Acoustic metamaterials for sound absorption and insulation in buildings
Despite the emergence of acoustic metamaterials with superior sound absorption and transmission loss, their adoption for building sound insulation has been limited. Sound insulation design in buildings is still informed by the acoustic performance of conventional materials, where the mass law contra...
Uloženo v:
| Vydáno v: | Building and environment Ročník 251; s. 111250 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.03.2024
|
| Témata: | |
| ISSN: | 0360-1323, 1873-684X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Despite the emergence of acoustic metamaterials with superior sound absorption and transmission loss, their adoption for building sound insulation has been limited. Sound insulation design in buildings is still informed by the acoustic performance of conventional materials, where the mass law contradicts light weighting when it comes to acoustic design. In any case buildings close to noisy environments such as motorways, railway lines and airports still suffer from significant low frequency noise pollution. Although the limited working bandwidth of acoustic metamaterials is a major issue limiting its application, combining meta-units that interact at various frequencies alongside multi-layer conventional solutions can deliver superior sound insulation in buildings. The review put forwards acoustic metamaterials, specifically emphasising superior sound absorption and transmission/insertion loss as critical properties for effective building sound insulation. The paper reveals a variety of acoustic metamaterials that can be adopted to compliment conventional sound insulation approaches for acoustically efficient building design. The performance of these metamaterials is then explained through their characteristic negative mass density, bulk modulus or repeating or locally resonating microstructure. The review is also extended to air transparent acoustic metamaterials that can be used for sound insulation of building ventilation. Lastly the prospects and challenges regarding the adoption of acoustic metamaterials in building insulation are also discussed. Overall, tuneable, and multifunctional acoustic metamaterials when thoughtfully integrated to building sound insulation can lead to significant acoustic comfort, space-saving and light-weighting. |
|---|---|
| AbstractList | Despite the emergence of acoustic metamaterials with superior sound absorption and transmission loss, their adoption for building sound insulation has been limited. Sound insulation design in buildings is still informed by the acoustic performance of conventional materials, where the mass law contradicts light weighting when it comes to acoustic design. In any case buildings close to noisy environments such as motorways, railway lines and airports still suffer from significant low frequency noise pollution. Although the limited working bandwidth of acoustic metamaterials is a major issue limiting its application, combining meta-units that interact at various frequencies alongside multi-layer conventional solutions can deliver superior sound insulation in buildings. The review put forwards acoustic metamaterials, specifically emphasising superior sound absorption and transmission/insertion loss as critical properties for effective building sound insulation. The paper reveals a variety of acoustic metamaterials that can be adopted to compliment conventional sound insulation approaches for acoustically efficient building design. The performance of these metamaterials is then explained through their characteristic negative mass density, bulk modulus or repeating or locally resonating microstructure. The review is also extended to air transparent acoustic metamaterials that can be used for sound insulation of building ventilation. Lastly the prospects and challenges regarding the adoption of acoustic metamaterials in building insulation are also discussed. Overall, tuneable, and multifunctional acoustic metamaterials when thoughtfully integrated to building sound insulation can lead to significant acoustic comfort, space-saving and light-weighting. |
| ArticleNumber | 111250 |
| Author | Vance, Aaron Arafat, Abul Baroutaji, Ahmad Arjunan, Arun Robinson, John |
| Author_xml | – sequence: 1 givenname: Arun orcidid: 0000-0001-5493-0957 surname: Arjunan fullname: Arjunan, Arun email: a.arjunan@wlv.ac.uk organization: Additive Manufacturing of Functional Materials Research Group, Centre for Engineering Innovation and Research, University of Wolverhampton, Telford Innovation Campus, Telford, TF2 9NT, United Kingdom – sequence: 2 givenname: Ahmad surname: Baroutaji fullname: Baroutaji, Ahmad organization: School of Engineering and Technology, Aston University, Aston St, Birmingham, B4 7ET, United Kingdom – sequence: 3 givenname: John surname: Robinson fullname: Robinson, John organization: Additive Manufacturing of Functional Materials Research Group, Centre for Engineering Innovation and Research, University of Wolverhampton, Telford Innovation Campus, Telford, TF2 9NT, United Kingdom – sequence: 4 givenname: Aaron surname: Vance fullname: Vance, Aaron organization: Additive Manufacturing of Functional Materials Research Group, Centre for Engineering Innovation and Research, University of Wolverhampton, Telford Innovation Campus, Telford, TF2 9NT, United Kingdom – sequence: 5 givenname: Abul surname: Arafat fullname: Arafat, Abul organization: Additive Manufacturing of Functional Materials Research Group, Centre for Engineering Innovation and Research, University of Wolverhampton, Telford Innovation Campus, Telford, TF2 9NT, United Kingdom |
| BookMark | eNqFkM1KAzEURoNUsFZfQeYFZszfZKbgwlK0CgU3Cu5CJrmRlGlSkkzBt3fa6sZNV5dvcb5777lGEx88IHRHcEUwEfebqhtcb8DvK4oprwghtMYXaErahpWi5Z8TNMVM4JIwyq7QdUobPIJzxqdotdBhSNnpYgtZbVWG6FSfChtikcLgTaG6FOIuu-ALNUbn09CrY3S-OG52_ivdoEs7cnD7O2fo4_npfflSrt9Wr8vFutScilwqoe28ZU2neNd2DeagmBmv0oYzoUFY6IxVnNQEt7RWzRx4q6ngxpKmbnjNZujh1KtjSCmCldrl4zk5KtdLguVBitzIPynyIEWepIy4-Ifvotuq-H0efDyBMD63dxBl0g68BuMi6CxNcOcqfgB-5oQF |
| CitedBy_id | crossref_primary_10_1016_j_device_2025_100756 crossref_primary_10_1016_j_ijmecsci_2024_109752 crossref_primary_10_1016_j_jclepro_2025_145857 crossref_primary_10_1016_j_mssp_2025_109769 crossref_primary_10_1063_5_0241278 crossref_primary_10_1016_j_ijmecsci_2025_110863 crossref_primary_10_1038_s41598_025_02385_1 crossref_primary_10_1016_j_ijmecsci_2025_110184 crossref_primary_10_1016_j_jobe_2025_113370 crossref_primary_10_1016_j_rineng_2025_107367 crossref_primary_10_1016_j_conbuildmat_2024_139316 crossref_primary_10_3390_ma18061199 crossref_primary_10_1063_5_0202598 crossref_primary_10_1016_j_ijmecsci_2025_110056 crossref_primary_10_1016_j_cma_2025_118169 crossref_primary_10_1250_ast_e24_110 crossref_primary_10_1007_s00170_025_16238_8 crossref_primary_10_1016_j_compstruct_2024_118555 crossref_primary_10_1016_j_apacoust_2025_110633 crossref_primary_10_1016_j_ijmecsci_2025_110175 crossref_primary_10_1002_adem_202402270 crossref_primary_10_1360_TB_2024_0715 crossref_primary_10_1007_s10163_025_02250_3 crossref_primary_10_1016_j_ymssp_2025_113046 crossref_primary_10_1016_j_ijmecsci_2025_110203 crossref_primary_10_1016_j_buildenv_2024_111858 crossref_primary_10_1016_j_ijmecsci_2025_110044 crossref_primary_10_1016_j_jobe_2024_111209 crossref_primary_10_1016_j_apmt_2025_102709 crossref_primary_10_1016_j_tws_2025_113875 crossref_primary_10_3390_en18143878 crossref_primary_10_1016_j_conbuildmat_2025_141648 crossref_primary_10_1515_polyeng_2024_0211 crossref_primary_10_1016_j_buildenv_2025_113550 crossref_primary_10_1016_j_cemconcomp_2025_106116 crossref_primary_10_1016_j_uclim_2024_101967 crossref_primary_10_1016_j_apacoust_2025_110890 crossref_primary_10_3390_cryst14110957 crossref_primary_10_1016_j_ijmecsci_2025_110837 crossref_primary_10_1016_j_conbuildmat_2024_139145 crossref_primary_10_1063_5_0280528 crossref_primary_10_1108_CI_09_2024_0270 crossref_primary_10_1002_adem_202402529 crossref_primary_10_3390_ma18153652 crossref_primary_10_1080_17452759_2024_2425386 crossref_primary_10_1016_j_cossms_2025_101218 crossref_primary_10_1016_j_ijmecsci_2024_109713 crossref_primary_10_1063_5_0256329 crossref_primary_10_1016_j_euromechsol_2025_105685 crossref_primary_10_1039_D5RA03316K crossref_primary_10_1016_j_tws_2025_113613 crossref_primary_10_1002_adem_202402910 crossref_primary_10_3390_architecture5040085 crossref_primary_10_1016_j_cej_2025_168465 crossref_primary_10_1007_s11012_025_01966_8 crossref_primary_10_1016_j_conbuildmat_2025_141308 crossref_primary_10_1186_s40580_024_00445_2 crossref_primary_10_1016_j_matdes_2025_113729 crossref_primary_10_1016_j_compscitech_2024_110765 crossref_primary_10_1016_j_physleta_2024_129779 crossref_primary_10_1007_s42417_025_01849_y crossref_primary_10_1080_17480272_2025_2453013 crossref_primary_10_1007_s44285_025_00043_6 crossref_primary_10_1038_s44172_025_00470_x crossref_primary_10_3390_acoustics7030051 crossref_primary_10_1016_j_sna_2025_116554 crossref_primary_10_1021_acsomega_5c02267 crossref_primary_10_3390_cryst15040374 crossref_primary_10_1016_j_ijbiomac_2025_147701 crossref_primary_10_3390_cryst15080676 crossref_primary_10_1016_j_ymssp_2025_113002 crossref_primary_10_1016_j_jobe_2024_111642 crossref_primary_10_1016_j_fbio_2024_105577 crossref_primary_10_1016_j_buildenv_2025_112550 crossref_primary_10_1016_j_jobe_2025_111926 crossref_primary_10_1108_PM_12_2024_0126 crossref_primary_10_1250_ast_e25_02 crossref_primary_10_1016_j_apacoust_2024_110387 crossref_primary_10_1061_JCEMD4_COENG_16374 crossref_primary_10_1016_j_apacoust_2024_110388 crossref_primary_10_3390_ma18112562 crossref_primary_10_1016_j_istruc_2024_107114 crossref_primary_10_1016_j_tws_2025_113678 crossref_primary_10_1016_j_jmst_2025_04_024 crossref_primary_10_3390_acoustics6040059 crossref_primary_10_1016_j_tws_2024_112860 crossref_primary_10_1007_s42452_025_06505_4 crossref_primary_10_1016_j_ijmecsci_2024_109220 crossref_primary_10_1007_s40799_024_00755_4 crossref_primary_10_1016_j_jobe_2024_111238 crossref_primary_10_1016_j_sna_2025_116937 crossref_primary_10_3390_eng6090223 crossref_primary_10_1016_j_buildenv_2025_112780 crossref_primary_10_1088_1361_6463_add7e6 crossref_primary_10_1002_adfm_202508243 crossref_primary_10_1007_s12647_025_00815_z crossref_primary_10_1016_j_porgcoat_2025_109275 crossref_primary_10_1007_s00107_024_02135_6 crossref_primary_10_3390_buildings14123799 crossref_primary_10_1016_j_buildenv_2025_112545 crossref_primary_10_3390_pr12112582 crossref_primary_10_1016_j_tws_2025_113717 crossref_primary_10_1016_j_ymssp_2025_112453 |
| Cites_doi | 10.3397/1/376215 10.1016/j.apacoust.2005.05.005 10.1260/135101007781998910 10.1063/1.4974487 10.1063/1.3583656 10.1016/j.crhy.2016.02.002 10.1016/j.polymertesting.2017.09.039 10.1080/15397734.2020.1787842 10.1063/1.5004605 10.3390/app13031650 10.1063/1.3514082 10.1121/10.0000714 10.1016/j.matpr.2021.05.600 10.3390/acoustics1030035 10.1016/S1369-7021(09)70315-3 10.1063/5.0042132 10.1103/PhysRevB.88.024303 10.1088/0964-1726/19/1/015002 10.3763/asre.2008.5104 10.1016/j.ijengsci.2008.12.007 10.1063/1.4752468 10.1016/j.jsv.2014.06.032 10.1088/1361-665X/aa6671 10.1126/sciadv.1501595 10.1121/1.4892870 10.1063/1.5063504 10.1063/5.0037547 10.1088/1367-2630/14/3/033014 10.1038/nature14678 10.1063/2.1204101 10.1007/s11831-008-9022-1 10.1016/j.jmbbm.2019.103517 10.1016/j.cma.2018.10.037 10.1063/1.4902155 10.3389/fmech.2022.857788 10.1038/nature21044 10.1063/1.5109084 10.1038/srep01728 10.1063/5.0038940 10.1063/1.3665213 10.1016/j.physb.2013.12.040 10.1063/1.4904887 10.1177/1045389X09359434 10.1121/1.5087128 10.1016/j.apacoust.2012.09.008 10.1016/j.buildenv.2013.05.021 10.1038/ncomms1758 10.1063/1.5022602 10.1364/OE.447874 10.1063/5.0042834 10.1103/PhysRevB.95.014205 10.1016/j.apacoust.2021.108311 10.1002/admt.202100698 10.1121/1.5035580 10.1016/j.apacoust.2005.05.001 10.1088/0034-4885/76/12/126501 10.1002/admt.202000787 10.1088/1367-2630/13/11/113010 10.1016/j.compstruct.2020.113257 10.1063/1.4759327 10.1016/j.revip.2019.100031 10.1038/natrevmats.2016.1 10.1038/srep07038 10.1063/1.4919235 10.1103/PhysRevB.99.024302 10.1103/PhysRevB.86.184302 10.1016/j.eml.2016.10.006 10.3390/met5031414 10.1016/j.jsv.2020.115377 10.1016/j.physb.2006.12.046 10.1016/j.apacoust.2019.107088 10.1016/j.apacoust.2019.03.008 10.1016/j.eml.2020.100786 10.1121/1.1910031 10.1063/5.0047416 10.1063/1.3701611 10.1063/1.4979020 10.1103/PhysRevApplied.17.L021003 10.1016/j.buildenv.2022.109531 10.1016/j.physleta.2012.03.010 10.1063/1.4895617 10.1038/nmat3994 10.1063/PT.3.3198 10.1121/1.4976042 10.1063/1.5019602 10.1016/j.jsv.2017.04.042 10.1016/j.ymssp.2018.07.046 10.1063/1.5063289 10.1038/natrevmats.2016.67 10.1063/1.4915346 10.1115/1.4063108 10.1121/1.4966627 10.1016/j.apacoust.2019.01.027 10.1038/s41598-021-84986-0 10.1007/s00339-013-8047-y 10.1121/1.4744941 10.1016/S0967-0661(03)00077-7 10.1063/1.4993891 10.1016/j.apacoust.2023.109263 10.1103/PhysRevLett.101.204301 10.1016/j.rineng.2021.100252 10.1103/PhysRevB.76.144302 10.1063/1.4991426 10.1063/1.4965923 10.1088/2053-1591/aadbe2 10.1103/PhysRevApplied.13.044028 10.1016/j.mtcomm.2018.12.012 10.1063/1.5025114 10.1016/j.compstruct.2021.114312 10.1016/j.eml.2021.101348 10.1016/j.jsv.2019.114867 10.1016/S0360-1323(01)00047-6 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors |
| Copyright_xml | – notice: 2024 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.buildenv.2024.111250 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-684X |
| ExternalDocumentID | 10_1016_j_buildenv_2024_111250 S0360132324000921 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KCYFY KOM LY6 LY7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SEN SES SEW SPC SPCBC SSJ SSR SST SSZ T5K ~G- 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SAC SET VH1 WUQ ZMT ~HD |
| ID | FETCH-LOGICAL-c426t-a6cf9837ba4b8b704ea3d323cd436ce6febdfa41510825a79e48c264df1757453 |
| ISICitedReferencesCount | 115 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001171412100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-1323 |
| IngestDate | Sat Nov 29 07:24:37 EST 2025 Tue Nov 18 22:18:28 EST 2025 Sat Apr 13 16:38:01 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Ventilation Sound reduction Sound insulation Acoustic metamaterials Building design |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c426t-a6cf9837ba4b8b704ea3d323cd436ce6febdfa41510825a79e48c264df1757453 |
| ORCID | 0000-0001-5493-0957 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.buildenv.2024.111250 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_buildenv_2024_111250 crossref_primary_10_1016_j_buildenv_2024_111250 elsevier_sciencedirect_doi_10_1016_j_buildenv_2024_111250 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-01 2024-03-00 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Building and environment |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zhu, Chen, Zhu, Garcia-Vidal, Yin, Zhang, Zhang (bib90) 2013; 3 Yang, Ma, Yang, Sheng (bib103) 2013 Zhang, Zhu, Liang, Yang, Yang, Cheng (bib143) 2017; 111 Chen, Wen, Wang, Sen Wen (bib111) 2013 Varanasi, Bolton, Siegmund, Cipra (bib131) 2013; 74 Sugino, Leadenham, Ruzzene, Erturk (bib115) 2017 Cummer, Christensen, Alù (bib6) 2016; 1 Ma, Sheng (bib7) 2016; 2 Cano-Vicent, Tambuwala, Hassan, Barh, Aljabali, Birkett, Arjunan, Serrano-Aroca (bib17) 2021; 47 Cho, Kim, Min, Kang, Park (bib58) 2014 Allam, Elsabbagh, Akl (bib112) 2016 Davies (bib28) 2002 Chen, Huang, Zhou, Hu, Sun (bib123) 2014; 136 Sun, Fang, Mao, Wang, Li (bib147) 2020; 13 Slagle, Fuller (bib55) 2015 Cuesta, Cobo, Fernández, Pfretzschner (bib36) 2006; 67 Ma, Huang, Wu (bib105) 2017 Liu, Guo, Wang (bib48) 2020 Lee, Jung, Lee (bib4) 2012 Naify, Chang, McKnight, Nutt (bib102) 2010 N. Gao, Z. Zhang, J. Deng, X. Guo, B. Cheng, H. Hou, Acoustic Metamaterials for Noise Reduction: A Review, Adv. Mater. Technol. n/a (n.d.) 2100698. Naify, Chang, McKnight, Nutt (bib126) 2012; 132 Wu, Au-Yeung, Li, Roberts, Tian, Hu, Huang, Wang, Yang, Wen (bib142) 2018; 112 Sü, Çalışkan (bib23) 2007; 14 Chen, Fan, Fu, Wu, Jin, Zheng, Zhang (bib117) 2018 . Steiger (bib27) 2013 Romero-Garcia, Hladky-Hennion (bib13) 2019 Climente, Torrent, Sánchez-Dehesa (bib86) 2012; 100 (accessed August 31, 2022). Caleap, Drinkwater, Wilcox (bib42) 2012; 14 Peng, Ji, Jing (bib24) 2018 Sui, Yan, Huang, Xu, Yuan, Jing (bib127) 2015; 106 Terrenoir, Lartigau, Arjunan, Laguna Salvado, Merlo (bib16) 2023; 145 Starkey, Smith, Hibbins, Sambles, Rance (bib70) 2017 Li, Xing, Zhao, Gai (bib96) 2020; 147 Tian, Wang, Zhou (bib125) 2014; 114 Xu, Meng, Chen, Yang, Liang, Cheng (bib98) 2021; 129 Li, Ma, Wang, Li, Zhang (bib88) 2020; 480 Ghaffarivardavagh, Nikolajczyk, Anderson, Zhang (bib141) 2019; 99 Arjunan, Wang, English, Stanford, Lister (bib38) 2015; 5 Pfretzschner, Cobo, Simón, Cuesta, Fernández (bib61) 2006; 67 Wang, Zhao, Luo, Huang (bib128) 2016; 108 Arjunan, Baroutaji, Praveen, Olabi, Wang (bib2) 2019 Organization (bib37) 2018 Sagartzazu, Hervella-Nieto, Pagalday (bib34) 2008; 15 Fernández-Marín, Jiménez, Groby, Sánchez-Dehesa, Romero-García (bib74) 2019 Allam, Elsabbagh, Akl (bib118) 2017 Tao, Ren, Zhang, Peijs (bib21) 2021; 24 Ebrahimi-Nejad, Kheybari (bib57) 2018 Sheng, Mei, Liu, Wen (bib43) 2007 Wu, Yang, Sheng (bib151) 2018 Li, Zhou, Huang, Hu (bib101) 2016 Huang, Sun, Huang (bib40) 2009 H. Xie, Y. Lyu, Sound absorption characteristics of the perforated panel resonator with tube bundles, 21st Int. Congr. Sound Vib. (2014), Volume 1, pp. 5010, ICSV 2014, 2014. Casadei, Ruzzene, Dozio, Cunefare (bib116) 2010 Ma, Huang, Xu, Wu (bib106) 2018 Fedotov (bib8) 2017 Arjunan, Baroutaji, Robinson, Wang (bib82) 2021 Xu, Xiao, He, Wang, Shen, Hong, Luo, He (bib87) 2022; 30 Xu, Fu, Chen (bib89) 2016; 1 Roca, Yago, Cante, Lloberas-Valls, Oliver (bib66) 2019 Aurégan (bib78) 2018; 113 Hussein, Frazier (bib44) 2013 Trematerra, Bevilacqua, Iannace (bib148) 2023; 13 Lu, Feng, Chen (bib3) 2009; 12 Yang, Mei, Yang, Chan, Sheng (bib19) 2008 Jiang, Liang, Li, Zou, Yin, Cheng (bib56) 2014 Coulais, Sounas, Alù (bib46) 2017 Kumar, Lee (bib51) 2019 Naify, Chang, McKnight, Scheulen, Nutt (bib29) 2011; 109 Langfeldt, Gleine (bib130) 2019 Landaluze, Portilla, Pagalday, Martínez, Reyero (bib35) 2003; 11 Ma, Yang, Xiao, Yang, Sheng (bib77) 2014; 13 Zhao, Li, Wang, Wang, Zhang, Gai (bib95) 2017; 141 Chen, Guo, Yang, Cheng (bib14) 2014 Arjunan (bib64) 2019; 19 Xiang, Tian, Huang, Wu, Wen (bib97) 2021; 118 Arjunan, Wang, Yahiaoui, Mynors, Morgan, English (bib100) 2013; 67 Jung, Kim, Lee (bib140) 2018; 112 Ji, Huber (bib11) 2022; 26 Arjunan, Foteinou (bib108) 2017 Airoldi, Ruzzene (bib114) 2011 Bohn (bib154) 1988; 36 Tang, Ren, Meng, Xin, Huang, Chen, Zhang, Lu (bib53) 2017 Huang, Fang, Wang, Assouar, Cheng, Li (bib76) 2018 Akl, Baz (bib113) 2010 Fuller, Mathur (bib33) 2017 Akl, Baz (bib94) 2012; 112 Li, Assouar (bib84) 2016; 108 Fokin, Ambati, Sun, Zhang (bib50) 2007 Analytic Modeling of Sound Transmission through Membrane-Type Acoustic Metamaterials – M.C. Gill Composites Center, (n.d.). Cai, Guo, Hu, Yang (bib75) 2014; 105 Lin, Lin, Wang, Di (bib133) 2021; 273 Ma, Wang, Liu, Wu (bib32) 2021; 129 De Salis, Oldham, Sharples (bib135) 2002; 37 Li, Yang, Liu, Yu, Lu, Zhu, Zhang, Zhu, Guo, Wu, Wang, Chen (bib109) 2017 Mei, Ma, Yang, Yang, Wen, Sheng (bib25) 2012; 3 Greiner, Wudy, Lanzl, Drummer (bib62) 2017; 64 Popa, Zigoneanu, Cummer (bib119) 2013 Jiménez, Romero-García, Pagneux, Groby (bib149) 2017; 95 Du, Wu, Chen, Lin, Chi (bib26) 2021; 11 Lee, Nomura, Dede, Iizuka (bib54) 2019 Kaina, Lemoult, Fink, Lerosey (bib15) 2015 Arjunan, Rackley, Stanford (bib39) 2016 Casadei, Delpero, Bergamini, Ermanni, Ruzzene (bib110) 2012 Liao, Luan, Wang, Liu, Yao, Fu (bib150) 2021; 6 Gibson, Nguyen, Sinaie, Heath, Ngo (bib155) 2022 Kumar, Xiang, Lee (bib138) 2020; 159 Ortiz, Gonzalez, Cobo, Montero de Espinosa (bib60) 2014; 62 Haberman, Guild (bib41) 2016 Zhou, Liu, Hu (bib49) 2012 Arjunan, Demetriou, Baroutaji, Wang (bib63) 2020; 102 Li, Zheng, Zhong, Yang, Liang, Cheng (bib71) 2018 Alshaqaq, Sugino, Erturk (bib91) 2022; 17 Jin Park, Kwak, Song (bib129) 2021; 43 Arjunan, Wang, Yahiaoui, Mynors, Morgan, Nguyen, English (bib9) 2014 Xiao, Gao, Wang, He, Wu (bib139) 2021; 46 Wang, Chen, Zhou, Chen, Ma (bib68) 2019 Yang, Dai, Chan, Ma, Sheng (bib121) 2010; 96 Ren, Van Belle, Claeys, Xin, Lu, Deckers, Desmet (bib69) 2019 Ang, Koh, Lee (bib107) 2018 Niu, Wu (bib59) 2018 Gazzola, Caverni, Corigliano (bib134) 2021; 183 Wang, Ma (bib31) 2021; 260 Arjunan (bib65) 2019; 151 Zhang, Qu, He, Lu (bib85) 2016; 6 Jagodzinski, Miksch, Aumann, Müller (bib152) 2022; 50 Arjunan, Baroutaji, Latif (bib83) 2021; 11 Ni, Wu, Chen, Zheng, Xu, Nayar, Liu, Lu, Chen (bib92) 2014; 4 Ang, Koh, Lee (bib132) 2019; 149 Harris (bib153) 1966; 40 Cox, D'Antonio (bib20) 2016 Zhang, Wen, Xiao, Wen, Wang (bib122) 2012; 376 Ponge, Poncelet, Torrent (bib45) 2017 Kadic, Bückmann, Schittny, Wegener (bib47) 2013 Huang, Fang, Wang, Assouar, Cheng, Li (bib72) 2019 Su, Zhu, Gao, Luo, Zhang (bib145) 2022; 8 Kim, Lee (bib136) 2014; 4 Kumar, Bhushan, Prakash, Bhattacharya (bib104) 2018 Liu, Wu, Chen, Ma (bib73) 2019 Pai, Huang, of (bib12) 2015 Kishore, Sujithra, Dhatreyi (bib1) 2021; 47 Arjunan, Baroutaji, Robinson (bib18) 2021 Zhang, Qu, Wang (bib5) 2020 Assouar, Oudich, Zhou (bib156) 2016; 17 Yu, Lu, Cheng, Cui (bib137) 2017; 401 Xiang, Wu, Li, Wu, He, Mu, Wang, Huang, Wen (bib146) 2020; 39 Guild, García-Chocano, Kan, Sánchez-Dehesa (bib52) 2015 Crivoi, Du, Fan (bib144) 2023; 205 Xu, Guo, Chen, Dong, Ye, Wang (bib80) 2021; 11 Arjunan, Wang, Yahiaoui, Mynors, Morgan, Nguyen, English (bib10) 2014; 333 Du, Luo, Zhao, Sun, Song, Hu (bib99) 2021; 11 Zangeneh-Nejad, Fleury (bib81) 2019; 4 Sü, Yilmazer (bib22) 2008; 51 Wang, Casadei, Shan, Weaver, Bertoldi (bib120) 2014 Naify, Chang, McKnight, Nutt (bib124) 2011; 110 Wang, Luo, Zhao, Huang (bib79) 2018; 112 Ma (10.1016/j.buildenv.2024.111250_bib77) 2014; 13 Landaluze (10.1016/j.buildenv.2024.111250_bib35) 2003; 11 Ponge (10.1016/j.buildenv.2024.111250_bib45) 2017 Naify (10.1016/j.buildenv.2024.111250_bib124) 2011; 110 Romero-Garcia (10.1016/j.buildenv.2024.111250_bib13) 2019 Caleap (10.1016/j.buildenv.2024.111250_bib42) 2012; 14 Cummer (10.1016/j.buildenv.2024.111250_bib6) 2016; 1 Yang (10.1016/j.buildenv.2024.111250_bib19) 2008 Pai (10.1016/j.buildenv.2024.111250_bib12) 2015 Terrenoir (10.1016/j.buildenv.2024.111250_bib16) 2023; 145 Ren (10.1016/j.buildenv.2024.111250_bib69) 2019 10.1016/j.buildenv.2024.111250_bib67 Liao (10.1016/j.buildenv.2024.111250_bib150) 2021; 6 Xiao (10.1016/j.buildenv.2024.111250_bib139) 2021; 46 Bohn (10.1016/j.buildenv.2024.111250_bib154) 1988; 36 Organization (10.1016/j.buildenv.2024.111250_bib37) 2018 Liu (10.1016/j.buildenv.2024.111250_bib73) 2019 Li (10.1016/j.buildenv.2024.111250_bib101) 2016 Zhou (10.1016/j.buildenv.2024.111250_bib49) 2012 Zhu (10.1016/j.buildenv.2024.111250_bib90) 2013; 3 Ang (10.1016/j.buildenv.2024.111250_bib132) 2019; 149 Starkey (10.1016/j.buildenv.2024.111250_bib70) 2017 Su (10.1016/j.buildenv.2024.111250_bib145) 2022; 8 Ma (10.1016/j.buildenv.2024.111250_bib7) 2016; 2 Li (10.1016/j.buildenv.2024.111250_bib109) 2017 Varanasi (10.1016/j.buildenv.2024.111250_bib131) 2013; 74 Jagodzinski (10.1016/j.buildenv.2024.111250_bib152) 2022; 50 Liu (10.1016/j.buildenv.2024.111250_bib48) 2020 Sui (10.1016/j.buildenv.2024.111250_bib127) 2015; 106 Arjunan (10.1016/j.buildenv.2024.111250_bib39) 2016 Chen (10.1016/j.buildenv.2024.111250_bib117) 2018 Alshaqaq (10.1016/j.buildenv.2024.111250_bib91) 2022; 17 Coulais (10.1016/j.buildenv.2024.111250_bib46) 2017 Allam (10.1016/j.buildenv.2024.111250_bib112) 2016 Kumar (10.1016/j.buildenv.2024.111250_bib138) 2020; 159 Arjunan (10.1016/j.buildenv.2024.111250_bib2) 2019 Li (10.1016/j.buildenv.2024.111250_bib96) 2020; 147 Du (10.1016/j.buildenv.2024.111250_bib99) 2021; 11 Assouar (10.1016/j.buildenv.2024.111250_bib156) 2016; 17 Pfretzschner (10.1016/j.buildenv.2024.111250_bib61) 2006; 67 Ni (10.1016/j.buildenv.2024.111250_bib92) 2014; 4 Ma (10.1016/j.buildenv.2024.111250_bib105) 2017 Zhang (10.1016/j.buildenv.2024.111250_bib143) 2017; 111 Hussein (10.1016/j.buildenv.2024.111250_bib44) 2013 Chen (10.1016/j.buildenv.2024.111250_bib123) 2014; 136 Kaina (10.1016/j.buildenv.2024.111250_bib15) 2015 Ji (10.1016/j.buildenv.2024.111250_bib11) 2022; 26 Fokin (10.1016/j.buildenv.2024.111250_bib50) 2007 Sun (10.1016/j.buildenv.2024.111250_bib147) 2020; 13 Jiménez (10.1016/j.buildenv.2024.111250_bib149) 2017; 95 Casadei (10.1016/j.buildenv.2024.111250_bib116) 2010 Li (10.1016/j.buildenv.2024.111250_bib71) 2018 Xu (10.1016/j.buildenv.2024.111250_bib87) 2022; 30 Wang (10.1016/j.buildenv.2024.111250_bib128) 2016; 108 Naify (10.1016/j.buildenv.2024.111250_bib102) 2010 Fedotov (10.1016/j.buildenv.2024.111250_bib8) 2017 Wang (10.1016/j.buildenv.2024.111250_bib31) 2021; 260 Greiner (10.1016/j.buildenv.2024.111250_bib62) 2017; 64 Cho (10.1016/j.buildenv.2024.111250_bib58) 2014 Ma (10.1016/j.buildenv.2024.111250_bib106) 2018 Wu (10.1016/j.buildenv.2024.111250_bib151) 2018 Li (10.1016/j.buildenv.2024.111250_bib84) 2016; 108 Kumar (10.1016/j.buildenv.2024.111250_bib104) 2018 Sü (10.1016/j.buildenv.2024.111250_bib23) 2007; 14 Xu (10.1016/j.buildenv.2024.111250_bib89) 2016; 1 Arjunan (10.1016/j.buildenv.2024.111250_bib100) 2013; 67 Xu (10.1016/j.buildenv.2024.111250_bib98) 2021; 129 Arjunan (10.1016/j.buildenv.2024.111250_bib63) 2020; 102 Zhang (10.1016/j.buildenv.2024.111250_bib5) 2020 Huang (10.1016/j.buildenv.2024.111250_bib76) 2018 Niu (10.1016/j.buildenv.2024.111250_bib59) 2018 Aurégan (10.1016/j.buildenv.2024.111250_bib78) 2018; 113 10.1016/j.buildenv.2024.111250_bib30 Kim (10.1016/j.buildenv.2024.111250_bib136) 2014; 4 Jung (10.1016/j.buildenv.2024.111250_bib140) 2018; 112 Du (10.1016/j.buildenv.2024.111250_bib26) 2021; 11 Lu (10.1016/j.buildenv.2024.111250_bib3) 2009; 12 Tang (10.1016/j.buildenv.2024.111250_bib53) 2017 Zhang (10.1016/j.buildenv.2024.111250_bib85) 2016; 6 Airoldi (10.1016/j.buildenv.2024.111250_bib114) 2011 Sagartzazu (10.1016/j.buildenv.2024.111250_bib34) 2008; 15 Cano-Vicent (10.1016/j.buildenv.2024.111250_bib17) 2021; 47 Tao (10.1016/j.buildenv.2024.111250_bib21) 2021; 24 Climente (10.1016/j.buildenv.2024.111250_bib86) 2012; 100 Langfeldt (10.1016/j.buildenv.2024.111250_bib130) 2019 Lin (10.1016/j.buildenv.2024.111250_bib133) 2021; 273 Akl (10.1016/j.buildenv.2024.111250_bib94) 2012; 112 Wu (10.1016/j.buildenv.2024.111250_bib142) 2018; 112 Cai (10.1016/j.buildenv.2024.111250_bib75) 2014; 105 Wang (10.1016/j.buildenv.2024.111250_bib79) 2018; 112 Akl (10.1016/j.buildenv.2024.111250_bib113) 2010 Jin Park (10.1016/j.buildenv.2024.111250_bib129) 2021; 43 Arjunan (10.1016/j.buildenv.2024.111250_bib82) 2021 Arjunan (10.1016/j.buildenv.2024.111250_bib108) 2017 Kishore (10.1016/j.buildenv.2024.111250_bib1) 2021; 47 Gibson (10.1016/j.buildenv.2024.111250_bib155) 2022 Arjunan (10.1016/j.buildenv.2024.111250_bib9) 2014 Ghaffarivardavagh (10.1016/j.buildenv.2024.111250_bib141) 2019; 99 Crivoi (10.1016/j.buildenv.2024.111250_bib144) 2023; 205 Zhao (10.1016/j.buildenv.2024.111250_bib95) 2017; 141 Casadei (10.1016/j.buildenv.2024.111250_bib110) 2012 Huang (10.1016/j.buildenv.2024.111250_bib40) 2009 Naify (10.1016/j.buildenv.2024.111250_bib126) 2012; 132 Cox (10.1016/j.buildenv.2024.111250_bib20) 2016 Steiger (10.1016/j.buildenv.2024.111250_bib27) 2013 Ang (10.1016/j.buildenv.2024.111250_bib107) 2018 Arjunan (10.1016/j.buildenv.2024.111250_bib18) 2021 Arjunan (10.1016/j.buildenv.2024.111250_bib64) 2019; 19 Wang (10.1016/j.buildenv.2024.111250_bib68) 2019 Xiang (10.1016/j.buildenv.2024.111250_bib146) 2020; 39 10.1016/j.buildenv.2024.111250_bib93 Zangeneh-Nejad (10.1016/j.buildenv.2024.111250_bib81) 2019; 4 Arjunan (10.1016/j.buildenv.2024.111250_bib38) 2015; 5 Chen (10.1016/j.buildenv.2024.111250_bib111) 2013 Yu (10.1016/j.buildenv.2024.111250_bib137) 2017; 401 Tian (10.1016/j.buildenv.2024.111250_bib125) 2014; 114 Chen (10.1016/j.buildenv.2024.111250_bib14) 2014 Lee (10.1016/j.buildenv.2024.111250_bib54) 2019 Sugino (10.1016/j.buildenv.2024.111250_bib115) 2017 Arjunan (10.1016/j.buildenv.2024.111250_bib10) 2014; 333 Popa (10.1016/j.buildenv.2024.111250_bib119) 2013 Lee (10.1016/j.buildenv.2024.111250_bib4) 2012 Fernández-Marín (10.1016/j.buildenv.2024.111250_bib74) 2019 Cuesta (10.1016/j.buildenv.2024.111250_bib36) 2006; 67 Guild (10.1016/j.buildenv.2024.111250_bib52) 2015 Allam (10.1016/j.buildenv.2024.111250_bib118) 2017 Sü (10.1016/j.buildenv.2024.111250_bib22) 2008; 51 Slagle (10.1016/j.buildenv.2024.111250_bib55) 2015 Ebrahimi-Nejad (10.1016/j.buildenv.2024.111250_bib57) 2018 Trematerra (10.1016/j.buildenv.2024.111250_bib148) 2023; 13 Peng (10.1016/j.buildenv.2024.111250_bib24) 2018 Jiang (10.1016/j.buildenv.2024.111250_bib56) 2014 Zhang (10.1016/j.buildenv.2024.111250_bib122) 2012; 376 Huang (10.1016/j.buildenv.2024.111250_bib72) 2019 Arjunan (10.1016/j.buildenv.2024.111250_bib65) 2019; 151 Li (10.1016/j.buildenv.2024.111250_bib88) 2020; 480 Kumar (10.1016/j.buildenv.2024.111250_bib51) 2019 Yang (10.1016/j.buildenv.2024.111250_bib121) 2010; 96 Arjunan (10.1016/j.buildenv.2024.111250_bib83) 2021; 11 Naify (10.1016/j.buildenv.2024.111250_bib29) 2011; 109 Haberman (10.1016/j.buildenv.2024.111250_bib41) 2016 Ortiz (10.1016/j.buildenv.2024.111250_bib60) 2014; 62 Gazzola (10.1016/j.buildenv.2024.111250_bib134) 2021; 183 Sheng (10.1016/j.buildenv.2024.111250_bib43) 2007 Roca (10.1016/j.buildenv.2024.111250_bib66) 2019 Davies (10.1016/j.buildenv.2024.111250_bib28) 2002 De Salis (10.1016/j.buildenv.2024.111250_bib135) 2002; 37 Yang (10.1016/j.buildenv.2024.111250_bib103) 2013 Ma (10.1016/j.buildenv.2024.111250_bib32) 2021; 129 Xiang (10.1016/j.buildenv.2024.111250_bib97) 2021; 118 Xu (10.1016/j.buildenv.2024.111250_bib80) 2021; 11 Fuller (10.1016/j.buildenv.2024.111250_bib33) 2017 Kadic (10.1016/j.buildenv.2024.111250_bib47) 2013 Harris (10.1016/j.buildenv.2024.111250_bib153) 1966; 40 Mei (10.1016/j.buildenv.2024.111250_bib25) 2012; 3 Wang (10.1016/j.buildenv.2024.111250_bib120) 2014 |
| References_xml | – volume: 3 start-page: 1728 year: 2013 ident: bib90 article-title: Acoustic rainbow trapping publication-title: Sci. Rep. – volume: 11 start-page: 5829 year: 2021 ident: bib99 article-title: Bilayer ventilated labyrinthine metasurfaces with high sound absorption and tunable bandwidth publication-title: Sci. Rep. – volume: 260 year: 2021 ident: bib31 article-title: Sound insulation performance of membrane-type metamaterials combined with pyramidal truss core sandwich structure publication-title: Compos. Struct. – volume: 26 year: 2022 ident: bib11 article-title: Recent progress in acoustic metamaterials and active piezoelectric acoustic metamaterials - a review publication-title: Appl. Mater. Today – volume: 109 year: 2011 ident: bib29 article-title: Membrane-type metamaterials: transmission loss of multi-celled arrays publication-title: J. Appl. Phys. – year: 2020 ident: bib48 article-title: A review of acoustic metamaterials and phononic crystals publication-title: Crystals – year: 2019 ident: bib73 article-title: A thin low-frequency broadband metasurface with multi-order sound absorption publication-title: J. Phys. D Appl. Phys. – year: 2018 ident: bib24 article-title: Composite honeycomb metasurface panel for broadband sound absorption publication-title: J. Acoust. Soc. Am. – year: 2013 ident: bib103 article-title: Coupled membranes with doubly negative mass density and bulk modulus publication-title: Phys. Rev. Lett. – year: 2017 ident: bib45 article-title: Dynamic homogenization theory for nonlocal acoustic metamaterials publication-title: Extrem. Mech. Lett. – year: 2016 ident: bib39 article-title: Experimental investigation on the sound reduction performance of frequency controlled acoustic interference cavities publication-title: Proc. INTER-NOISE 2016 - 45th Int. Congr. Expo. Noise Control Eng. Towar. A Quieter Futur. – volume: 13 start-page: 873 year: 2014 end-page: 878 ident: bib77 article-title: Acoustic metasurface with hybrid resonances publication-title: Nat. Mater. – volume: 4 year: 2014 ident: bib136 article-title: Air transparent soundproof window publication-title: AIP Adv. – volume: 14 start-page: 203 year: 2007 end-page: 221 ident: bib23 article-title: Acoustical design and noise control in metro stations: case studies of the ankara metro system publication-title: Build. Acoust. – volume: 6 year: 2016 ident: bib85 article-title: Experimental study on the sound absorption characteristics of continuously graded phononic crystals publication-title: AIP Adv. – year: 2007 ident: bib43 article-title: Dynamic mass density and acoustic metamaterials publication-title: Phys. B Condens. Matter – volume: 108 year: 2016 ident: bib128 article-title: Membrane-constrained acoustic metamaterials for low frequency sound insulation publication-title: Appl. Phys. Lett. – volume: 12 start-page: 34 year: 2009 end-page: 42 ident: bib3 article-title: Phononic crystals and acoustic metamaterials publication-title: Mater. Today – year: 2015 ident: bib12 article-title: Photo-optical Instrumentation Engineers, Theory and Design of Acoustic Metamaterials – year: 2020 ident: bib5 article-title: Engineering Acoustic Metamaterials for Sound Absorption: from Uniform to Gradient Structures – volume: 141 start-page: 840 year: 2017 end-page: 846 ident: bib95 article-title: Membrane acoustic metamaterial absorbers with magnetic negative stiffness publication-title: J. Acoust. Soc. Am. – volume: 39 year: 2020 ident: bib146 article-title: Ultra-open ventilated metamaterial absorbers for sound-silencing applications in environment with free air flows publication-title: Extrem. Mech. Lett. – volume: 96 year: 2010 ident: bib121 article-title: Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime publication-title: Appl. Phys. Lett. – volume: 40 start-page: 148 year: 1966 end-page: 159 ident: bib153 article-title: Absorption of sound in air versus humidity and temperature publication-title: J. Acoust. Soc. Am. – volume: 43 year: 2021 ident: bib129 article-title: Ultraslow medium with an acoustic membrane-like undamped dynamic vibration absorber for low-frequency isolation publication-title: Extrem. Mech. Lett. – year: 2018 ident: bib151 article-title: Perspective: acoustic metamaterials in transition publication-title: J. Appl. Phys. – year: 2021 ident: bib18 article-title: Advances in acoustic metamaterials publication-title: Ref. Modul. Mater. Sci. Mater. Eng. – year: 2019 ident: bib54 article-title: Ultrasparse acoustic absorbers enabling fluid flow and visible-light controls publication-title: Phys. Rev. Appl. – volume: 401 start-page: 190 year: 2017 end-page: 203 ident: bib137 article-title: On the sound insulation of acoustic metasurface using a sub-structuring approach publication-title: J. Sound Vib. – year: 2015 ident: bib52 article-title: Acoustic metamaterial absorbers based on multilayered sonic crystals publication-title: J. Appl. Phys. – volume: 11 year: 2021 ident: bib83 article-title: Acoustic behaviour of 3D printed titanium perforated panels publication-title: Results Eng – year: 2019 ident: bib69 article-title: Improvement of the sound absorption of flexible micro-perforated panels by local resonances publication-title: Mech. Syst. Signal Process. – volume: 15 start-page: 311 year: 2008 end-page: 342 ident: bib34 article-title: Review in sound absorbing materials publication-title: Arch. Comput. Methods Eng. – volume: 333 start-page: 6140 year: 2014 end-page: 6155 ident: bib10 article-title: Development of a 3D finite element acoustic model to predict the sound reduction index of stud based double-leaf walls publication-title: J. Sound Vib. – year: 2019 ident: bib13 article-title: Fundamentals and Applications of Acoustic Metamaterials: from Seismic to Radio Frequency – volume: 50 start-page: 2877 year: 2022 end-page: 2891 ident: bib152 article-title: Modeling and optimizing an acoustic metamaterial to minimize low-frequency structure-borne sound publication-title: Mech. Base. Des. Struct. Mach. – volume: 112 year: 2012 ident: bib94 article-title: Experimental characterization of active acoustic metamaterial cell with controllable dynamic density publication-title: J. Appl. Phys. – volume: 1 year: 2016 ident: bib89 article-title: Planar gradient metamaterials publication-title: Nat. Rev. Mater. – year: 2019 ident: bib66 article-title: Computational design of locally resonant acoustic metamaterials publication-title: Comput. Methods Appl. Mech. Eng. – volume: 95 year: 2017 ident: bib149 article-title: Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound publication-title: Phys. Rev. B – year: 2009 ident: bib40 article-title: On the negative effective mass density in acoustic metamaterials publication-title: Int. J. Eng. Sci. – volume: 113 year: 2018 ident: bib78 article-title: Ultra-thin low frequency perfect sound absorber with high ratio of active area publication-title: Appl. Phys. Lett. – volume: 145 year: 2023 ident: bib16 article-title: Influence of wire feed speed and torch speed on the mechanical properties of wire arc additively manufactured stainless steel publication-title: J. Manuf. Sci. Eng. – volume: 3 year: 2012 ident: bib25 article-title: Dark acoustic metamaterials as super absorbers for low-frequency sound publication-title: Nat. Commun. – year: 2017 ident: bib8 article-title: Metamaterials – year: 2012 ident: bib49 article-title: Elastic metamaterials with local resonances: an overview publication-title: Theor. Appl. Mech. Lett. – year: 2017 ident: bib53 article-title: Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound publication-title: Sci. Rep. – year: 2019 ident: bib2 article-title: Acoustic performance of metallic foams publication-title: Ref. Modul. Mater. Sci. Mater. Eng. – year: 2014 ident: bib56 article-title: Ultra-broadband absorption by acoustic metamaterials publication-title: Appl. Phys. Lett. – volume: 108 year: 2016 ident: bib84 article-title: Acoustic metasurface-based perfect absorber with deep subwavelength thickness publication-title: Appl. Phys. Lett. – year: 2017 ident: bib109 article-title: Broadband gradient impedance matching using an acoustic metamaterial for ultrasonic transducers publication-title: Sci. Rep. – volume: 36 start-page: 223 year: 1988 end-page: 231 ident: bib154 article-title: Environmental effects on the speed of sound publication-title: J. Audio Eng. Soc. – reference: (accessed August 31, 2022). – start-page: 1581 year: 2017 end-page: 1590 ident: bib33 article-title: Poro-elastic acoustic meta materials publication-title: INTER-NOISE NOISE-CON Congr. Conf. Proc. – reference: H. Xie, Y. Lyu, Sound absorption characteristics of the perforated panel resonator with tube bundles, 21st Int. Congr. Sound Vib. (2014), Volume 1, pp. 5010, ICSV 2014, 2014. – year: 2018 ident: bib76 article-title: Acoustic perfect absorbers via spiral metasurfaces with embedded apertures publication-title: Appl. Phys. Lett. – year: 2017 ident: bib46 article-title: Static non-reciprocity in mechanical metamaterials publication-title: Nature – start-page: 4870 year: 2019 end-page: 4877 ident: bib130 article-title: Design of acoustic partitions with thin plate-like acoustic metamaterials publication-title: Proc. Int. Congr. Acoust., 23rd International Congress on Acoustics – year: 2019 ident: bib68 article-title: Synergetic coupling large-scale plate-type acoustic metamaterial panel for broadband sound insulation publication-title: J. Sound Vib. – volume: 47 start-page: 4700 year: 2021 end-page: 4707 ident: bib1 article-title: A review on latest acoustic noise mitigation materials publication-title: Mater. Today Proc. – year: 2018 ident: bib106 article-title: Bi-layer plate-Type acoustic metamaterials with Willis coupling publication-title: J. Appl. Phys. – volume: 151 start-page: 30 year: 2019 end-page: 44 ident: bib65 article-title: Targeted sound attenuation capacity of 3D printed noise cancelling waveguides publication-title: Appl. Acoust. – volume: 30 start-page: 3941 year: 2022 end-page: 3953 ident: bib87 article-title: Realization of broadband truly rainbow trapping in gradient-index metamaterials publication-title: Opt Express – volume: 5 start-page: 1414 year: 2015 end-page: 1431 ident: bib38 article-title: A computationally-efficient numerical model to characterize the noise behavior of metal-framed walls publication-title: Metals – volume: 24 year: 2021 ident: bib21 article-title: Recent progress in acoustic materials and noise control strategies – a review publication-title: Appl. Mater. Today – year: 2018 ident: bib37 article-title: Environmental Noise Guidelines for the European Region – volume: 183 year: 2021 ident: bib134 article-title: From mechanics to acoustics: critical assessment of a robust metamaterial for acoustic insulation application publication-title: Appl. Acoust. – year: 2018 ident: bib104 article-title: Double negative acoustic metastructure for attenuation of acoustic emissions publication-title: Appl. Phys. Lett. – volume: 136 start-page: 969 year: 2014 end-page: 979 ident: bib123 article-title: Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: membrane model publication-title: J. Acoust. Soc. Am. – volume: 6 year: 2021 ident: bib150 article-title: Acoustic metamaterials: a review of theories, structures, fabrication approaches, and applications publication-title: Adv. Mater. Technol. – year: 2014 ident: bib9 article-title: Sound frequency dependent mesh modelling to simulate the acoustic insulation of stud based double-leaf walls publication-title: Proc. ISMA 2014 - Int. Conf. Noise Vib. Eng. USD 2014 - Int. Conf. Uncertain – volume: 14 year: 2012 ident: bib42 article-title: Effective dynamic constitutive parameters of acoustic metamaterials with random microstructure publication-title: New J. Phys. – year: 2018 ident: bib107 article-title: Plate-type acoustic metamaterial with cavities coupled via an orifice for enhanced sound transmission loss publication-title: Appl. Phys. Lett. – year: 2017 ident: bib108 article-title: A comparative study on the acoustic behaviour of free-standing curved and flat single panel screens in an open-plan enclosed environment publication-title: INTER-NOISE 2017 - 46th Int. Congr. Expo. Noise Control Eng – year: 2013 ident: bib111 article-title: Tunable band gaps in acoustic metamaterials with periodic arrays of resonant shunted piezos publication-title: Chin. Phys. B – volume: 11 year: 2021 ident: bib26 article-title: Control the structure to optimize the performance of sound absorption of acoustic metamaterial: a review publication-title: AIP Adv. – year: 2014 ident: bib58 article-title: Acoustic metamaterial panel composed of funnel-shaped cell unit having multi-band negative material properties publication-title: INTERNOISE 2014 - 43rd Int. Congr. Noise Control Eng. Improv – volume: 17 start-page: L021003 year: 2022 ident: bib91 article-title: Programmable rainbow trapping and band-gap enhancement via spatial group-velocity tailoring in elastic metamaterials publication-title: Phys. Rev. Appl. – year: 2017 ident: bib105 article-title: Ultrathin lightweight plate-type acoustic metamaterials with positive lumped coupling resonant publication-title: J. Appl. Phys. – year: 2018 ident: bib117 article-title: A review of tunable acoustic metamaterials publication-title: Appl. Sci. – volume: 132 start-page: 2784 year: 2012 end-page: 2792 ident: bib126 article-title: Scaling of membrane-type locally resonant acoustic metamaterial arrays publication-title: J. Acoust. Soc. Am. – volume: 376 start-page: 1489 year: 2012 end-page: 1494 ident: bib122 article-title: Theoretical investigation of the sound attenuation of membrane-type acoustic metamaterials publication-title: Phys. Lett. – volume: 273 year: 2021 ident: bib133 article-title: Sound insulation performance of sandwich structure compounded with a resonant acoustic metamaterial publication-title: Compos. Struct. – year: 2018 ident: bib57 article-title: Honeycomb locally resonant absorbing acoustic metamaterials with stop band behavior publication-title: Mater. Res. Express – year: 2017 ident: bib115 article-title: An investigation of electroelastic bandgap formation in locally resonant piezoelectric metastructures publication-title: Smart Mater. Struct. – volume: 8 year: 2022 ident: bib145 article-title: High-efficient and broadband acoustic insulation in a ventilated channel with acoustic metamaterials publication-title: Front. Mech. Eng. – volume: 47 year: 2021 ident: bib17 article-title: Fused deposition modelling: current status, methodology, applications and future prospects publication-title: Addit. Manuf. – year: 2018 ident: bib71 article-title: Broadband compact acoustic absorber with high-efficiency ventilation performance publication-title: Appl. Phys. Lett. – year: 2021 ident: bib82 article-title: Characteristics of acoustic metamaterials publication-title: Ref. Modul. Mater. Sci. Mater. Eng. – year: 2017 ident: bib118 article-title: Experimental demonstration of one-dimensional active plate-type acoustic metamaterial with adaptive programmable density publication-title: J. Appl. Phys. – year: 2016 ident: bib101 article-title: Acoustic metamaterials capable of both sound insulation and energy harvesting publication-title: Smart Mater. Struct. – volume: 37 start-page: 471 year: 2002 end-page: 484 ident: bib135 article-title: Noise control strategies for naturally ventilated buildings publication-title: Build. Environ. – volume: 114 start-page: 985 year: 2014 end-page: 990 ident: bib125 article-title: Theoretical model and analytical approach for a circular membrane–ring structure of locally resonant acoustic metamaterial publication-title: Appl. Phys. A – volume: 111 year: 2017 ident: bib143 article-title: Omnidirectional ventilated acoustic barrier publication-title: Appl. Phys. Lett. – volume: 149 start-page: 156 year: 2019 end-page: 170 ident: bib132 article-title: Plate-type acoustic metamaterials: evaluation of a large-scale design adopting modularity for customizable acoustical performance publication-title: Appl. Acoust. – year: 2019 ident: bib51 article-title: The present and future role of acoustic metamaterials for architectural and urban noise mitigations publication-title: Acoustics – start-page: 16 year: 2002 end-page: 27 ident: bib28 article-title: 27 - noise and vibration publication-title: Plant Eng. Ref. B – volume: 62 start-page: 145 year: 2014 end-page: 151 ident: bib60 article-title: Attenuating open cavity tones by lining its walls with microperforated panels publication-title: Noise Control Eng. J. – volume: 480 year: 2020 ident: bib88 article-title: Vibration isolation by novel meta-design of pyramid-core lattice sandwich structures publication-title: J. Sound Vib. – volume: 67 start-page: 202 year: 2013 end-page: 210 ident: bib100 article-title: Finite element acoustic analysis of a steel stud based double-leaf wall publication-title: Build. Environ. – volume: 64 start-page: 136 year: 2017 end-page: 144 ident: bib62 article-title: Selective laser sintering of polymer blends: bulk properties and process behavior publication-title: Polym. Test. – year: 2008 ident: bib19 article-title: Membrane-type acoustic metamaterial with negative dynamic mass publication-title: Phys. Rev. Lett. – year: 2018 ident: bib59 article-title: Low frequency wide band sound absorption performance of asymmetric type acoustic metamaterials publication-title: Zhendong Yu Chongji/Journal Vib. Shock. – year: 2022 ident: bib155 article-title: The low frequency structure-borne sound problem in multi-storey timber buildings and potential of acoustic metamaterials: a review publication-title: Build. Environ. – volume: 46 year: 2021 ident: bib139 article-title: Ventilated metamaterials for broadband sound insulation and tunable transmission at low frequency publication-title: Extrem. Mech. Lett. – volume: 17 start-page: 524 year: 2016 end-page: 532 ident: bib156 article-title: Acoustic metamaterials for sound mitigation publication-title: Compt. Rendus Phys. – volume: 102 year: 2020 ident: bib63 article-title: Mechanical performance of highly permeable laser melted Ti6Al4V bone scaffolds publication-title: J. Mech. Behav. Biomed. Mater. – volume: 11 start-page: 1423 year: 2003 end-page: 1431 ident: bib35 article-title: Application of active noise control to an elevator cabin publication-title: Control Eng. Pract. – year: 2012 ident: bib4 article-title: Highly tunable acoustic metamaterials based on a resonant tubular array publication-title: Phys. Rev. B Condens. Matter – volume: 2 year: 2016 ident: bib7 article-title: Acoustic metamaterials: from local resonances to broad horizons publication-title: Sci. Adv. – year: 2011 ident: bib114 article-title: Design of tunable acoustic metamaterials through periodic arrays of resonant shunted piezos publication-title: New J. Phys. – volume: 105 year: 2014 ident: bib75 article-title: Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators publication-title: Appl. Phys. Lett. – volume: 100 year: 2012 ident: bib86 article-title: Omnidirectional broadband acoustic absorber based on metamaterials publication-title: Appl. Phys. Lett. – volume: 110 year: 2011 ident: bib124 article-title: Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses publication-title: J. Appl. Phys. – volume: 67 start-page: 62 year: 2006 end-page: 73 ident: bib61 article-title: Microperforated insertion units: an alternative strategy to design microperforated panels publication-title: Appl. Acoust. – volume: 1 year: 2016 ident: bib6 article-title: Controlling sound with acoustic metamaterials publication-title: Nat. Rev. Mater. – reference: Analytic Modeling of Sound Transmission through Membrane-Type Acoustic Metamaterials – M.C. Gill Composites Center, (n.d.). – volume: 147 year: 2020 ident: bib96 article-title: Broadband low frequency sound absorption using a monostable acoustic metamaterial publication-title: J. Acoust. Soc. Am. – volume: 13 year: 2020 ident: bib147 article-title: Broadband acoustic ventilation barriers publication-title: Phys. Rev. Appl. – volume: 4 start-page: 7038 year: 2014 ident: bib92 article-title: Acoustic rainbow trapping by coiling up space publication-title: Sci. Rep. – year: 2019 ident: bib72 article-title: Acoustic perfect absorbers via Helmholtz resonators with embedded apertures publication-title: J. Acoust. Soc. Am. – year: 2015 ident: bib15 article-title: Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials publication-title: Nature – year: 2012 ident: bib110 article-title: Piezoelectric resonator arrays for tunable acoustic waveguides and metamaterials publication-title: J. Appl. Phys. – year: 2013 ident: bib27 article-title: Control of Static and Dynamic Mechanical Response of Piezoelectric Composite Shells: Applications to Acoustics and Adaptive Optics – volume: 112 year: 2018 ident: bib140 article-title: Acoustic metamaterial panel for both fluid passage and broadband soundproofing in the audible frequency range publication-title: Appl. Phys. Lett. – year: 2017 ident: bib70 article-title: Thin structured rigid body for acoustic absorption publication-title: Appl. Phys. Lett. – volume: 4 year: 2019 ident: bib81 article-title: Active times for acoustic metamaterials publication-title: Rev. Phys. – year: 2007 ident: bib50 article-title: Method for retrieving effective properties of locally resonant acoustic metamaterials publication-title: Phys. Rev. B Condens. Matter – volume: 51 start-page: 21 year: 2008 end-page: 30 ident: bib22 article-title: The acoustical characteristics of the kocatepe mosque in ankara, Turkey publication-title: Architect. Sci. Rev. – volume: 13 start-page: 1650 year: 2023 ident: bib148 article-title: Noise control in air mechanical ventilation systems with three-dimensional metamaterials publication-title: Appl. Sci. – volume: 129 year: 2021 ident: bib98 article-title: Tunable low-frequency and broadband acoustic metamaterial absorber publication-title: J. Appl. Phys. – year: 2013 ident: bib119 article-title: Tunable active acoustic metamaterials publication-title: Phys. Rev. B Condens. Matter – year: 2010 ident: bib102 article-title: Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials publication-title: J. Appl. Phys. – year: 2010 ident: bib113 article-title: Multi-cell active acoustic metamaterial with programmable bulk modulus publication-title: J. Intell. Mater. Syst. Struct. – volume: 74 start-page: 485 year: 2013 end-page: 495 ident: bib131 article-title: The low frequency performance of metamaterial barriers based on cellular structures publication-title: Appl. Acoust. – year: 2013 ident: bib44 article-title: Damped Phononic Crystals and Acoustic Metamaterials – reference: N. Gao, Z. Zhang, J. Deng, X. Guo, B. Cheng, H. Hou, Acoustic Metamaterials for Noise Reduction: A Review, Adv. Mater. Technol. n/a (n.d.) 2100698. – year: 2016 ident: bib20 article-title: Acoustic Absorbers and Diffusers : Theory, Design and Application – volume: 205 year: 2023 ident: bib144 article-title: Ventilated acoustic meta-barrier based on layered Helmholtz resonators publication-title: Appl. Acoust. – year: 2016 ident: bib112 article-title: Modeling and design of two-dimensional membrane-type active acoustic metamaterials with tunable anisotropic density publication-title: J. Acoust. Soc. Am. – volume: 106 year: 2015 ident: bib127 article-title: A lightweight yet sound-proof honeycomb acoustic metamaterial publication-title: Appl. Phys. Lett. – volume: 112 year: 2018 ident: bib79 article-title: Acoustic perfect absorption and broadband insulation achieved by double-zero metamaterials publication-title: Appl. Phys. Lett. – volume: 118 year: 2021 ident: bib97 article-title: Manually tunable ventilated metamaterial absorbers publication-title: Appl. Phys. Lett. – year: 2010 ident: bib116 article-title: Broadband vibration control through periodic arrays of resonant shunts: experimental investigation on plates publication-title: Smart Mater. Struct. – year: 2013 ident: bib47 article-title: Metamaterials beyond electromagnetism publication-title: Rep. Prog. Phys. – year: 2015 ident: bib55 article-title: Low frequency noise reduction using poro-elastic acoustic metamaterials publication-title: 21st AIAA/CEAS Aeroacoustics Conf – volume: 129 year: 2021 ident: bib32 article-title: Structural designs, principles, and applications of thin-walled membrane and plate-type acoustic/elastic metamaterials publication-title: J. Appl. Phys. – reference: . – year: 2014 ident: bib120 article-title: Harnessing buckling to design tunable locally resonant acoustic metamaterials publication-title: Phys. Rev. Lett. – volume: 67 start-page: 15 year: 2006 end-page: 27 ident: bib36 article-title: Using a thin actuator as secondary source for hybrid passive/active absorption in an impedance tube publication-title: Appl. Acoust. – volume: 112 year: 2018 ident: bib142 article-title: High-efficiency ventilated metamaterial absorber at low frequency publication-title: Appl. Phys. Lett. – year: 2019 ident: bib74 article-title: Aerogel-based metasurfaces for perfect acoustic energy absorption publication-title: Appl. Phys. Lett. – volume: 159 year: 2020 ident: bib138 article-title: Ventilated acoustic metamaterial window panels for simultaneous noise shielding and air circulation publication-title: Appl. Acoust. – volume: 19 start-page: 68 year: 2019 end-page: 75 ident: bib64 article-title: Acoustic absorption of passive destructive interference cavities publication-title: Mater. Today Commun. – volume: 11 year: 2021 ident: bib80 article-title: Study on broadband low-frequency sound insulation of multi-channel resonator acoustic metamaterials publication-title: AIP Adv. – year: 2016 ident: bib41 article-title: Acoustic metamaterials publication-title: Phys. Today – volume: 99 year: 2019 ident: bib141 article-title: Ultra-open acoustic metamaterial silencer based on Fano-like interference publication-title: Phys. Rev. B – year: 2014 ident: bib14 article-title: Metamaterials-based enhanced energy harvesting: a review publication-title: Phys. B Condens. Matter – volume: 62 start-page: 145 year: 2014 ident: 10.1016/j.buildenv.2024.111250_bib60 article-title: Attenuating open cavity tones by lining its walls with microperforated panels publication-title: Noise Control Eng. J. doi: 10.3397/1/376215 – volume: 67 start-page: 62 year: 2006 ident: 10.1016/j.buildenv.2024.111250_bib61 article-title: Microperforated insertion units: an alternative strategy to design microperforated panels publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2005.05.005 – volume: 14 start-page: 203 year: 2007 ident: 10.1016/j.buildenv.2024.111250_bib23 article-title: Acoustical design and noise control in metro stations: case studies of the ankara metro system publication-title: Build. Acoust. doi: 10.1260/135101007781998910 – year: 2017 ident: 10.1016/j.buildenv.2024.111250_bib70 article-title: Thin structured rigid body for acoustic absorption publication-title: Appl. Phys. Lett. doi: 10.1063/1.4974487 – year: 2014 ident: 10.1016/j.buildenv.2024.111250_bib120 article-title: Harnessing buckling to design tunable locally resonant acoustic metamaterials publication-title: Phys. Rev. Lett. – volume: 109 year: 2011 ident: 10.1016/j.buildenv.2024.111250_bib29 article-title: Membrane-type metamaterials: transmission loss of multi-celled arrays publication-title: J. Appl. Phys. doi: 10.1063/1.3583656 – volume: 17 start-page: 524 year: 2016 ident: 10.1016/j.buildenv.2024.111250_bib156 article-title: Acoustic metamaterials for sound mitigation publication-title: Compt. Rendus Phys. doi: 10.1016/j.crhy.2016.02.002 – volume: 43 year: 2021 ident: 10.1016/j.buildenv.2024.111250_bib129 article-title: Ultraslow medium with an acoustic membrane-like undamped dynamic vibration absorber for low-frequency isolation publication-title: Extrem. Mech. Lett. – volume: 64 start-page: 136 year: 2017 ident: 10.1016/j.buildenv.2024.111250_bib62 article-title: Selective laser sintering of polymer blends: bulk properties and process behavior publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2017.09.039 – volume: 50 start-page: 2877 year: 2022 ident: 10.1016/j.buildenv.2024.111250_bib152 article-title: Modeling and optimizing an acoustic metamaterial to minimize low-frequency structure-borne sound publication-title: Mech. Base. Des. Struct. Mach. doi: 10.1080/15397734.2020.1787842 – volume: 112 year: 2018 ident: 10.1016/j.buildenv.2024.111250_bib140 article-title: Acoustic metamaterial panel for both fluid passage and broadband soundproofing in the audible frequency range publication-title: Appl. Phys. Lett. doi: 10.1063/1.5004605 – volume: 13 start-page: 1650 year: 2023 ident: 10.1016/j.buildenv.2024.111250_bib148 article-title: Noise control in air mechanical ventilation systems with three-dimensional metamaterials publication-title: Appl. Sci. doi: 10.3390/app13031650 – year: 2010 ident: 10.1016/j.buildenv.2024.111250_bib102 article-title: Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials publication-title: J. Appl. Phys. doi: 10.1063/1.3514082 – year: 2016 ident: 10.1016/j.buildenv.2024.111250_bib39 article-title: Experimental investigation on the sound reduction performance of frequency controlled acoustic interference cavities – volume: 147 year: 2020 ident: 10.1016/j.buildenv.2024.111250_bib96 article-title: Broadband low frequency sound absorption using a monostable acoustic metamaterial publication-title: J. Acoust. Soc. Am. doi: 10.1121/10.0000714 – volume: 47 start-page: 4700 year: 2021 ident: 10.1016/j.buildenv.2024.111250_bib1 article-title: A review on latest acoustic noise mitigation materials publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2021.05.600 – year: 2019 ident: 10.1016/j.buildenv.2024.111250_bib51 article-title: The present and future role of acoustic metamaterials for architectural and urban noise mitigations publication-title: Acoustics doi: 10.3390/acoustics1030035 – year: 2013 ident: 10.1016/j.buildenv.2024.111250_bib111 article-title: Tunable band gaps in acoustic metamaterials with periodic arrays of resonant shunted piezos publication-title: Chin. Phys. B – year: 2013 ident: 10.1016/j.buildenv.2024.111250_bib44 – volume: 12 start-page: 34 year: 2009 ident: 10.1016/j.buildenv.2024.111250_bib3 article-title: Phononic crystals and acoustic metamaterials publication-title: Mater. Today doi: 10.1016/S1369-7021(09)70315-3 – volume: 129 year: 2021 ident: 10.1016/j.buildenv.2024.111250_bib32 article-title: Structural designs, principles, and applications of thin-walled membrane and plate-type acoustic/elastic metamaterials publication-title: J. Appl. Phys. doi: 10.1063/5.0042132 – year: 2013 ident: 10.1016/j.buildenv.2024.111250_bib119 article-title: Tunable active acoustic metamaterials publication-title: Phys. Rev. B Condens. Matter doi: 10.1103/PhysRevB.88.024303 – year: 2010 ident: 10.1016/j.buildenv.2024.111250_bib116 article-title: Broadband vibration control through periodic arrays of resonant shunts: experimental investigation on plates publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/19/1/015002 – volume: 51 start-page: 21 year: 2008 ident: 10.1016/j.buildenv.2024.111250_bib22 article-title: The acoustical characteristics of the kocatepe mosque in ankara, Turkey publication-title: Architect. Sci. Rev. doi: 10.3763/asre.2008.5104 – year: 2009 ident: 10.1016/j.buildenv.2024.111250_bib40 article-title: On the negative effective mass density in acoustic metamaterials publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2008.12.007 – year: 2012 ident: 10.1016/j.buildenv.2024.111250_bib110 article-title: Piezoelectric resonator arrays for tunable acoustic waveguides and metamaterials publication-title: J. Appl. Phys. doi: 10.1063/1.4752468 – volume: 333 start-page: 6140 year: 2014 ident: 10.1016/j.buildenv.2024.111250_bib10 article-title: Development of a 3D finite element acoustic model to predict the sound reduction index of stud based double-leaf walls publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2014.06.032 – year: 2017 ident: 10.1016/j.buildenv.2024.111250_bib115 article-title: An investigation of electroelastic bandgap formation in locally resonant piezoelectric metastructures publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aa6671 – volume: 2 year: 2016 ident: 10.1016/j.buildenv.2024.111250_bib7 article-title: Acoustic metamaterials: from local resonances to broad horizons publication-title: Sci. Adv. doi: 10.1126/sciadv.1501595 – volume: 112 year: 2018 ident: 10.1016/j.buildenv.2024.111250_bib79 article-title: Acoustic perfect absorption and broadband insulation achieved by double-zero metamaterials publication-title: Appl. Phys. Lett. – volume: 136 start-page: 969 year: 2014 ident: 10.1016/j.buildenv.2024.111250_bib123 article-title: Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: membrane model publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4892870 – year: 2014 ident: 10.1016/j.buildenv.2024.111250_bib9 article-title: Sound frequency dependent mesh modelling to simulate the acoustic insulation of stud based double-leaf walls – volume: 26 year: 2022 ident: 10.1016/j.buildenv.2024.111250_bib11 article-title: Recent progress in acoustic metamaterials and active piezoelectric acoustic metamaterials - a review publication-title: Appl. Mater. Today – volume: 113 year: 2018 ident: 10.1016/j.buildenv.2024.111250_bib78 article-title: Ultra-thin low frequency perfect sound absorber with high ratio of active area publication-title: Appl. Phys. Lett. doi: 10.1063/1.5063504 – volume: 118 year: 2021 ident: 10.1016/j.buildenv.2024.111250_bib97 article-title: Manually tunable ventilated metamaterial absorbers publication-title: Appl. Phys. Lett. doi: 10.1063/5.0037547 – volume: 14 year: 2012 ident: 10.1016/j.buildenv.2024.111250_bib42 article-title: Effective dynamic constitutive parameters of acoustic metamaterials with random microstructure publication-title: New J. Phys. doi: 10.1088/1367-2630/14/3/033014 – year: 2015 ident: 10.1016/j.buildenv.2024.111250_bib15 article-title: Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials publication-title: Nature doi: 10.1038/nature14678 – year: 2012 ident: 10.1016/j.buildenv.2024.111250_bib49 article-title: Elastic metamaterials with local resonances: an overview publication-title: Theor. Appl. Mech. Lett. doi: 10.1063/2.1204101 – volume: 15 start-page: 311 year: 2008 ident: 10.1016/j.buildenv.2024.111250_bib34 article-title: Review in sound absorbing materials publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-008-9022-1 – volume: 102 year: 2020 ident: 10.1016/j.buildenv.2024.111250_bib63 article-title: Mechanical performance of highly permeable laser melted Ti6Al4V bone scaffolds publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2019.103517 – year: 2019 ident: 10.1016/j.buildenv.2024.111250_bib66 article-title: Computational design of locally resonant acoustic metamaterials publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2018.10.037 – volume: 108 year: 2016 ident: 10.1016/j.buildenv.2024.111250_bib84 article-title: Acoustic metasurface-based perfect absorber with deep subwavelength thickness publication-title: Appl. Phys. Lett. – volume: 4 year: 2014 ident: 10.1016/j.buildenv.2024.111250_bib136 article-title: Air transparent soundproof window publication-title: AIP Adv. doi: 10.1063/1.4902155 – volume: 8 year: 2022 ident: 10.1016/j.buildenv.2024.111250_bib145 article-title: High-efficient and broadband acoustic insulation in a ventilated channel with acoustic metamaterials publication-title: Front. Mech. Eng. doi: 10.3389/fmech.2022.857788 – year: 2019 ident: 10.1016/j.buildenv.2024.111250_bib13 – start-page: 1581 year: 2017 ident: 10.1016/j.buildenv.2024.111250_bib33 article-title: Poro-elastic acoustic meta materials – year: 2017 ident: 10.1016/j.buildenv.2024.111250_bib46 article-title: Static non-reciprocity in mechanical metamaterials publication-title: Nature doi: 10.1038/nature21044 – year: 2019 ident: 10.1016/j.buildenv.2024.111250_bib74 article-title: Aerogel-based metasurfaces for perfect acoustic energy absorption publication-title: Appl. Phys. Lett. doi: 10.1063/1.5109084 – volume: 3 start-page: 1728 year: 2013 ident: 10.1016/j.buildenv.2024.111250_bib90 article-title: Acoustic rainbow trapping publication-title: Sci. Rep. doi: 10.1038/srep01728 – year: 2020 ident: 10.1016/j.buildenv.2024.111250_bib5 – volume: 129 year: 2021 ident: 10.1016/j.buildenv.2024.111250_bib98 article-title: Tunable low-frequency and broadband acoustic metamaterial absorber publication-title: J. Appl. Phys. doi: 10.1063/5.0038940 – volume: 110 year: 2011 ident: 10.1016/j.buildenv.2024.111250_bib124 article-title: Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses publication-title: J. Appl. Phys. doi: 10.1063/1.3665213 – year: 2017 ident: 10.1016/j.buildenv.2024.111250_bib105 article-title: Ultrathin lightweight plate-type acoustic metamaterials with positive lumped coupling resonant publication-title: J. Appl. Phys. – year: 2014 ident: 10.1016/j.buildenv.2024.111250_bib14 article-title: Metamaterials-based enhanced energy harvesting: a review publication-title: Phys. B Condens. Matter doi: 10.1016/j.physb.2013.12.040 – year: 2014 ident: 10.1016/j.buildenv.2024.111250_bib56 article-title: Ultra-broadband absorption by acoustic metamaterials publication-title: Appl. Phys. Lett. doi: 10.1063/1.4904887 – year: 2019 ident: 10.1016/j.buildenv.2024.111250_bib73 article-title: A thin low-frequency broadband metasurface with multi-order sound absorption publication-title: J. Phys. D Appl. Phys. – year: 2010 ident: 10.1016/j.buildenv.2024.111250_bib113 article-title: Multi-cell active acoustic metamaterial with programmable bulk modulus publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X09359434 – year: 2019 ident: 10.1016/j.buildenv.2024.111250_bib72 article-title: Acoustic perfect absorbers via Helmholtz resonators with embedded apertures publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.5087128 – volume: 74 start-page: 485 year: 2013 ident: 10.1016/j.buildenv.2024.111250_bib131 article-title: The low frequency performance of metamaterial barriers based on cellular structures publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2012.09.008 – volume: 67 start-page: 202 year: 2013 ident: 10.1016/j.buildenv.2024.111250_bib100 article-title: Finite element acoustic analysis of a steel stud based double-leaf wall publication-title: Build. Environ. doi: 10.1016/j.buildenv.2013.05.021 – year: 2017 ident: 10.1016/j.buildenv.2024.111250_bib109 article-title: Broadband gradient impedance matching using an acoustic metamaterial for ultrasonic transducers publication-title: Sci. Rep. – year: 2021 ident: 10.1016/j.buildenv.2024.111250_bib18 article-title: Advances in acoustic metamaterials – volume: 3 year: 2012 ident: 10.1016/j.buildenv.2024.111250_bib25 article-title: Dark acoustic metamaterials as super absorbers for low-frequency sound publication-title: Nat. Commun. doi: 10.1038/ncomms1758 – year: 2018 ident: 10.1016/j.buildenv.2024.111250_bib151 article-title: Perspective: acoustic metamaterials in transition publication-title: J. Appl. Phys. – year: 2018 ident: 10.1016/j.buildenv.2024.111250_bib104 article-title: Double negative acoustic metastructure for attenuation of acoustic emissions publication-title: Appl. Phys. Lett. doi: 10.1063/1.5022602 – volume: 108 year: 2016 ident: 10.1016/j.buildenv.2024.111250_bib128 article-title: Membrane-constrained acoustic metamaterials for low frequency sound insulation publication-title: Appl. Phys. Lett. – start-page: 16 year: 2002 ident: 10.1016/j.buildenv.2024.111250_bib28 article-title: 27 - noise and vibration – volume: 30 start-page: 3941 year: 2022 ident: 10.1016/j.buildenv.2024.111250_bib87 article-title: Realization of broadband truly rainbow trapping in gradient-index metamaterials publication-title: Opt Express doi: 10.1364/OE.447874 – volume: 24 year: 2021 ident: 10.1016/j.buildenv.2024.111250_bib21 article-title: Recent progress in acoustic materials and noise control strategies – a review publication-title: Appl. Mater. Today – volume: 11 year: 2021 ident: 10.1016/j.buildenv.2024.111250_bib26 article-title: Control the structure to optimize the performance of sound absorption of acoustic metamaterial: a review publication-title: AIP Adv. doi: 10.1063/5.0042834 – volume: 95 year: 2017 ident: 10.1016/j.buildenv.2024.111250_bib149 article-title: Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.014205 – volume: 183 year: 2021 ident: 10.1016/j.buildenv.2024.111250_bib134 article-title: From mechanics to acoustics: critical assessment of a robust metamaterial for acoustic insulation application publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2021.108311 – ident: 10.1016/j.buildenv.2024.111250_bib93 doi: 10.1002/admt.202100698 – year: 2018 ident: 10.1016/j.buildenv.2024.111250_bib24 article-title: Composite honeycomb metasurface panel for broadband sound absorption publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.5035580 – volume: 67 start-page: 15 year: 2006 ident: 10.1016/j.buildenv.2024.111250_bib36 article-title: Using a thin actuator as secondary source for hybrid passive/active absorption in an impedance tube publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2005.05.001 – year: 2013 ident: 10.1016/j.buildenv.2024.111250_bib47 article-title: Metamaterials beyond electromagnetism publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/76/12/126501 – volume: 6 year: 2021 ident: 10.1016/j.buildenv.2024.111250_bib150 article-title: Acoustic metamaterials: a review of theories, structures, fabrication approaches, and applications publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202000787 – year: 2017 ident: 10.1016/j.buildenv.2024.111250_bib8 – year: 2015 ident: 10.1016/j.buildenv.2024.111250_bib55 article-title: Low frequency noise reduction using poro-elastic acoustic metamaterials – year: 2011 ident: 10.1016/j.buildenv.2024.111250_bib114 article-title: Design of tunable acoustic metamaterials through periodic arrays of resonant shunted piezos publication-title: New J. Phys. doi: 10.1088/1367-2630/13/11/113010 – volume: 260 year: 2021 ident: 10.1016/j.buildenv.2024.111250_bib31 article-title: Sound insulation performance of membrane-type metamaterials combined with pyramidal truss core sandwich structure publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2020.113257 – volume: 112 year: 2012 ident: 10.1016/j.buildenv.2024.111250_bib94 article-title: Experimental characterization of active acoustic metamaterial cell with controllable dynamic density publication-title: J. Appl. Phys. doi: 10.1063/1.4759327 – volume: 4 year: 2019 ident: 10.1016/j.buildenv.2024.111250_bib81 article-title: Active times for acoustic metamaterials publication-title: Rev. Phys. doi: 10.1016/j.revip.2019.100031 – volume: 1 year: 2016 ident: 10.1016/j.buildenv.2024.111250_bib6 article-title: Controlling sound with acoustic metamaterials publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.1 – year: 2014 ident: 10.1016/j.buildenv.2024.111250_bib58 article-title: Acoustic metamaterial panel composed of funnel-shaped cell unit having multi-band negative material properties – volume: 4 start-page: 7038 year: 2014 ident: 10.1016/j.buildenv.2024.111250_bib92 article-title: Acoustic rainbow trapping by coiling up space publication-title: Sci. Rep. doi: 10.1038/srep07038 – volume: 106 year: 2015 ident: 10.1016/j.buildenv.2024.111250_bib127 article-title: A lightweight yet sound-proof honeycomb acoustic metamaterial publication-title: Appl. Phys. Lett. doi: 10.1063/1.4919235 – volume: 99 year: 2019 ident: 10.1016/j.buildenv.2024.111250_bib141 article-title: Ultra-open acoustic metamaterial silencer based on Fano-like interference publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.024302 – year: 2012 ident: 10.1016/j.buildenv.2024.111250_bib4 article-title: Highly tunable acoustic metamaterials based on a resonant tubular array publication-title: Phys. Rev. B Condens. Matter doi: 10.1103/PhysRevB.86.184302 – year: 2017 ident: 10.1016/j.buildenv.2024.111250_bib45 article-title: Dynamic homogenization theory for nonlocal acoustic metamaterials publication-title: Extrem. Mech. Lett. doi: 10.1016/j.eml.2016.10.006 – volume: 5 start-page: 1414 year: 2015 ident: 10.1016/j.buildenv.2024.111250_bib38 article-title: A computationally-efficient numerical model to characterize the noise behavior of metal-framed walls publication-title: Metals doi: 10.3390/met5031414 – volume: 480 year: 2020 ident: 10.1016/j.buildenv.2024.111250_bib88 article-title: Vibration isolation by novel meta-design of pyramid-core lattice sandwich structures publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2020.115377 – year: 2019 ident: 10.1016/j.buildenv.2024.111250_bib2 article-title: Acoustic performance of metallic foams – year: 2007 ident: 10.1016/j.buildenv.2024.111250_bib43 article-title: Dynamic mass density and acoustic metamaterials publication-title: Phys. B Condens. Matter doi: 10.1016/j.physb.2006.12.046 – volume: 159 year: 2020 ident: 10.1016/j.buildenv.2024.111250_bib138 article-title: Ventilated acoustic metamaterial window panels for simultaneous noise shielding and air circulation publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2019.107088 – year: 2018 ident: 10.1016/j.buildenv.2024.111250_bib71 article-title: Broadband compact acoustic absorber with high-efficiency ventilation performance publication-title: Appl. Phys. Lett. – year: 2020 ident: 10.1016/j.buildenv.2024.111250_bib48 article-title: A review of acoustic metamaterials and phononic crystals publication-title: Crystals – volume: 151 start-page: 30 year: 2019 ident: 10.1016/j.buildenv.2024.111250_bib65 article-title: Targeted sound attenuation capacity of 3D printed noise cancelling waveguides publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2019.03.008 – year: 2018 ident: 10.1016/j.buildenv.2024.111250_bib59 article-title: Low frequency wide band sound absorption performance of asymmetric type acoustic metamaterials publication-title: Zhendong Yu Chongji/Journal Vib. Shock. – volume: 39 year: 2020 ident: 10.1016/j.buildenv.2024.111250_bib146 article-title: Ultra-open ventilated metamaterial absorbers for sound-silencing applications in environment with free air flows publication-title: Extrem. Mech. Lett. doi: 10.1016/j.eml.2020.100786 – volume: 40 start-page: 148 year: 1966 ident: 10.1016/j.buildenv.2024.111250_bib153 article-title: Absorption of sound in air versus humidity and temperature publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1910031 – volume: 11 year: 2021 ident: 10.1016/j.buildenv.2024.111250_bib80 article-title: Study on broadband low-frequency sound insulation of multi-channel resonator acoustic metamaterials publication-title: AIP Adv. doi: 10.1063/5.0047416 – volume: 100 year: 2012 ident: 10.1016/j.buildenv.2024.111250_bib86 article-title: Omnidirectional broadband acoustic absorber based on metamaterials publication-title: Appl. Phys. Lett. doi: 10.1063/1.3701611 – year: 2017 ident: 10.1016/j.buildenv.2024.111250_bib118 article-title: Experimental demonstration of one-dimensional active plate-type acoustic metamaterial with adaptive programmable density publication-title: J. Appl. Phys. doi: 10.1063/1.4979020 – volume: 17 start-page: L021003 year: 2022 ident: 10.1016/j.buildenv.2024.111250_bib91 article-title: Programmable rainbow trapping and band-gap enhancement via spatial group-velocity tailoring in elastic metamaterials publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.17.L021003 – year: 2022 ident: 10.1016/j.buildenv.2024.111250_bib155 article-title: The low frequency structure-borne sound problem in multi-storey timber buildings and potential of acoustic metamaterials: a review publication-title: Build. Environ. doi: 10.1016/j.buildenv.2022.109531 – volume: 376 start-page: 1489 year: 2012 ident: 10.1016/j.buildenv.2024.111250_bib122 article-title: Theoretical investigation of the sound attenuation of membrane-type acoustic metamaterials publication-title: Phys. Lett. doi: 10.1016/j.physleta.2012.03.010 – year: 2016 ident: 10.1016/j.buildenv.2024.111250_bib101 article-title: Acoustic metamaterials capable of both sound insulation and energy harvesting publication-title: Smart Mater. Struct. – start-page: 4870 year: 2019 ident: 10.1016/j.buildenv.2024.111250_bib130 article-title: Design of acoustic partitions with thin plate-like acoustic metamaterials – year: 2015 ident: 10.1016/j.buildenv.2024.111250_bib12 – volume: 105 year: 2014 ident: 10.1016/j.buildenv.2024.111250_bib75 article-title: Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators publication-title: Appl. Phys. Lett. doi: 10.1063/1.4895617 – volume: 13 start-page: 873 year: 2014 ident: 10.1016/j.buildenv.2024.111250_bib77 article-title: Acoustic metasurface with hybrid resonances publication-title: Nat. Mater. doi: 10.1038/nmat3994 – year: 2018 ident: 10.1016/j.buildenv.2024.111250_bib117 article-title: A review of tunable acoustic metamaterials publication-title: Appl. Sci. – year: 2016 ident: 10.1016/j.buildenv.2024.111250_bib41 article-title: Acoustic metamaterials publication-title: Phys. Today doi: 10.1063/PT.3.3198 – year: 2018 ident: 10.1016/j.buildenv.2024.111250_bib37 – volume: 141 start-page: 840 year: 2017 ident: 10.1016/j.buildenv.2024.111250_bib95 article-title: Membrane acoustic metamaterial absorbers with magnetic negative stiffness publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4976042 – year: 2018 ident: 10.1016/j.buildenv.2024.111250_bib107 article-title: Plate-type acoustic metamaterial with cavities coupled via an orifice for enhanced sound transmission loss publication-title: Appl. Phys. Lett. doi: 10.1063/1.5019602 – volume: 401 start-page: 190 year: 2017 ident: 10.1016/j.buildenv.2024.111250_bib137 article-title: On the sound insulation of acoustic metasurface using a sub-structuring approach publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2017.04.042 – year: 2017 ident: 10.1016/j.buildenv.2024.111250_bib108 article-title: A comparative study on the acoustic behaviour of free-standing curved and flat single panel screens in an open-plan enclosed environment – ident: 10.1016/j.buildenv.2024.111250_bib67 – volume: 47 year: 2021 ident: 10.1016/j.buildenv.2024.111250_bib17 article-title: Fused deposition modelling: current status, methodology, applications and future prospects publication-title: Addit. Manuf. – year: 2019 ident: 10.1016/j.buildenv.2024.111250_bib69 article-title: Improvement of the sound absorption of flexible micro-perforated panels by local resonances publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.07.046 – year: 2018 ident: 10.1016/j.buildenv.2024.111250_bib76 article-title: Acoustic perfect absorbers via spiral metasurfaces with embedded apertures publication-title: Appl. Phys. Lett. doi: 10.1063/1.5063289 – volume: 1 year: 2016 ident: 10.1016/j.buildenv.2024.111250_bib89 article-title: Planar gradient metamaterials publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.67 – year: 2015 ident: 10.1016/j.buildenv.2024.111250_bib52 article-title: Acoustic metamaterial absorbers based on multilayered sonic crystals publication-title: J. Appl. Phys. doi: 10.1063/1.4915346 – volume: 145 year: 2023 ident: 10.1016/j.buildenv.2024.111250_bib16 article-title: Influence of wire feed speed and torch speed on the mechanical properties of wire arc additively manufactured stainless steel publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4063108 – year: 2016 ident: 10.1016/j.buildenv.2024.111250_bib112 article-title: Modeling and design of two-dimensional membrane-type active acoustic metamaterials with tunable anisotropic density publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4966627 – volume: 149 start-page: 156 year: 2019 ident: 10.1016/j.buildenv.2024.111250_bib132 article-title: Plate-type acoustic metamaterials: evaluation of a large-scale design adopting modularity for customizable acoustical performance publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2019.01.027 – volume: 11 start-page: 5829 year: 2021 ident: 10.1016/j.buildenv.2024.111250_bib99 article-title: Bilayer ventilated labyrinthine metasurfaces with high sound absorption and tunable bandwidth publication-title: Sci. Rep. doi: 10.1038/s41598-021-84986-0 – volume: 114 start-page: 985 year: 2014 ident: 10.1016/j.buildenv.2024.111250_bib125 article-title: Theoretical model and analytical approach for a circular membrane–ring structure of locally resonant acoustic metamaterial publication-title: Appl. Phys. A doi: 10.1007/s00339-013-8047-y – volume: 132 start-page: 2784 year: 2012 ident: 10.1016/j.buildenv.2024.111250_bib126 article-title: Scaling of membrane-type locally resonant acoustic metamaterial arrays publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4744941 – year: 2013 ident: 10.1016/j.buildenv.2024.111250_bib27 – year: 2017 ident: 10.1016/j.buildenv.2024.111250_bib53 article-title: Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound publication-title: Sci. Rep. – ident: 10.1016/j.buildenv.2024.111250_bib30 – volume: 11 start-page: 1423 year: 2003 ident: 10.1016/j.buildenv.2024.111250_bib35 article-title: Application of active noise control to an elevator cabin publication-title: Control Eng. Pract. doi: 10.1016/S0967-0661(03)00077-7 – volume: 111 year: 2017 ident: 10.1016/j.buildenv.2024.111250_bib143 article-title: Omnidirectional ventilated acoustic barrier publication-title: Appl. Phys. Lett. doi: 10.1063/1.4993891 – volume: 205 year: 2023 ident: 10.1016/j.buildenv.2024.111250_bib144 article-title: Ventilated acoustic meta-barrier based on layered Helmholtz resonators publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2023.109263 – year: 2019 ident: 10.1016/j.buildenv.2024.111250_bib54 article-title: Ultrasparse acoustic absorbers enabling fluid flow and visible-light controls publication-title: Phys. Rev. Appl. – year: 2008 ident: 10.1016/j.buildenv.2024.111250_bib19 article-title: Membrane-type acoustic metamaterial with negative dynamic mass publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.204301 – volume: 11 year: 2021 ident: 10.1016/j.buildenv.2024.111250_bib83 article-title: Acoustic behaviour of 3D printed titanium perforated panels publication-title: Results Eng doi: 10.1016/j.rineng.2021.100252 – year: 2007 ident: 10.1016/j.buildenv.2024.111250_bib50 article-title: Method for retrieving effective properties of locally resonant acoustic metamaterials publication-title: Phys. Rev. B Condens. Matter doi: 10.1103/PhysRevB.76.144302 – year: 2018 ident: 10.1016/j.buildenv.2024.111250_bib106 article-title: Bi-layer plate-Type acoustic metamaterials with Willis coupling publication-title: J. Appl. Phys. doi: 10.1063/1.4991426 – volume: 96 year: 2010 ident: 10.1016/j.buildenv.2024.111250_bib121 article-title: Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime publication-title: Appl. Phys. Lett. – volume: 36 start-page: 223 year: 1988 ident: 10.1016/j.buildenv.2024.111250_bib154 article-title: Environmental effects on the speed of sound publication-title: J. Audio Eng. Soc. – year: 2021 ident: 10.1016/j.buildenv.2024.111250_bib82 article-title: Characteristics of acoustic metamaterials – volume: 6 year: 2016 ident: 10.1016/j.buildenv.2024.111250_bib85 article-title: Experimental study on the sound absorption characteristics of continuously graded phononic crystals publication-title: AIP Adv. doi: 10.1063/1.4965923 – year: 2018 ident: 10.1016/j.buildenv.2024.111250_bib57 article-title: Honeycomb locally resonant absorbing acoustic metamaterials with stop band behavior publication-title: Mater. Res. Express doi: 10.1088/2053-1591/aadbe2 – volume: 13 year: 2020 ident: 10.1016/j.buildenv.2024.111250_bib147 article-title: Broadband acoustic ventilation barriers publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.13.044028 – year: 2013 ident: 10.1016/j.buildenv.2024.111250_bib103 article-title: Coupled membranes with doubly negative mass density and bulk modulus publication-title: Phys. Rev. Lett. – volume: 19 start-page: 68 year: 2019 ident: 10.1016/j.buildenv.2024.111250_bib64 article-title: Acoustic absorption of passive destructive interference cavities publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2018.12.012 – volume: 112 year: 2018 ident: 10.1016/j.buildenv.2024.111250_bib142 article-title: High-efficiency ventilated metamaterial absorber at low frequency publication-title: Appl. Phys. Lett. doi: 10.1063/1.5025114 – volume: 273 year: 2021 ident: 10.1016/j.buildenv.2024.111250_bib133 article-title: Sound insulation performance of sandwich structure compounded with a resonant acoustic metamaterial publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2021.114312 – volume: 46 year: 2021 ident: 10.1016/j.buildenv.2024.111250_bib139 article-title: Ventilated metamaterials for broadband sound insulation and tunable transmission at low frequency publication-title: Extrem. Mech. Lett. doi: 10.1016/j.eml.2021.101348 – year: 2016 ident: 10.1016/j.buildenv.2024.111250_bib20 – year: 2019 ident: 10.1016/j.buildenv.2024.111250_bib68 article-title: Synergetic coupling large-scale plate-type acoustic metamaterial panel for broadband sound insulation publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2019.114867 – volume: 37 start-page: 471 year: 2002 ident: 10.1016/j.buildenv.2024.111250_bib135 article-title: Noise control strategies for naturally ventilated buildings publication-title: Build. Environ. doi: 10.1016/S0360-1323(01)00047-6 |
| SSID | ssj0016934 |
| Score | 2.664323 |
| SecondaryResourceType | review_article |
| Snippet | Despite the emergence of acoustic metamaterials with superior sound absorption and transmission loss, their adoption for building sound insulation has been... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 111250 |
| SubjectTerms | Acoustic metamaterials Building design Sound insulation Sound reduction Ventilation |
| Title | Acoustic metamaterials for sound absorption and insulation in buildings |
| URI | https://dx.doi.org/10.1016/j.buildenv.2024.111250 |
| Volume | 251 |
| WOSCitedRecordID | wos001171412100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-684X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016934 issn: 0360-1323 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECUap4f0UHRFk7QFD70VcmVtFI9q4W6HoIe08E0YLkJqJLIh2UE-P8NFi9ugSQ69CAIhkqLmefxIDucR8k6HgJOumQpkomSQKA0BILEOZsBDyGZaVxFYsQl2cpIvFvyH3zFtrZwAq-v86oqv_6upsQyNbY7O3sPcfaNYgPdodLyi2fF6J8MXcmUVuow4NCAfdX3acMLWaCi9B9GuGucpXOql1kt4mbUP4WWy253dXl9onx8djRvQstx6neOi2fZw-wjNaruBpQ0YKM4uQA3bO8Ops3Ew8C-DQfs0NB4vfkUiSoaQrP4kVhjgLDcee9nI55V1fhI9bOQSzv7lwt1qwnJqx4tDmpoupkOF3ZzZf_yX9RGGXfDasuzaKU07pWtnj-xHLOXoBfeLb_PF937fKeOxTzjmRjA6U37zG91MZ0YU5fQJeeznFrRwmHhKHuj6GXk0yjj5nHzp0EF30EERHdSigw7ooGhtOqADb2mPjhfk5-f56aevgdfSwB9hlG0CyGTF85gJSEQuWJhoiBUOUKokzqTOKi1UBcjmZmbNABjXSS6RLKsK-SVL0vglmdSrWr8itIozEeo8hRDn7orHeRWJCmmh0BmTLEwPSdp9klL6RPNG7-S8_LdRDsmHvt7apVq5tQbvvnjpCaMjgiWC6Za6R_fu7ZgcDGh_TSabZqvfkIfycvO7bd56JF0D0gWTBQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acoustic+metamaterials+for+sound+absorption+and+insulation+in+buildings&rft.jtitle=Building+and+environment&rft.au=Arjunan%2C+Arun&rft.au=Baroutaji%2C+Ahmad&rft.au=Robinson%2C+John&rft.au=Vance%2C+Aaron&rft.date=2024-03-01&rft.issn=0360-1323&rft.volume=251&rft.spage=111250&rft_id=info:doi/10.1016%2Fj.buildenv.2024.111250&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_buildenv_2024_111250 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon |