE_2022_3167262
crossref_primary_10_1016_j_icte_2021_01_004
crossref_primary_10_1016_j_patcog_2023_109751
crossref_primary_10_3389_fnhum_2021_621493
crossref_primary_10_3390_s20216321
crossref_primary_10_3389_fnins_2024_1381572
crossref_primary_10_1016_j_bspc_2024_106282
crossref_primary_10_1007_s11571_021_09676_z
crossref_primary_10_1109_JPROC_2025_3600389
crossref_primary_10_1007_s11517_024_03036_9
crossref_primary_10_3389_fnbot_2022_958052
crossref_primary_10_3390_s21062173
crossref_primary_10_1063_5_0054912
crossref_primary_10_1016_j_jksuci_2023_03_019
crossref_primary_10_1088_1741_2552_acbfdf
crossref_primary_10_1016_j_neunet_2025_107511
crossref_primary_10_1088_1741_2552_ab6df3
crossref_primary_10_1038_s41598_022_14026_y
crossref_primary_10_1109_JBHI_2020_3002329
crossref_primary_10_1109_TNSRE_2021_3083548
crossref_primary_10_1016_j_compbiomed_2023_107806
crossref_primary_10_3390_s23115051
crossref_primary_10_1088_1741_2552_acaee7
crossref_primary_10_3389_fnins_2019_00622
crossref_primary_10_1007_s11055_023_01436_2
crossref_primary_10_3389_fnins_2024_1271831
crossref_primary_10_1016_j_eswa_2021_115581
crossref_primary_10_1162_imag_a_00040
crossref_primary_10_3389_fnins_2021_779231
crossref_primary_10_3390_brainsci15050460
crossref_primary_10_1088_1741_2552_abf2e4
crossref_primary_10_1016_j_eswa_2024_123492
crossref_primary_10_1109_TNSRE_2021_3125386
crossref_primary_10_1088_1741_2552_ac1ed2
crossref_primary_10_7717_peerj_11182
crossref_primary_10_1016_j_bspc_2025_108141
crossref_primary_10_3390_math11071570
crossref_primary_10_1016_j_neucom_2020_09_017
crossref_primary_10_1016_j_bspc_2023_105556
crossref_primary_10_1088_1741_2552_addd49
crossref_primary_10_1088_1741_2552_addf80
crossref_primary_10_1007_s11227_025_07748_z
crossref_primary_10_1109_TNSRE_2023_3236372
crossref_primary_10_3389_fnhum_2020_00103
crossref_primary_10_3390_app15042176
crossref_primary_10_1049_ell2_12275
crossref_primary_10_1109_TNSRE_2024_3358491
crossref_primary_10_1109_TBME_2022_3168570
crossref_primary_10_1109_TSP_2023_3272159
crossref_primary_10_1109_TNSRE_2023_3259991
crossref_primary_10_1088_1741_2552_ac7ba8
crossref_primary_10_1016_j_cmpb_2021_106150
crossref_primary_10_1109_ACCESS_2021_3134628
crossref_primary_10_1016_j_ifacsc_2024_100251
crossref_primary_10_1016_j_jneumeth_2024_110332
crossref_primary_10_1016_j_asoc_2023_110656
crossref_primary_10_1016_j_eswa_2023_121612
crossref_primary_10_3390_app14062326
crossref_primary_10_1080_2326263X_2021_2009654
crossref_primary_10_1016_j_measurement_2025_116836
crossref_primary_10_1007_s13534_021_00190_z
crossref_primary_10_1016_j_neunet_2020_12_013
crossref_primary_10_1016_j_bspc_2023_104684
crossref_primary_10_3389_frobt_2020_00038
crossref_primary_10_1109_TCDS_2022_3209801
crossref_primary_10_1007_s10462_024_10859_3
crossref_primary_10_1016_j_bspc_2024_107213
crossref_primary_10_1088_1741_2552_ad19ea
crossref_primary_10_1109_ACCESS_2022_3147461
crossref_primary_10_1016_j_bspc_2022_103687
crossref_primary_10_1109_ACCESS_2024_3430838
crossref_primary_10_1109_TAFFC_2023_3305982
crossref_primary_10_1109_TCSS_2022_3202872
crossref_primary_10_1134_S0362119723600479
crossref_primary_10_3390_app15116021
crossref_primary_10_1080_2326263X_2022_2140467
crossref_primary_10_1109_JSEN_2021_3101684
crossref_primary_10_3389_fnins_2022_858377
crossref_primary_10_1109_TCDS_2021_3082648
Cites_doi 10.1002/sam.10071
10.1016/S0378-3758(00)00115-4
10.1371/journal.pone.0102504
10.1109/MCI.2018.2807039
10.1201/9781420011814
10.1515/9781400827787
10.1109/TBME.2004.827072
10.1145/1390156.1390297
10.1214/ss/1177012582
10.1016/j.laa.2018.11.009
10.1109/TBME.2011.2172210
10.1109/TSP.2017.2649483
10.1109/SSP.2018.8450771
10.1016/j.neunet.2009.06.003
10.3389/fnins.2012.00055
10.3389/fnins.2016.00430
10.1007/s10463-008-0197-x
10.1109/TKDE.2009.191
10.1109/TPAMI.2016.2615921
10.1109/TBME.2008.2009768
10.1080/2326263X.2017.1297192
10.1109/TNSRE.2016.2627016
10.1109/TIT.2017.2653803
10.1109/TBME.2017.2742541
10.1111/j.1420-9101.2011.02297.x
10.1109/MCI.2015.2501545
10.1093/acprof:oso/9780198510581.001.0001
10.1016/j.acha.2006.04.006
10.1109/TNSRE.2012.2189584
10.1515/bmt-2014-0117
10.1137/S0895479803436937
10.1109/TPAMI.2017.2655048
10.1007/s10994-009-5152-4
10.1088/1741-2552/aab2f2
10.1109/TSP.2019.2894801
10.1016/j.neucom.2016.01.007
10.1109/TPAMI.2006.184
10.1093/gigascience/gix034
10.1088/1741-2552/aadea0
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
1XC
VOOES
DOI 10.1109/TBME.2018.2889705
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Statistics
EISSN 1558-2531
EndPage 2401
ExternalDocumentID oai:HAL:hal-01971856v1
30596565
10_1109_TBME_2018_2889705
8588384
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: H2020 European Research Council; European Research Council
  grantid: 2012-ERC-AdG-320684
  funderid: 10.13039/100010663
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
1XC
VOOES
ID FETCH-LOGICAL-c426t-b15e234ab4de62e3b65c6e366cf1bcc62eab99e582f4783f0dc6eb6a71c767043
IEDL.DBID RIE
ISICitedReferencesCount 149
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000476773700026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9294
1558-2531
IngestDate Tue Oct 14 20:55:26 EDT 2025
Wed Oct 01 14:08:13 EDT 2025
Mon Jun 30 10:26:55 EDT 2025
Thu Apr 03 07:01:59 EDT 2025
Sat Nov 29 05:34:22 EST 2025
Tue Nov 18 20:48:53 EST 2025
Wed Aug 27 02:53:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Riemannian geometry
Brain-Computer Interface
Transfer Learning
EEG
Covariance Matrices
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-b15e234ab4de62e3b65c6e366cf1bcc62eab99e582f4783f0dc6eb6a71c767043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4477-4847
0000-0003-3534-317X
0000-0003-2196-0409
OpenAccessLink https://hal.science/hal-01971856
PMID 30596565
PQID 2261886581
PQPubID 85474
PageCount 12
ParticipantIDs ieee_primary_8588384
proquest_journals_2261886581
hal_primary_oai_HAL_hal_01971856v1
proquest_miscellaneous_2162493205
pubmed_primary_30596565
crossref_citationtrail_10_1109_TBME_2018_2889705
crossref_primary_10_1109_TBME_2018_2889705
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref35
ref13
ref12
ref37
ref15
ref14
ref31
barachant (ref44) 2014
ref33
townsend (ref30) 2016; 17
ref32
ref10
ref2
congedo (ref3) 2013
ref39
ben-david (ref34) 2009; 79
ref17
ref38
ref16
ref19
ref18
congedo (ref36) 0
edgington (ref46) 2007
blankertz (ref11) 0
absil (ref24) 2009
ref45
ref23
ref26
ref47
ref25
ref20
ref42
ref41
ref22
ref21
ref43
gayraud (ref8) 2017
ref28
ref27
ref29
ref7
ref9
ref4
ref6
ref5
ref40
congedo (ref1) 2013
holm (ref48) 1979; 6
References_xml – ident: ref45
  doi: 10.1002/sam.10071
– ident: ref5
  doi: 10.1016/S0378-3758(00)00115-4
– ident: ref15
  doi: 10.1371/journal.pone.0102504
– ident: ref16
  doi: 10.1109/MCI.2018.2807039
– year: 2007
  ident: ref46
  publication-title: Randomization tests
  doi: 10.1201/9781420011814
– ident: ref20
  doi: 10.1515/9781400827787
– start-page: 177
  year: 2017
  ident: ref8
  article-title: Optimal transport applied to transfer learning for P300 detection
  publication-title: Proc 7th Graz Conf
– ident: ref38
  doi: 10.1109/TBME.2004.827072
– ident: ref19
  doi: 10.1145/1390156.1390297
– year: 2013
  ident: ref3
  article-title: A new generation of brain-computer interface based on Riemannian geometry
– ident: ref18
  doi: 10.1214/ss/1177012582
– ident: ref28
  doi: 10.1016/j.laa.2018.11.009
– ident: ref21
  doi: 10.1109/TBME.2011.2172210
– ident: ref26
  doi: 10.1109/TSP.2017.2649483
– ident: ref33
  doi: 10.1109/SSP.2018.8450771
– ident: ref12
  doi: 10.1016/j.neunet.2009.06.003
– ident: ref40
  doi: 10.3389/fnins.2012.00055
– ident: ref13
  doi: 10.3389/fnins.2016.00430
– year: 2013
  ident: ref1
  article-title: EEG Source Analysis
– ident: ref6
  doi: 10.1007/s10463-008-0197-x
– ident: ref4
  doi: 10.1109/TKDE.2009.191
– volume: 17
  start-page: 1
  year: 2016
  ident: ref30
  article-title: Pymanopt: A python toolbox for optimization on manifolds using automatic differentiation
  publication-title: J Mach Learn Res
– year: 2014
  ident: ref44
  article-title: A plug & play P300 BCI using information geometry
– ident: ref7
  doi: 10.1109/TPAMI.2016.2615921
– ident: ref43
  doi: 10.1109/TBME.2008.2009768
– ident: ref22
  doi: 10.1080/2326263X.2017.1297192
– volume: 6
  start-page: 65
  year: 1979
  ident: ref48
  article-title: A simple sequentially rejective multiple test procedure
  publication-title: Scand J Statist
– ident: ref23
  doi: 10.1109/TNSRE.2016.2627016
– ident: ref27
  doi: 10.1109/TIT.2017.2653803
– ident: ref9
  doi: 10.1109/TBME.2017.2742541
– ident: ref47
  doi: 10.1111/j.1420-9101.2011.02297.x
– start-page: 113
  year: 0
  ident: ref11
  article-title: Invariant common spatial patterns: Alleviating nonstationarities in brain-computer interfacing
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref14
  doi: 10.1109/MCI.2015.2501545
– ident: ref17
  doi: 10.1093/acprof:oso/9780198510581.001.0001
– ident: ref31
  doi: 10.1016/j.acha.2006.04.006
– ident: ref42
  doi: 10.1109/TNSRE.2012.2189584
– start-page: 280
  year: 0
  ident: ref36
  article-title: Brain invaders: A prototype of an open-source p300-based video game working with the openvibe platform
  publication-title: Proc 5th Int BCI Conf Graz Austria
– ident: ref41
  doi: 10.1515/bmt-2014-0117
– ident: ref29
  doi: 10.1137/S0895479803436937
– ident: ref25
  doi: 10.1109/TPAMI.2017.2655048
– year: 2009
  ident: ref24
  publication-title: Optimization Algorithms on Matrix Manifolds
– volume: 79
  start-page: 151
  year: 2009
  ident: ref34
  article-title: A theory of learning from different domains
  publication-title: Mach Learn
  doi: 10.1007/s10994-009-5152-4
– ident: ref2
  doi: 10.1088/1741-2552/aab2f2
– ident: ref10
  doi: 10.1109/TSP.2019.2894801
– ident: ref37
  doi: 10.1016/j.neucom.2016.01.007
– ident: ref32
  doi: 10.1109/TPAMI.2006.184
– ident: ref39
  doi: 10.1093/gigascience/gix034
– ident: ref35
  doi: 10.1088/1741-2552/aadea0
SSID ssj0014846
Score 2.643416
Snippet Objective: This paper presents a Transfer Learning approach for dealing with the statistical variability of electroencephalographic (EEG) signals recorded on...
This paper presents a Transfer Learning approach for dealing with the statistical variability of electroencephalographic (EEG) signals recorded on different...
Objective: This paper presents a Transfer Learning approach for dealing with the statistical variability of EEG signals recorded on different sessions and/or...
SourceID hal
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2390
SubjectTerms Algorithms
Brain-computer interface
Brain-Computer Interfaces
Calibration
Classification
Computer simulation
covariance matrices
Data points
Datasets
EEG
Electroencephalography
Electroencephalography - methods
Engineering Sciences
Geometry
Human-computer interface
Humans
Interfaces
Learning
Manifolds
Matching
Mathematical analysis
Matrix methods
Reuse
Riemannian geometry
Scaling
Shape
Signal and Image processing
Signal Processing, Computer-Assisted
Statistical analysis
Statistical distributions
Statistics
Symmetric matrices
Transfer learning
Title Riemannian Procrustes Analysis: Transfer Learning for Brain-Computer Interfaces
URI https://ieeexplore.ieee.org/document/8588384
https://www.ncbi.nlm.nih.gov/pubmed/30596565
https://www.proquest.com/docview/2261886581
https://www.proquest.com/docview/2162493205
https://hal.science/hal-01971856
Volume 66
WOSCitedRecordID wos000476773700026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB51K4TgwKPlsVCqgDgh0tqx4we3FrXqoS0IFWlvke04UAmyaB_9_cw43qgHQOIW2ePEyjejGXteAG89r73qeCilZK6UxgUUKdmWTLVtq3RApZmQPteXl2Y2s5-34P2YCxNjTMFn8YAeky-_nYc1XZUdmtoYYeQEJlqrIVdr9BhIMyTlMI4CXFmZPZic2cOr44sTCuIyB5UxVlOnuls6aPKdIiBTa5W_W5lJ25w-_L99PoIH2aosjgY2eAxbsd-B-7dqDe7A3YvsRd-FT1-u40_qVeT6ghIFKO0iLotNfZIPRVJgXVwUufrqtwJN2-KYukmUmzYQRbpL7Cii6wl8PT25-nhW5sYKZUCFvCoRoFgJ6bxso6qi8KoOKgqlQsd9CDjkvLWxNlUntREda3HaK6d50EozKZ7Cdj_v43MoqIIfnoCYZ9ZJrYWJuuaBVxV33vvaT4FtfnUTctVxan7xo0mnD2YbQqchdJqMzhTejUt-DSU3_kX8BvEb6ahY9tnReUNjaLyi4q3VDZ_CLoE0UmV8prC3gbvJkrts0BzlxqBdhqtej9Moc-RIcX2cr5GGKzy1ioo-_2xgk_HdgvoZoZX84s_ffAn3cPt2CCHcg-3VYh1fwZ1ws7peLvaRsWdmPzH2bwCi8aU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61BUE58GihLBQIiBMirR07fnBrUatF7C4ILVJvUew4bSWarfbR389M4o16ACRukT3O67M1Y8_jA3jveO5UzX0qJStTaUqPS0pWKVNVVSntUWm2SI_0ZGLOzuz3DfjY58KEENrgs3BAl60vv5r5FR2VHZrcGGHkJtzJpcxYl63V-wyk6dJyGMclnFkZfZic2cPp8fiEwrjMQWaM1cRVd0sLbV5QDGRLrvJ3O7PVN6eP_u9NH8PDaFcmR91EeAIbodmBB7eqDe7AvXH0o-_Ctx-X4YrYisomoVQBSrwIi2RdoeRT0qqwOsyTWH_1PEHjNjkmPol0TQSRtKeJNcV0PYWfpyfTz8M0UiukHlXyMkWIQiZk6WQVVBaEU7lXQSjla-68x6bSWRtyk9VSG1GzCrudKjX3WmkmxTPYamZNeA4J1fDDPRBzzJZSa2GCzrnnWcZL51zuBsDWv7rwse440V_8Ktr9B7MFoVMQOkVEZwAf-iHXXdGNfwm_Q_x6OSqXPTwaFdSG5iuq3lzd8AHsEki9VMRnAPtruIu4dhcFGqTcGLTMcNTbvhtXHblSyibMVijDFe5bRUaP3-umSX9vQYxGaCe_-PMz38D94XQ8KkZfJl9fwjZ-iu0CCvdhazlfhVdw198sLxfz1-30_g0EVfQE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Riemannian+Procrustes+Analysis%3A+Transfer+Learning+for+Brain-Computer+Interfaces&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Rodrigues%2C+Pedro+Luiz+Coelho&rft.au=Jutten%2C+Christian&rft.au=Congedo%2C+Marco&rft.date=2019-08-01&rft.pub=IEEE&rft.issn=0018-9294&rft.volume=66&rft.issue=8&rft.spage=2390&rft.epage=2401&rft_id=info:doi/10.1109%2FTBME.2018.2889705&rft.externalDocID=8588384
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon