Acoustic metamaterials for sound absorption and insulation in buildings

Despite the emergence of acoustic metamaterials with superior sound absorption and transmission loss, their adoption for building sound insulation has been limited. Sound insulation design in buildings is still informed by the acoustic performance of conventional materials, where the mass law contra...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Building and environment Ročník 251; s. 111250
Hlavní autoři: Arjunan, Arun, Baroutaji, Ahmad, Robinson, John, Vance, Aaron, Arafat, Abul
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.03.2024
Témata:
ISSN:0360-1323, 1873-684X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Despite the emergence of acoustic metamaterials with superior sound absorption and transmission loss, their adoption for building sound insulation has been limited. Sound insulation design in buildings is still informed by the acoustic performance of conventional materials, where the mass law contradicts light weighting when it comes to acoustic design. In any case buildings close to noisy environments such as motorways, railway lines and airports still suffer from significant low frequency noise pollution. Although the limited working bandwidth of acoustic metamaterials is a major issue limiting its application, combining meta-units that interact at various frequencies alongside multi-layer conventional solutions can deliver superior sound insulation in buildings. The review put forwards acoustic metamaterials, specifically emphasising superior sound absorption and transmission/insertion loss as critical properties for effective building sound insulation. The paper reveals a variety of acoustic metamaterials that can be adopted to compliment conventional sound insulation approaches for acoustically efficient building design. The performance of these metamaterials is then explained through their characteristic negative mass density, bulk modulus or repeating or locally resonating microstructure. The review is also extended to air transparent acoustic metamaterials that can be used for sound insulation of building ventilation. Lastly the prospects and challenges regarding the adoption of acoustic metamaterials in building insulation are also discussed. Overall, tuneable, and multifunctional acoustic metamaterials when thoughtfully integrated to building sound insulation can lead to significant acoustic comfort, space-saving and light-weighting.
AbstractList Despite the emergence of acoustic metamaterials with superior sound absorption and transmission loss, their adoption for building sound insulation has been limited. Sound insulation design in buildings is still informed by the acoustic performance of conventional materials, where the mass law contradicts light weighting when it comes to acoustic design. In any case buildings close to noisy environments such as motorways, railway lines and airports still suffer from significant low frequency noise pollution. Although the limited working bandwidth of acoustic metamaterials is a major issue limiting its application, combining meta-units that interact at various frequencies alongside multi-layer conventional solutions can deliver superior sound insulation in buildings. The review put forwards acoustic metamaterials, specifically emphasising superior sound absorption and transmission/insertion loss as critical properties for effective building sound insulation. The paper reveals a variety of acoustic metamaterials that can be adopted to compliment conventional sound insulation approaches for acoustically efficient building design. The performance of these metamaterials is then explained through their characteristic negative mass density, bulk modulus or repeating or locally resonating microstructure. The review is also extended to air transparent acoustic metamaterials that can be used for sound insulation of building ventilation. Lastly the prospects and challenges regarding the adoption of acoustic metamaterials in building insulation are also discussed. Overall, tuneable, and multifunctional acoustic metamaterials when thoughtfully integrated to building sound insulation can lead to significant acoustic comfort, space-saving and light-weighting.
ArticleNumber 111250
Author Vance, Aaron
Arafat, Abul
Baroutaji, Ahmad
Arjunan, Arun
Robinson, John
Author_xml – sequence: 1
  givenname: Arun
  orcidid: 0000-0001-5493-0957
  surname: Arjunan
  fullname: Arjunan, Arun
  email: a.arjunan@wlv.ac.uk
  organization: Additive Manufacturing of Functional Materials Research Group, Centre for Engineering Innovation and Research, University of Wolverhampton, Telford Innovation Campus, Telford, TF2 9NT, United Kingdom
– sequence: 2
  givenname: Ahmad
  surname: Baroutaji
  fullname: Baroutaji, Ahmad
  organization: School of Engineering and Technology, Aston University, Aston St, Birmingham, B4 7ET, United Kingdom
– sequence: 3
  givenname: John
  surname: Robinson
  fullname: Robinson, John
  organization: Additive Manufacturing of Functional Materials Research Group, Centre for Engineering Innovation and Research, University of Wolverhampton, Telford Innovation Campus, Telford, TF2 9NT, United Kingdom
– sequence: 4
  givenname: Aaron
  surname: Vance
  fullname: Vance, Aaron
  organization: Additive Manufacturing of Functional Materials Research Group, Centre for Engineering Innovation and Research, University of Wolverhampton, Telford Innovation Campus, Telford, TF2 9NT, United Kingdom
– sequence: 5
  givenname: Abul
  surname: Arafat
  fullname: Arafat, Abul
  organization: Additive Manufacturing of Functional Materials Research Group, Centre for Engineering Innovation and Research, University of Wolverhampton, Telford Innovation Campus, Telford, TF2 9NT, United Kingdom
BookMark eNqFkM1KAzEURoNUsFZfQeYFZszfZKbgwlK0CgU3Cu5CJrmRlGlSkkzBt3fa6sZNV5dvcb5777lGEx88IHRHcEUwEfebqhtcb8DvK4oprwghtMYXaErahpWi5Z8TNMVM4JIwyq7QdUobPIJzxqdotdBhSNnpYgtZbVWG6FSfChtikcLgTaG6FOIuu-ALNUbn09CrY3S-OG52_ivdoEs7cnD7O2fo4_npfflSrt9Wr8vFutScilwqoe28ZU2neNd2DeagmBmv0oYzoUFY6IxVnNQEt7RWzRx4q6ngxpKmbnjNZujh1KtjSCmCldrl4zk5KtdLguVBitzIPynyIEWepIy4-Ifvotuq-H0efDyBMD63dxBl0g68BuMi6CxNcOcqfgB-5oQF
CitedBy_id crossref_primary_10_1016_j_device_2025_100756
crossref_primary_10_1016_j_ijmecsci_2024_109752
crossref_primary_10_1016_j_jclepro_2025_145857
crossref_primary_10_1016_j_mssp_2025_109769
crossref_primary_10_1063_5_0241278
crossref_primary_10_1016_j_ijmecsci_2025_110863
crossref_primary_10_1038_s41598_025_02385_1
crossref_primary_10_1016_j_ijmecsci_2025_110184
crossref_primary_10_1016_j_jobe_2025_113370
crossref_primary_10_1016_j_rineng_2025_107367
crossref_primary_10_1016_j_conbuildmat_2024_139316
crossref_primary_10_3390_ma18061199
crossref_primary_10_1063_5_0202598
crossref_primary_10_1016_j_ijmecsci_2025_110056
crossref_primary_10_1016_j_cma_2025_118169
crossref_primary_10_1250_ast_e24_110
crossref_primary_10_1007_s00170_025_16238_8
crossref_primary_10_1016_j_compstruct_2024_118555
crossref_primary_10_1016_j_apacoust_2025_110633
crossref_primary_10_1016_j_ijmecsci_2025_110175
crossref_primary_10_1002_adem_202402270
crossref_primary_10_1360_TB_2024_0715
crossref_primary_10_1007_s10163_025_02250_3
crossref_primary_10_1016_j_ymssp_2025_113046
crossref_primary_10_1016_j_ijmecsci_2025_110203
crossref_primary_10_1016_j_buildenv_2024_111858
crossref_primary_10_1016_j_ijmecsci_2025_110044
crossref_primary_10_1016_j_jobe_2024_111209
crossref_primary_10_1016_j_apmt_2025_102709
crossref_primary_10_1016_j_tws_2025_113875
crossref_primary_10_3390_en18143878
crossref_primary_10_1016_j_conbuildmat_2025_141648
crossref_primary_10_1515_polyeng_2024_0211
crossref_primary_10_1016_j_buildenv_2025_113550
crossref_primary_10_1016_j_cemconcomp_2025_106116
crossref_primary_10_1016_j_uclim_2024_101967
crossref_primary_10_1016_j_apacoust_2025_110890
crossref_primary_10_3390_cryst14110957
crossref_primary_10_1016_j_ijmecsci_2025_110837
crossref_primary_10_1016_j_conbuildmat_2024_139145
crossref_primary_10_1063_5_0280528
crossref_primary_10_1108_CI_09_2024_0270
crossref_primary_10_1002_adem_202402529
crossref_primary_10_3390_ma18153652
crossref_primary_10_1080_17452759_2024_2425386
crossref_primary_10_1016_j_cossms_2025_101218
crossref_primary_10_1016_j_ijmecsci_2024_109713
crossref_primary_10_1063_5_0256329
crossref_primary_10_1016_j_euromechsol_2025_105685
crossref_primary_10_1039_D5RA03316K
crossref_primary_10_1016_j_tws_2025_113613
crossref_primary_10_1002_adem_202402910
crossref_primary_10_3390_architecture5040085
crossref_primary_10_1016_j_cej_2025_168465
crossref_primary_10_1007_s11012_025_01966_8
crossref_primary_10_1016_j_conbuildmat_2025_141308
crossref_primary_10_1186_s40580_024_00445_2
crossref_primary_10_1016_j_matdes_2025_113729
crossref_primary_10_1016_j_compscitech_2024_110765
crossref_primary_10_1016_j_physleta_2024_129779
crossref_primary_10_1007_s42417_025_01849_y
crossref_primary_10_1080_17480272_2025_2453013
crossref_primary_10_1007_s44285_025_00043_6
crossref_primary_10_1038_s44172_025_00470_x
crossref_primary_10_3390_acoustics7030051
crossref_primary_10_1016_j_sna_2025_116554
crossref_primary_10_1021_acsomega_5c02267
crossref_primary_10_3390_cryst15040374
crossref_primary_10_1016_j_ijbiomac_2025_147701
crossref_primary_10_3390_cryst15080676
crossref_primary_10_1016_j_ymssp_2025_113002
crossref_primary_10_1016_j_jobe_2024_111642
crossref_primary_10_1016_j_fbio_2024_105577
crossref_primary_10_1016_j_buildenv_2025_112550
crossref_primary_10_1016_j_jobe_2025_111926
crossref_primary_10_1108_PM_12_2024_0126
crossref_primary_10_1250_ast_e25_02
crossref_primary_10_1016_j_apacoust_2024_110387
crossref_primary_10_1061_JCEMD4_COENG_16374
crossref_primary_10_1016_j_apacoust_2024_110388
crossref_primary_10_3390_ma18112562
crossref_primary_10_1016_j_istruc_2024_107114
crossref_primary_10_1016_j_tws_2025_113678
crossref_primary_10_1016_j_jmst_2025_04_024
crossref_primary_10_3390_acoustics6040059
crossref_primary_10_1016_j_tws_2024_112860
crossref_primary_10_1007_s42452_025_06505_4
crossref_primary_10_1016_j_ijmecsci_2024_109220
crossref_primary_10_1007_s40799_024_00755_4
crossref_primary_10_1016_j_jobe_2024_111238
crossref_primary_10_1016_j_sna_2025_116937
crossref_primary_10_3390_eng6090223
crossref_primary_10_1016_j_buildenv_2025_112780
crossref_primary_10_1088_1361_6463_add7e6
crossref_primary_10_1002_adfm_202508243
crossref_primary_10_1007_s12647_025_00815_z
crossref_primary_10_1016_j_porgcoat_2025_109275
crossref_primary_10_1007_s00107_024_02135_6
crossref_primary_10_3390_buildings14123799
crossref_primary_10_1016_j_buildenv_2025_112545
crossref_primary_10_3390_pr12112582
crossref_primary_10_1016_j_tws_2025_113717
crossref_primary_10_1016_j_ymssp_2025_112453
Cites_doi 10.3397/1/376215
10.1016/j.apacoust.2005.05.005
10.1260/135101007781998910
10.1063/1.4974487
10.1063/1.3583656
10.1016/j.crhy.2016.02.002
10.1016/j.polymertesting.2017.09.039
10.1080/15397734.2020.1787842
10.1063/1.5004605
10.3390/app13031650
10.1063/1.3514082
10.1121/10.0000714
10.1016/j.matpr.2021.05.600
10.3390/acoustics1030035
10.1016/S1369-7021(09)70315-3
10.1063/5.0042132
10.1103/PhysRevB.88.024303
10.1088/0964-1726/19/1/015002
10.3763/asre.2008.5104
10.1016/j.ijengsci.2008.12.007
10.1063/1.4752468
10.1016/j.jsv.2014.06.032
10.1088/1361-665X/aa6671
10.1126/sciadv.1501595
10.1121/1.4892870
10.1063/1.5063504
10.1063/5.0037547
10.1088/1367-2630/14/3/033014
10.1038/nature14678
10.1063/2.1204101
10.1007/s11831-008-9022-1
10.1016/j.jmbbm.2019.103517
10.1016/j.cma.2018.10.037
10.1063/1.4902155
10.3389/fmech.2022.857788
10.1038/nature21044
10.1063/1.5109084
10.1038/srep01728
10.1063/5.0038940
10.1063/1.3665213
10.1016/j.physb.2013.12.040
10.1063/1.4904887
10.1177/1045389X09359434
10.1121/1.5087128
10.1016/j.apacoust.2012.09.008
10.1016/j.buildenv.2013.05.021
10.1038/ncomms1758
10.1063/1.5022602
10.1364/OE.447874
10.1063/5.0042834
10.1103/PhysRevB.95.014205
10.1016/j.apacoust.2021.108311
10.1002/admt.202100698
10.1121/1.5035580
10.1016/j.apacoust.2005.05.001
10.1088/0034-4885/76/12/126501
10.1002/admt.202000787
10.1088/1367-2630/13/11/113010
10.1016/j.compstruct.2020.113257
10.1063/1.4759327
10.1016/j.revip.2019.100031
10.1038/natrevmats.2016.1
10.1038/srep07038
10.1063/1.4919235
10.1103/PhysRevB.99.024302
10.1103/PhysRevB.86.184302
10.1016/j.eml.2016.10.006
10.3390/met5031414
10.1016/j.jsv.2020.115377
10.1016/j.physb.2006.12.046
10.1016/j.apacoust.2019.107088
10.1016/j.apacoust.2019.03.008
10.1016/j.eml.2020.100786
10.1121/1.1910031
10.1063/5.0047416
10.1063/1.3701611
10.1063/1.4979020
10.1103/PhysRevApplied.17.L021003
10.1016/j.buildenv.2022.109531
10.1016/j.physleta.2012.03.010
10.1063/1.4895617
10.1038/nmat3994
10.1063/PT.3.3198
10.1121/1.4976042
10.1063/1.5019602
10.1016/j.jsv.2017.04.042
10.1016/j.ymssp.2018.07.046
10.1063/1.5063289
10.1038/natrevmats.2016.67
10.1063/1.4915346
10.1115/1.4063108
10.1121/1.4966627
10.1016/j.apacoust.2019.01.027
10.1038/s41598-021-84986-0
10.1007/s00339-013-8047-y
10.1121/1.4744941
10.1016/S0967-0661(03)00077-7
10.1063/1.4993891
10.1016/j.apacoust.2023.109263
10.1103/PhysRevLett.101.204301
10.1016/j.rineng.2021.100252
10.1103/PhysRevB.76.144302
10.1063/1.4991426
10.1063/1.4965923
10.1088/2053-1591/aadbe2
10.1103/PhysRevApplied.13.044028
10.1016/j.mtcomm.2018.12.012
10.1063/1.5025114
10.1016/j.compstruct.2021.114312
10.1016/j.eml.2021.101348
10.1016/j.jsv.2019.114867
10.1016/S0360-1323(01)00047-6
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.buildenv.2024.111250
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-684X
ExternalDocumentID 10_1016_j_buildenv_2024_111250
S0360132324000921
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SAC
SET
VH1
WUQ
ZMT
~HD
ID FETCH-LOGICAL-c426t-a6cf9837ba4b8b704ea3d323cd436ce6febdfa41510825a79e48c264df1757453
ISICitedReferencesCount 115
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001171412100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-1323
IngestDate Sat Nov 29 07:24:37 EST 2025
Tue Nov 18 22:18:28 EST 2025
Sat Apr 13 16:38:01 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Ventilation
Sound reduction
Sound insulation
Acoustic metamaterials
Building design
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c426t-a6cf9837ba4b8b704ea3d323cd436ce6febdfa41510825a79e48c264df1757453
ORCID 0000-0001-5493-0957
OpenAccessLink https://dx.doi.org/10.1016/j.buildenv.2024.111250
ParticipantIDs crossref_citationtrail_10_1016_j_buildenv_2024_111250
crossref_primary_10_1016_j_buildenv_2024_111250
elsevier_sciencedirect_doi_10_1016_j_buildenv_2024_111250
PublicationCentury 2000
PublicationDate 2024-03-01
2024-03-00
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Building and environment
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhu, Chen, Zhu, Garcia-Vidal, Yin, Zhang, Zhang (bib90) 2013; 3
Yang, Ma, Yang, Sheng (bib103) 2013
Zhang, Zhu, Liang, Yang, Yang, Cheng (bib143) 2017; 111
Chen, Wen, Wang, Sen Wen (bib111) 2013
Varanasi, Bolton, Siegmund, Cipra (bib131) 2013; 74
Sugino, Leadenham, Ruzzene, Erturk (bib115) 2017
Cummer, Christensen, Alù (bib6) 2016; 1
Ma, Sheng (bib7) 2016; 2
Cano-Vicent, Tambuwala, Hassan, Barh, Aljabali, Birkett, Arjunan, Serrano-Aroca (bib17) 2021; 47
Cho, Kim, Min, Kang, Park (bib58) 2014
Allam, Elsabbagh, Akl (bib112) 2016
Davies (bib28) 2002
Chen, Huang, Zhou, Hu, Sun (bib123) 2014; 136
Sun, Fang, Mao, Wang, Li (bib147) 2020; 13
Slagle, Fuller (bib55) 2015
Cuesta, Cobo, Fernández, Pfretzschner (bib36) 2006; 67
Ma, Huang, Wu (bib105) 2017
Liu, Guo, Wang (bib48) 2020
Lee, Jung, Lee (bib4) 2012
Naify, Chang, McKnight, Nutt (bib102) 2010
N. Gao, Z. Zhang, J. Deng, X. Guo, B. Cheng, H. Hou, Acoustic Metamaterials for Noise Reduction: A Review, Adv. Mater. Technol. n/a (n.d.) 2100698.
Naify, Chang, McKnight, Nutt (bib126) 2012; 132
Wu, Au-Yeung, Li, Roberts, Tian, Hu, Huang, Wang, Yang, Wen (bib142) 2018; 112
Sü, Çalışkan (bib23) 2007; 14
Chen, Fan, Fu, Wu, Jin, Zheng, Zhang (bib117) 2018
.
Steiger (bib27) 2013
Romero-Garcia, Hladky-Hennion (bib13) 2019
Climente, Torrent, Sánchez-Dehesa (bib86) 2012; 100
(accessed August 31, 2022).
Caleap, Drinkwater, Wilcox (bib42) 2012; 14
Peng, Ji, Jing (bib24) 2018
Sui, Yan, Huang, Xu, Yuan, Jing (bib127) 2015; 106
Terrenoir, Lartigau, Arjunan, Laguna Salvado, Merlo (bib16) 2023; 145
Starkey, Smith, Hibbins, Sambles, Rance (bib70) 2017
Li, Xing, Zhao, Gai (bib96) 2020; 147
Tian, Wang, Zhou (bib125) 2014; 114
Xu, Meng, Chen, Yang, Liang, Cheng (bib98) 2021; 129
Li, Ma, Wang, Li, Zhang (bib88) 2020; 480
Ghaffarivardavagh, Nikolajczyk, Anderson, Zhang (bib141) 2019; 99
Arjunan, Wang, English, Stanford, Lister (bib38) 2015; 5
Pfretzschner, Cobo, Simón, Cuesta, Fernández (bib61) 2006; 67
Wang, Zhao, Luo, Huang (bib128) 2016; 108
Arjunan, Baroutaji, Praveen, Olabi, Wang (bib2) 2019
Organization (bib37) 2018
Sagartzazu, Hervella-Nieto, Pagalday (bib34) 2008; 15
Fernández-Marín, Jiménez, Groby, Sánchez-Dehesa, Romero-García (bib74) 2019
Allam, Elsabbagh, Akl (bib118) 2017
Tao, Ren, Zhang, Peijs (bib21) 2021; 24
Ebrahimi-Nejad, Kheybari (bib57) 2018
Sheng, Mei, Liu, Wen (bib43) 2007
Wu, Yang, Sheng (bib151) 2018
Li, Zhou, Huang, Hu (bib101) 2016
Huang, Sun, Huang (bib40) 2009
H. Xie, Y. Lyu, Sound absorption characteristics of the perforated panel resonator with tube bundles, 21st Int. Congr. Sound Vib. (2014), Volume 1, pp. 5010, ICSV 2014, 2014.
Casadei, Ruzzene, Dozio, Cunefare (bib116) 2010
Ma, Huang, Xu, Wu (bib106) 2018
Fedotov (bib8) 2017
Arjunan, Baroutaji, Robinson, Wang (bib82) 2021
Xu, Xiao, He, Wang, Shen, Hong, Luo, He (bib87) 2022; 30
Xu, Fu, Chen (bib89) 2016; 1
Roca, Yago, Cante, Lloberas-Valls, Oliver (bib66) 2019
Aurégan (bib78) 2018; 113
Hussein, Frazier (bib44) 2013
Trematerra, Bevilacqua, Iannace (bib148) 2023; 13
Lu, Feng, Chen (bib3) 2009; 12
Yang, Mei, Yang, Chan, Sheng (bib19) 2008
Jiang, Liang, Li, Zou, Yin, Cheng (bib56) 2014
Coulais, Sounas, Alù (bib46) 2017
Kumar, Lee (bib51) 2019
Naify, Chang, McKnight, Scheulen, Nutt (bib29) 2011; 109
Langfeldt, Gleine (bib130) 2019
Landaluze, Portilla, Pagalday, Martínez, Reyero (bib35) 2003; 11
Ma, Yang, Xiao, Yang, Sheng (bib77) 2014; 13
Zhao, Li, Wang, Wang, Zhang, Gai (bib95) 2017; 141
Chen, Guo, Yang, Cheng (bib14) 2014
Arjunan (bib64) 2019; 19
Xiang, Tian, Huang, Wu, Wen (bib97) 2021; 118
Arjunan, Wang, Yahiaoui, Mynors, Morgan, English (bib100) 2013; 67
Jung, Kim, Lee (bib140) 2018; 112
Ji, Huber (bib11) 2022; 26
Arjunan, Foteinou (bib108) 2017
Airoldi, Ruzzene (bib114) 2011
Bohn (bib154) 1988; 36
Tang, Ren, Meng, Xin, Huang, Chen, Zhang, Lu (bib53) 2017
Huang, Fang, Wang, Assouar, Cheng, Li (bib76) 2018
Akl, Baz (bib113) 2010
Fuller, Mathur (bib33) 2017
Akl, Baz (bib94) 2012; 112
Li, Assouar (bib84) 2016; 108
Fokin, Ambati, Sun, Zhang (bib50) 2007
Analytic Modeling of Sound Transmission through Membrane-Type Acoustic Metamaterials – M.C. Gill Composites Center, (n.d.).
Cai, Guo, Hu, Yang (bib75) 2014; 105
Lin, Lin, Wang, Di (bib133) 2021; 273
Ma, Wang, Liu, Wu (bib32) 2021; 129
De Salis, Oldham, Sharples (bib135) 2002; 37
Li, Yang, Liu, Yu, Lu, Zhu, Zhang, Zhu, Guo, Wu, Wang, Chen (bib109) 2017
Mei, Ma, Yang, Yang, Wen, Sheng (bib25) 2012; 3
Greiner, Wudy, Lanzl, Drummer (bib62) 2017; 64
Popa, Zigoneanu, Cummer (bib119) 2013
Jiménez, Romero-García, Pagneux, Groby (bib149) 2017; 95
Du, Wu, Chen, Lin, Chi (bib26) 2021; 11
Lee, Nomura, Dede, Iizuka (bib54) 2019
Kaina, Lemoult, Fink, Lerosey (bib15) 2015
Arjunan, Rackley, Stanford (bib39) 2016
Casadei, Delpero, Bergamini, Ermanni, Ruzzene (bib110) 2012
Liao, Luan, Wang, Liu, Yao, Fu (bib150) 2021; 6
Gibson, Nguyen, Sinaie, Heath, Ngo (bib155) 2022
Kumar, Xiang, Lee (bib138) 2020; 159
Ortiz, Gonzalez, Cobo, Montero de Espinosa (bib60) 2014; 62
Haberman, Guild (bib41) 2016
Zhou, Liu, Hu (bib49) 2012
Arjunan, Demetriou, Baroutaji, Wang (bib63) 2020; 102
Li, Zheng, Zhong, Yang, Liang, Cheng (bib71) 2018
Alshaqaq, Sugino, Erturk (bib91) 2022; 17
Jin Park, Kwak, Song (bib129) 2021; 43
Arjunan, Wang, Yahiaoui, Mynors, Morgan, Nguyen, English (bib9) 2014
Xiao, Gao, Wang, He, Wu (bib139) 2021; 46
Wang, Chen, Zhou, Chen, Ma (bib68) 2019
Yang, Dai, Chan, Ma, Sheng (bib121) 2010; 96
Ren, Van Belle, Claeys, Xin, Lu, Deckers, Desmet (bib69) 2019
Ang, Koh, Lee (bib107) 2018
Niu, Wu (bib59) 2018
Gazzola, Caverni, Corigliano (bib134) 2021; 183
Wang, Ma (bib31) 2021; 260
Arjunan (bib65) 2019; 151
Zhang, Qu, He, Lu (bib85) 2016; 6
Jagodzinski, Miksch, Aumann, Müller (bib152) 2022; 50
Arjunan, Baroutaji, Latif (bib83) 2021; 11
Ni, Wu, Chen, Zheng, Xu, Nayar, Liu, Lu, Chen (bib92) 2014; 4
Ang, Koh, Lee (bib132) 2019; 149
Harris (bib153) 1966; 40
Cox, D'Antonio (bib20) 2016
Zhang, Wen, Xiao, Wen, Wang (bib122) 2012; 376
Ponge, Poncelet, Torrent (bib45) 2017
Kadic, Bückmann, Schittny, Wegener (bib47) 2013
Huang, Fang, Wang, Assouar, Cheng, Li (bib72) 2019
Su, Zhu, Gao, Luo, Zhang (bib145) 2022; 8
Kim, Lee (bib136) 2014; 4
Kumar, Bhushan, Prakash, Bhattacharya (bib104) 2018
Liu, Wu, Chen, Ma (bib73) 2019
Pai, Huang, of (bib12) 2015
Kishore, Sujithra, Dhatreyi (bib1) 2021; 47
Arjunan, Baroutaji, Robinson (bib18) 2021
Zhang, Qu, Wang (bib5) 2020
Assouar, Oudich, Zhou (bib156) 2016; 17
Yu, Lu, Cheng, Cui (bib137) 2017; 401
Xiang, Wu, Li, Wu, He, Mu, Wang, Huang, Wen (bib146) 2020; 39
Guild, García-Chocano, Kan, Sánchez-Dehesa (bib52) 2015
Crivoi, Du, Fan (bib144) 2023; 205
Xu, Guo, Chen, Dong, Ye, Wang (bib80) 2021; 11
Arjunan, Wang, Yahiaoui, Mynors, Morgan, Nguyen, English (bib10) 2014; 333
Du, Luo, Zhao, Sun, Song, Hu (bib99) 2021; 11
Zangeneh-Nejad, Fleury (bib81) 2019; 4
Sü, Yilmazer (bib22) 2008; 51
Wang, Casadei, Shan, Weaver, Bertoldi (bib120) 2014
Naify, Chang, McKnight, Nutt (bib124) 2011; 110
Wang, Luo, Zhao, Huang (bib79) 2018; 112
Ma (10.1016/j.buildenv.2024.111250_bib77) 2014; 13
Landaluze (10.1016/j.buildenv.2024.111250_bib35) 2003; 11
Ponge (10.1016/j.buildenv.2024.111250_bib45) 2017
Naify (10.1016/j.buildenv.2024.111250_bib124) 2011; 110
Romero-Garcia (10.1016/j.buildenv.2024.111250_bib13) 2019
Caleap (10.1016/j.buildenv.2024.111250_bib42) 2012; 14
Cummer (10.1016/j.buildenv.2024.111250_bib6) 2016; 1
Yang (10.1016/j.buildenv.2024.111250_bib19) 2008
Pai (10.1016/j.buildenv.2024.111250_bib12) 2015
Terrenoir (10.1016/j.buildenv.2024.111250_bib16) 2023; 145
Ren (10.1016/j.buildenv.2024.111250_bib69) 2019
10.1016/j.buildenv.2024.111250_bib67
Liao (10.1016/j.buildenv.2024.111250_bib150) 2021; 6
Xiao (10.1016/j.buildenv.2024.111250_bib139) 2021; 46
Bohn (10.1016/j.buildenv.2024.111250_bib154) 1988; 36
Organization (10.1016/j.buildenv.2024.111250_bib37) 2018
Liu (10.1016/j.buildenv.2024.111250_bib73) 2019
Li (10.1016/j.buildenv.2024.111250_bib101) 2016
Zhou (10.1016/j.buildenv.2024.111250_bib49) 2012
Zhu (10.1016/j.buildenv.2024.111250_bib90) 2013; 3
Ang (10.1016/j.buildenv.2024.111250_bib132) 2019; 149
Starkey (10.1016/j.buildenv.2024.111250_bib70) 2017
Su (10.1016/j.buildenv.2024.111250_bib145) 2022; 8
Ma (10.1016/j.buildenv.2024.111250_bib7) 2016; 2
Li (10.1016/j.buildenv.2024.111250_bib109) 2017
Varanasi (10.1016/j.buildenv.2024.111250_bib131) 2013; 74
Jagodzinski (10.1016/j.buildenv.2024.111250_bib152) 2022; 50
Liu (10.1016/j.buildenv.2024.111250_bib48) 2020
Sui (10.1016/j.buildenv.2024.111250_bib127) 2015; 106
Arjunan (10.1016/j.buildenv.2024.111250_bib39) 2016
Chen (10.1016/j.buildenv.2024.111250_bib117) 2018
Alshaqaq (10.1016/j.buildenv.2024.111250_bib91) 2022; 17
Coulais (10.1016/j.buildenv.2024.111250_bib46) 2017
Allam (10.1016/j.buildenv.2024.111250_bib112) 2016
Kumar (10.1016/j.buildenv.2024.111250_bib138) 2020; 159
Arjunan (10.1016/j.buildenv.2024.111250_bib2) 2019
Li (10.1016/j.buildenv.2024.111250_bib96) 2020; 147
Du (10.1016/j.buildenv.2024.111250_bib99) 2021; 11
Assouar (10.1016/j.buildenv.2024.111250_bib156) 2016; 17
Pfretzschner (10.1016/j.buildenv.2024.111250_bib61) 2006; 67
Ni (10.1016/j.buildenv.2024.111250_bib92) 2014; 4
Ma (10.1016/j.buildenv.2024.111250_bib105) 2017
Zhang (10.1016/j.buildenv.2024.111250_bib143) 2017; 111
Hussein (10.1016/j.buildenv.2024.111250_bib44) 2013
Chen (10.1016/j.buildenv.2024.111250_bib123) 2014; 136
Kaina (10.1016/j.buildenv.2024.111250_bib15) 2015
Ji (10.1016/j.buildenv.2024.111250_bib11) 2022; 26
Fokin (10.1016/j.buildenv.2024.111250_bib50) 2007
Sun (10.1016/j.buildenv.2024.111250_bib147) 2020; 13
Jiménez (10.1016/j.buildenv.2024.111250_bib149) 2017; 95
Casadei (10.1016/j.buildenv.2024.111250_bib116) 2010
Li (10.1016/j.buildenv.2024.111250_bib71) 2018
Xu (10.1016/j.buildenv.2024.111250_bib87) 2022; 30
Wang (10.1016/j.buildenv.2024.111250_bib128) 2016; 108
Naify (10.1016/j.buildenv.2024.111250_bib102) 2010
Fedotov (10.1016/j.buildenv.2024.111250_bib8) 2017
Wang (10.1016/j.buildenv.2024.111250_bib31) 2021; 260
Greiner (10.1016/j.buildenv.2024.111250_bib62) 2017; 64
Cho (10.1016/j.buildenv.2024.111250_bib58) 2014
Ma (10.1016/j.buildenv.2024.111250_bib106) 2018
Wu (10.1016/j.buildenv.2024.111250_bib151) 2018
Li (10.1016/j.buildenv.2024.111250_bib84) 2016; 108
Kumar (10.1016/j.buildenv.2024.111250_bib104) 2018
Sü (10.1016/j.buildenv.2024.111250_bib23) 2007; 14
Xu (10.1016/j.buildenv.2024.111250_bib89) 2016; 1
Arjunan (10.1016/j.buildenv.2024.111250_bib100) 2013; 67
Xu (10.1016/j.buildenv.2024.111250_bib98) 2021; 129
Arjunan (10.1016/j.buildenv.2024.111250_bib63) 2020; 102
Zhang (10.1016/j.buildenv.2024.111250_bib5) 2020
Huang (10.1016/j.buildenv.2024.111250_bib76) 2018
Niu (10.1016/j.buildenv.2024.111250_bib59) 2018
Aurégan (10.1016/j.buildenv.2024.111250_bib78) 2018; 113
10.1016/j.buildenv.2024.111250_bib30
Kim (10.1016/j.buildenv.2024.111250_bib136) 2014; 4
Jung (10.1016/j.buildenv.2024.111250_bib140) 2018; 112
Du (10.1016/j.buildenv.2024.111250_bib26) 2021; 11
Lu (10.1016/j.buildenv.2024.111250_bib3) 2009; 12
Tang (10.1016/j.buildenv.2024.111250_bib53) 2017
Zhang (10.1016/j.buildenv.2024.111250_bib85) 2016; 6
Airoldi (10.1016/j.buildenv.2024.111250_bib114) 2011
Sagartzazu (10.1016/j.buildenv.2024.111250_bib34) 2008; 15
Cano-Vicent (10.1016/j.buildenv.2024.111250_bib17) 2021; 47
Tao (10.1016/j.buildenv.2024.111250_bib21) 2021; 24
Climente (10.1016/j.buildenv.2024.111250_bib86) 2012; 100
Langfeldt (10.1016/j.buildenv.2024.111250_bib130) 2019
Lin (10.1016/j.buildenv.2024.111250_bib133) 2021; 273
Akl (10.1016/j.buildenv.2024.111250_bib94) 2012; 112
Wu (10.1016/j.buildenv.2024.111250_bib142) 2018; 112
Cai (10.1016/j.buildenv.2024.111250_bib75) 2014; 105
Wang (10.1016/j.buildenv.2024.111250_bib79) 2018; 112
Akl (10.1016/j.buildenv.2024.111250_bib113) 2010
Jin Park (10.1016/j.buildenv.2024.111250_bib129) 2021; 43
Arjunan (10.1016/j.buildenv.2024.111250_bib82) 2021
Arjunan (10.1016/j.buildenv.2024.111250_bib108) 2017
Kishore (10.1016/j.buildenv.2024.111250_bib1) 2021; 47
Gibson (10.1016/j.buildenv.2024.111250_bib155) 2022
Arjunan (10.1016/j.buildenv.2024.111250_bib9) 2014
Ghaffarivardavagh (10.1016/j.buildenv.2024.111250_bib141) 2019; 99
Crivoi (10.1016/j.buildenv.2024.111250_bib144) 2023; 205
Zhao (10.1016/j.buildenv.2024.111250_bib95) 2017; 141
Casadei (10.1016/j.buildenv.2024.111250_bib110) 2012
Huang (10.1016/j.buildenv.2024.111250_bib40) 2009
Naify (10.1016/j.buildenv.2024.111250_bib126) 2012; 132
Cox (10.1016/j.buildenv.2024.111250_bib20) 2016
Steiger (10.1016/j.buildenv.2024.111250_bib27) 2013
Ang (10.1016/j.buildenv.2024.111250_bib107) 2018
Arjunan (10.1016/j.buildenv.2024.111250_bib18) 2021
Arjunan (10.1016/j.buildenv.2024.111250_bib64) 2019; 19
Wang (10.1016/j.buildenv.2024.111250_bib68) 2019
Xiang (10.1016/j.buildenv.2024.111250_bib146) 2020; 39
10.1016/j.buildenv.2024.111250_bib93
Zangeneh-Nejad (10.1016/j.buildenv.2024.111250_bib81) 2019; 4
Arjunan (10.1016/j.buildenv.2024.111250_bib38) 2015; 5
Chen (10.1016/j.buildenv.2024.111250_bib111) 2013
Yu (10.1016/j.buildenv.2024.111250_bib137) 2017; 401
Tian (10.1016/j.buildenv.2024.111250_bib125) 2014; 114
Chen (10.1016/j.buildenv.2024.111250_bib14) 2014
Lee (10.1016/j.buildenv.2024.111250_bib54) 2019
Sugino (10.1016/j.buildenv.2024.111250_bib115) 2017
Arjunan (10.1016/j.buildenv.2024.111250_bib10) 2014; 333
Popa (10.1016/j.buildenv.2024.111250_bib119) 2013
Lee (10.1016/j.buildenv.2024.111250_bib4) 2012
Fernández-Marín (10.1016/j.buildenv.2024.111250_bib74) 2019
Cuesta (10.1016/j.buildenv.2024.111250_bib36) 2006; 67
Guild (10.1016/j.buildenv.2024.111250_bib52) 2015
Allam (10.1016/j.buildenv.2024.111250_bib118) 2017
Sü (10.1016/j.buildenv.2024.111250_bib22) 2008; 51
Slagle (10.1016/j.buildenv.2024.111250_bib55) 2015
Ebrahimi-Nejad (10.1016/j.buildenv.2024.111250_bib57) 2018
Trematerra (10.1016/j.buildenv.2024.111250_bib148) 2023; 13
Peng (10.1016/j.buildenv.2024.111250_bib24) 2018
Jiang (10.1016/j.buildenv.2024.111250_bib56) 2014
Zhang (10.1016/j.buildenv.2024.111250_bib122) 2012; 376
Huang (10.1016/j.buildenv.2024.111250_bib72) 2019
Arjunan (10.1016/j.buildenv.2024.111250_bib65) 2019; 151
Li (10.1016/j.buildenv.2024.111250_bib88) 2020; 480
Kumar (10.1016/j.buildenv.2024.111250_bib51) 2019
Yang (10.1016/j.buildenv.2024.111250_bib121) 2010; 96
Arjunan (10.1016/j.buildenv.2024.111250_bib83) 2021; 11
Naify (10.1016/j.buildenv.2024.111250_bib29) 2011; 109
Haberman (10.1016/j.buildenv.2024.111250_bib41) 2016
Ortiz (10.1016/j.buildenv.2024.111250_bib60) 2014; 62
Gazzola (10.1016/j.buildenv.2024.111250_bib134) 2021; 183
Sheng (10.1016/j.buildenv.2024.111250_bib43) 2007
Roca (10.1016/j.buildenv.2024.111250_bib66) 2019
Davies (10.1016/j.buildenv.2024.111250_bib28) 2002
De Salis (10.1016/j.buildenv.2024.111250_bib135) 2002; 37
Yang (10.1016/j.buildenv.2024.111250_bib103) 2013
Ma (10.1016/j.buildenv.2024.111250_bib32) 2021; 129
Xiang (10.1016/j.buildenv.2024.111250_bib97) 2021; 118
Xu (10.1016/j.buildenv.2024.111250_bib80) 2021; 11
Fuller (10.1016/j.buildenv.2024.111250_bib33) 2017
Kadic (10.1016/j.buildenv.2024.111250_bib47) 2013
Harris (10.1016/j.buildenv.2024.111250_bib153) 1966; 40
Mei (10.1016/j.buildenv.2024.111250_bib25) 2012; 3
Wang (10.1016/j.buildenv.2024.111250_bib120) 2014
References_xml – volume: 3
  start-page: 1728
  year: 2013
  ident: bib90
  article-title: Acoustic rainbow trapping
  publication-title: Sci. Rep.
– volume: 11
  start-page: 5829
  year: 2021
  ident: bib99
  article-title: Bilayer ventilated labyrinthine metasurfaces with high sound absorption and tunable bandwidth
  publication-title: Sci. Rep.
– volume: 260
  year: 2021
  ident: bib31
  article-title: Sound insulation performance of membrane-type metamaterials combined with pyramidal truss core sandwich structure
  publication-title: Compos. Struct.
– volume: 26
  year: 2022
  ident: bib11
  article-title: Recent progress in acoustic metamaterials and active piezoelectric acoustic metamaterials - a review
  publication-title: Appl. Mater. Today
– volume: 109
  year: 2011
  ident: bib29
  article-title: Membrane-type metamaterials: transmission loss of multi-celled arrays
  publication-title: J. Appl. Phys.
– year: 2020
  ident: bib48
  article-title: A review of acoustic metamaterials and phononic crystals
  publication-title: Crystals
– year: 2019
  ident: bib73
  article-title: A thin low-frequency broadband metasurface with multi-order sound absorption
  publication-title: J. Phys. D Appl. Phys.
– year: 2018
  ident: bib24
  article-title: Composite honeycomb metasurface panel for broadband sound absorption
  publication-title: J. Acoust. Soc. Am.
– year: 2013
  ident: bib103
  article-title: Coupled membranes with doubly negative mass density and bulk modulus
  publication-title: Phys. Rev. Lett.
– year: 2017
  ident: bib45
  article-title: Dynamic homogenization theory for nonlocal acoustic metamaterials
  publication-title: Extrem. Mech. Lett.
– year: 2016
  ident: bib39
  article-title: Experimental investigation on the sound reduction performance of frequency controlled acoustic interference cavities
  publication-title: Proc. INTER-NOISE 2016 - 45th Int. Congr. Expo. Noise Control Eng. Towar. A Quieter Futur.
– volume: 13
  start-page: 873
  year: 2014
  end-page: 878
  ident: bib77
  article-title: Acoustic metasurface with hybrid resonances
  publication-title: Nat. Mater.
– volume: 4
  year: 2014
  ident: bib136
  article-title: Air transparent soundproof window
  publication-title: AIP Adv.
– volume: 14
  start-page: 203
  year: 2007
  end-page: 221
  ident: bib23
  article-title: Acoustical design and noise control in metro stations: case studies of the ankara metro system
  publication-title: Build. Acoust.
– volume: 6
  year: 2016
  ident: bib85
  article-title: Experimental study on the sound absorption characteristics of continuously graded phononic crystals
  publication-title: AIP Adv.
– year: 2007
  ident: bib43
  article-title: Dynamic mass density and acoustic metamaterials
  publication-title: Phys. B Condens. Matter
– volume: 108
  year: 2016
  ident: bib128
  article-title: Membrane-constrained acoustic metamaterials for low frequency sound insulation
  publication-title: Appl. Phys. Lett.
– volume: 12
  start-page: 34
  year: 2009
  end-page: 42
  ident: bib3
  article-title: Phononic crystals and acoustic metamaterials
  publication-title: Mater. Today
– year: 2015
  ident: bib12
  article-title: Photo-optical Instrumentation Engineers, Theory and Design of Acoustic Metamaterials
– year: 2020
  ident: bib5
  article-title: Engineering Acoustic Metamaterials for Sound Absorption: from Uniform to Gradient Structures
– volume: 141
  start-page: 840
  year: 2017
  end-page: 846
  ident: bib95
  article-title: Membrane acoustic metamaterial absorbers with magnetic negative stiffness
  publication-title: J. Acoust. Soc. Am.
– volume: 39
  year: 2020
  ident: bib146
  article-title: Ultra-open ventilated metamaterial absorbers for sound-silencing applications in environment with free air flows
  publication-title: Extrem. Mech. Lett.
– volume: 96
  year: 2010
  ident: bib121
  article-title: Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime
  publication-title: Appl. Phys. Lett.
– volume: 40
  start-page: 148
  year: 1966
  end-page: 159
  ident: bib153
  article-title: Absorption of sound in air versus humidity and temperature
  publication-title: J. Acoust. Soc. Am.
– volume: 43
  year: 2021
  ident: bib129
  article-title: Ultraslow medium with an acoustic membrane-like undamped dynamic vibration absorber for low-frequency isolation
  publication-title: Extrem. Mech. Lett.
– year: 2018
  ident: bib151
  article-title: Perspective: acoustic metamaterials in transition
  publication-title: J. Appl. Phys.
– year: 2021
  ident: bib18
  article-title: Advances in acoustic metamaterials
  publication-title: Ref. Modul. Mater. Sci. Mater. Eng.
– year: 2019
  ident: bib54
  article-title: Ultrasparse acoustic absorbers enabling fluid flow and visible-light controls
  publication-title: Phys. Rev. Appl.
– volume: 401
  start-page: 190
  year: 2017
  end-page: 203
  ident: bib137
  article-title: On the sound insulation of acoustic metasurface using a sub-structuring approach
  publication-title: J. Sound Vib.
– year: 2015
  ident: bib52
  article-title: Acoustic metamaterial absorbers based on multilayered sonic crystals
  publication-title: J. Appl. Phys.
– volume: 11
  year: 2021
  ident: bib83
  article-title: Acoustic behaviour of 3D printed titanium perforated panels
  publication-title: Results Eng
– year: 2019
  ident: bib69
  article-title: Improvement of the sound absorption of flexible micro-perforated panels by local resonances
  publication-title: Mech. Syst. Signal Process.
– volume: 15
  start-page: 311
  year: 2008
  end-page: 342
  ident: bib34
  article-title: Review in sound absorbing materials
  publication-title: Arch. Comput. Methods Eng.
– volume: 333
  start-page: 6140
  year: 2014
  end-page: 6155
  ident: bib10
  article-title: Development of a 3D finite element acoustic model to predict the sound reduction index of stud based double-leaf walls
  publication-title: J. Sound Vib.
– year: 2019
  ident: bib13
  article-title: Fundamentals and Applications of Acoustic Metamaterials: from Seismic to Radio Frequency
– volume: 50
  start-page: 2877
  year: 2022
  end-page: 2891
  ident: bib152
  article-title: Modeling and optimizing an acoustic metamaterial to minimize low-frequency structure-borne sound
  publication-title: Mech. Base. Des. Struct. Mach.
– volume: 112
  year: 2012
  ident: bib94
  article-title: Experimental characterization of active acoustic metamaterial cell with controllable dynamic density
  publication-title: J. Appl. Phys.
– volume: 1
  year: 2016
  ident: bib89
  article-title: Planar gradient metamaterials
  publication-title: Nat. Rev. Mater.
– year: 2019
  ident: bib66
  article-title: Computational design of locally resonant acoustic metamaterials
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 95
  year: 2017
  ident: bib149
  article-title: Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound
  publication-title: Phys. Rev. B
– year: 2009
  ident: bib40
  article-title: On the negative effective mass density in acoustic metamaterials
  publication-title: Int. J. Eng. Sci.
– volume: 113
  year: 2018
  ident: bib78
  article-title: Ultra-thin low frequency perfect sound absorber with high ratio of active area
  publication-title: Appl. Phys. Lett.
– volume: 145
  year: 2023
  ident: bib16
  article-title: Influence of wire feed speed and torch speed on the mechanical properties of wire arc additively manufactured stainless steel
  publication-title: J. Manuf. Sci. Eng.
– volume: 3
  year: 2012
  ident: bib25
  article-title: Dark acoustic metamaterials as super absorbers for low-frequency sound
  publication-title: Nat. Commun.
– year: 2017
  ident: bib8
  article-title: Metamaterials
– year: 2012
  ident: bib49
  article-title: Elastic metamaterials with local resonances: an overview
  publication-title: Theor. Appl. Mech. Lett.
– year: 2017
  ident: bib53
  article-title: Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound
  publication-title: Sci. Rep.
– year: 2019
  ident: bib2
  article-title: Acoustic performance of metallic foams
  publication-title: Ref. Modul. Mater. Sci. Mater. Eng.
– year: 2014
  ident: bib56
  article-title: Ultra-broadband absorption by acoustic metamaterials
  publication-title: Appl. Phys. Lett.
– volume: 108
  year: 2016
  ident: bib84
  article-title: Acoustic metasurface-based perfect absorber with deep subwavelength thickness
  publication-title: Appl. Phys. Lett.
– year: 2017
  ident: bib109
  article-title: Broadband gradient impedance matching using an acoustic metamaterial for ultrasonic transducers
  publication-title: Sci. Rep.
– volume: 36
  start-page: 223
  year: 1988
  end-page: 231
  ident: bib154
  article-title: Environmental effects on the speed of sound
  publication-title: J. Audio Eng. Soc.
– reference: (accessed August 31, 2022).
– start-page: 1581
  year: 2017
  end-page: 1590
  ident: bib33
  article-title: Poro-elastic acoustic meta materials
  publication-title: INTER-NOISE NOISE-CON Congr. Conf. Proc.
– reference: H. Xie, Y. Lyu, Sound absorption characteristics of the perforated panel resonator with tube bundles, 21st Int. Congr. Sound Vib. (2014), Volume 1, pp. 5010, ICSV 2014, 2014.
– year: 2018
  ident: bib76
  article-title: Acoustic perfect absorbers via spiral metasurfaces with embedded apertures
  publication-title: Appl. Phys. Lett.
– year: 2017
  ident: bib46
  article-title: Static non-reciprocity in mechanical metamaterials
  publication-title: Nature
– start-page: 4870
  year: 2019
  end-page: 4877
  ident: bib130
  article-title: Design of acoustic partitions with thin plate-like acoustic metamaterials
  publication-title: Proc. Int. Congr. Acoust., 23rd International Congress on Acoustics
– year: 2019
  ident: bib68
  article-title: Synergetic coupling large-scale plate-type acoustic metamaterial panel for broadband sound insulation
  publication-title: J. Sound Vib.
– volume: 47
  start-page: 4700
  year: 2021
  end-page: 4707
  ident: bib1
  article-title: A review on latest acoustic noise mitigation materials
  publication-title: Mater. Today Proc.
– year: 2018
  ident: bib106
  article-title: Bi-layer plate-Type acoustic metamaterials with Willis coupling
  publication-title: J. Appl. Phys.
– volume: 151
  start-page: 30
  year: 2019
  end-page: 44
  ident: bib65
  article-title: Targeted sound attenuation capacity of 3D printed noise cancelling waveguides
  publication-title: Appl. Acoust.
– volume: 30
  start-page: 3941
  year: 2022
  end-page: 3953
  ident: bib87
  article-title: Realization of broadband truly rainbow trapping in gradient-index metamaterials
  publication-title: Opt Express
– volume: 5
  start-page: 1414
  year: 2015
  end-page: 1431
  ident: bib38
  article-title: A computationally-efficient numerical model to characterize the noise behavior of metal-framed walls
  publication-title: Metals
– volume: 24
  year: 2021
  ident: bib21
  article-title: Recent progress in acoustic materials and noise control strategies – a review
  publication-title: Appl. Mater. Today
– year: 2018
  ident: bib37
  article-title: Environmental Noise Guidelines for the European Region
– volume: 183
  year: 2021
  ident: bib134
  article-title: From mechanics to acoustics: critical assessment of a robust metamaterial for acoustic insulation application
  publication-title: Appl. Acoust.
– year: 2018
  ident: bib104
  article-title: Double negative acoustic metastructure for attenuation of acoustic emissions
  publication-title: Appl. Phys. Lett.
– volume: 136
  start-page: 969
  year: 2014
  end-page: 979
  ident: bib123
  article-title: Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: membrane model
  publication-title: J. Acoust. Soc. Am.
– volume: 6
  year: 2021
  ident: bib150
  article-title: Acoustic metamaterials: a review of theories, structures, fabrication approaches, and applications
  publication-title: Adv. Mater. Technol.
– year: 2014
  ident: bib9
  article-title: Sound frequency dependent mesh modelling to simulate the acoustic insulation of stud based double-leaf walls
  publication-title: Proc. ISMA 2014 - Int. Conf. Noise Vib. Eng. USD 2014 - Int. Conf. Uncertain
– volume: 14
  year: 2012
  ident: bib42
  article-title: Effective dynamic constitutive parameters of acoustic metamaterials with random microstructure
  publication-title: New J. Phys.
– year: 2018
  ident: bib107
  article-title: Plate-type acoustic metamaterial with cavities coupled via an orifice for enhanced sound transmission loss
  publication-title: Appl. Phys. Lett.
– year: 2017
  ident: bib108
  article-title: A comparative study on the acoustic behaviour of free-standing curved and flat single panel screens in an open-plan enclosed environment
  publication-title: INTER-NOISE 2017 - 46th Int. Congr. Expo. Noise Control Eng
– year: 2013
  ident: bib111
  article-title: Tunable band gaps in acoustic metamaterials with periodic arrays of resonant shunted piezos
  publication-title: Chin. Phys. B
– volume: 11
  year: 2021
  ident: bib26
  article-title: Control the structure to optimize the performance of sound absorption of acoustic metamaterial: a review
  publication-title: AIP Adv.
– year: 2014
  ident: bib58
  article-title: Acoustic metamaterial panel composed of funnel-shaped cell unit having multi-band negative material properties
  publication-title: INTERNOISE 2014 - 43rd Int. Congr. Noise Control Eng. Improv
– volume: 17
  start-page: L021003
  year: 2022
  ident: bib91
  article-title: Programmable rainbow trapping and band-gap enhancement via spatial group-velocity tailoring in elastic metamaterials
  publication-title: Phys. Rev. Appl.
– year: 2017
  ident: bib105
  article-title: Ultrathin lightweight plate-type acoustic metamaterials with positive lumped coupling resonant
  publication-title: J. Appl. Phys.
– year: 2018
  ident: bib117
  article-title: A review of tunable acoustic metamaterials
  publication-title: Appl. Sci.
– volume: 132
  start-page: 2784
  year: 2012
  end-page: 2792
  ident: bib126
  article-title: Scaling of membrane-type locally resonant acoustic metamaterial arrays
  publication-title: J. Acoust. Soc. Am.
– volume: 376
  start-page: 1489
  year: 2012
  end-page: 1494
  ident: bib122
  article-title: Theoretical investigation of the sound attenuation of membrane-type acoustic metamaterials
  publication-title: Phys. Lett.
– volume: 273
  year: 2021
  ident: bib133
  article-title: Sound insulation performance of sandwich structure compounded with a resonant acoustic metamaterial
  publication-title: Compos. Struct.
– year: 2018
  ident: bib57
  article-title: Honeycomb locally resonant absorbing acoustic metamaterials with stop band behavior
  publication-title: Mater. Res. Express
– year: 2017
  ident: bib115
  article-title: An investigation of electroelastic bandgap formation in locally resonant piezoelectric metastructures
  publication-title: Smart Mater. Struct.
– volume: 8
  year: 2022
  ident: bib145
  article-title: High-efficient and broadband acoustic insulation in a ventilated channel with acoustic metamaterials
  publication-title: Front. Mech. Eng.
– volume: 47
  year: 2021
  ident: bib17
  article-title: Fused deposition modelling: current status, methodology, applications and future prospects
  publication-title: Addit. Manuf.
– year: 2018
  ident: bib71
  article-title: Broadband compact acoustic absorber with high-efficiency ventilation performance
  publication-title: Appl. Phys. Lett.
– year: 2021
  ident: bib82
  article-title: Characteristics of acoustic metamaterials
  publication-title: Ref. Modul. Mater. Sci. Mater. Eng.
– year: 2017
  ident: bib118
  article-title: Experimental demonstration of one-dimensional active plate-type acoustic metamaterial with adaptive programmable density
  publication-title: J. Appl. Phys.
– year: 2016
  ident: bib101
  article-title: Acoustic metamaterials capable of both sound insulation and energy harvesting
  publication-title: Smart Mater. Struct.
– volume: 37
  start-page: 471
  year: 2002
  end-page: 484
  ident: bib135
  article-title: Noise control strategies for naturally ventilated buildings
  publication-title: Build. Environ.
– volume: 114
  start-page: 985
  year: 2014
  end-page: 990
  ident: bib125
  article-title: Theoretical model and analytical approach for a circular membrane–ring structure of locally resonant acoustic metamaterial
  publication-title: Appl. Phys. A
– volume: 111
  year: 2017
  ident: bib143
  article-title: Omnidirectional ventilated acoustic barrier
  publication-title: Appl. Phys. Lett.
– volume: 149
  start-page: 156
  year: 2019
  end-page: 170
  ident: bib132
  article-title: Plate-type acoustic metamaterials: evaluation of a large-scale design adopting modularity for customizable acoustical performance
  publication-title: Appl. Acoust.
– year: 2019
  ident: bib51
  article-title: The present and future role of acoustic metamaterials for architectural and urban noise mitigations
  publication-title: Acoustics
– start-page: 16
  year: 2002
  end-page: 27
  ident: bib28
  article-title: 27 - noise and vibration
  publication-title: Plant Eng. Ref. B
– volume: 62
  start-page: 145
  year: 2014
  end-page: 151
  ident: bib60
  article-title: Attenuating open cavity tones by lining its walls with microperforated panels
  publication-title: Noise Control Eng. J.
– volume: 480
  year: 2020
  ident: bib88
  article-title: Vibration isolation by novel meta-design of pyramid-core lattice sandwich structures
  publication-title: J. Sound Vib.
– volume: 67
  start-page: 202
  year: 2013
  end-page: 210
  ident: bib100
  article-title: Finite element acoustic analysis of a steel stud based double-leaf wall
  publication-title: Build. Environ.
– volume: 64
  start-page: 136
  year: 2017
  end-page: 144
  ident: bib62
  article-title: Selective laser sintering of polymer blends: bulk properties and process behavior
  publication-title: Polym. Test.
– year: 2008
  ident: bib19
  article-title: Membrane-type acoustic metamaterial with negative dynamic mass
  publication-title: Phys. Rev. Lett.
– year: 2018
  ident: bib59
  article-title: Low frequency wide band sound absorption performance of asymmetric type acoustic metamaterials
  publication-title: Zhendong Yu Chongji/Journal Vib. Shock.
– year: 2022
  ident: bib155
  article-title: The low frequency structure-borne sound problem in multi-storey timber buildings and potential of acoustic metamaterials: a review
  publication-title: Build. Environ.
– volume: 46
  year: 2021
  ident: bib139
  article-title: Ventilated metamaterials for broadband sound insulation and tunable transmission at low frequency
  publication-title: Extrem. Mech. Lett.
– volume: 17
  start-page: 524
  year: 2016
  end-page: 532
  ident: bib156
  article-title: Acoustic metamaterials for sound mitigation
  publication-title: Compt. Rendus Phys.
– volume: 102
  year: 2020
  ident: bib63
  article-title: Mechanical performance of highly permeable laser melted Ti6Al4V bone scaffolds
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 11
  start-page: 1423
  year: 2003
  end-page: 1431
  ident: bib35
  article-title: Application of active noise control to an elevator cabin
  publication-title: Control Eng. Pract.
– year: 2012
  ident: bib4
  article-title: Highly tunable acoustic metamaterials based on a resonant tubular array
  publication-title: Phys. Rev. B Condens. Matter
– volume: 2
  year: 2016
  ident: bib7
  article-title: Acoustic metamaterials: from local resonances to broad horizons
  publication-title: Sci. Adv.
– year: 2011
  ident: bib114
  article-title: Design of tunable acoustic metamaterials through periodic arrays of resonant shunted piezos
  publication-title: New J. Phys.
– volume: 105
  year: 2014
  ident: bib75
  article-title: Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators
  publication-title: Appl. Phys. Lett.
– volume: 100
  year: 2012
  ident: bib86
  article-title: Omnidirectional broadband acoustic absorber based on metamaterials
  publication-title: Appl. Phys. Lett.
– volume: 110
  year: 2011
  ident: bib124
  article-title: Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses
  publication-title: J. Appl. Phys.
– volume: 67
  start-page: 62
  year: 2006
  end-page: 73
  ident: bib61
  article-title: Microperforated insertion units: an alternative strategy to design microperforated panels
  publication-title: Appl. Acoust.
– volume: 1
  year: 2016
  ident: bib6
  article-title: Controlling sound with acoustic metamaterials
  publication-title: Nat. Rev. Mater.
– reference: Analytic Modeling of Sound Transmission through Membrane-Type Acoustic Metamaterials – M.C. Gill Composites Center, (n.d.).
– volume: 147
  year: 2020
  ident: bib96
  article-title: Broadband low frequency sound absorption using a monostable acoustic metamaterial
  publication-title: J. Acoust. Soc. Am.
– volume: 13
  year: 2020
  ident: bib147
  article-title: Broadband acoustic ventilation barriers
  publication-title: Phys. Rev. Appl.
– volume: 4
  start-page: 7038
  year: 2014
  ident: bib92
  article-title: Acoustic rainbow trapping by coiling up space
  publication-title: Sci. Rep.
– year: 2019
  ident: bib72
  article-title: Acoustic perfect absorbers via Helmholtz resonators with embedded apertures
  publication-title: J. Acoust. Soc. Am.
– year: 2015
  ident: bib15
  article-title: Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials
  publication-title: Nature
– year: 2012
  ident: bib110
  article-title: Piezoelectric resonator arrays for tunable acoustic waveguides and metamaterials
  publication-title: J. Appl. Phys.
– year: 2013
  ident: bib27
  article-title: Control of Static and Dynamic Mechanical Response of Piezoelectric Composite Shells: Applications to Acoustics and Adaptive Optics
– volume: 112
  year: 2018
  ident: bib140
  article-title: Acoustic metamaterial panel for both fluid passage and broadband soundproofing in the audible frequency range
  publication-title: Appl. Phys. Lett.
– year: 2017
  ident: bib70
  article-title: Thin structured rigid body for acoustic absorption
  publication-title: Appl. Phys. Lett.
– volume: 4
  year: 2019
  ident: bib81
  article-title: Active times for acoustic metamaterials
  publication-title: Rev. Phys.
– year: 2007
  ident: bib50
  article-title: Method for retrieving effective properties of locally resonant acoustic metamaterials
  publication-title: Phys. Rev. B Condens. Matter
– volume: 51
  start-page: 21
  year: 2008
  end-page: 30
  ident: bib22
  article-title: The acoustical characteristics of the kocatepe mosque in ankara, Turkey
  publication-title: Architect. Sci. Rev.
– volume: 13
  start-page: 1650
  year: 2023
  ident: bib148
  article-title: Noise control in air mechanical ventilation systems with three-dimensional metamaterials
  publication-title: Appl. Sci.
– volume: 129
  year: 2021
  ident: bib98
  article-title: Tunable low-frequency and broadband acoustic metamaterial absorber
  publication-title: J. Appl. Phys.
– year: 2013
  ident: bib119
  article-title: Tunable active acoustic metamaterials
  publication-title: Phys. Rev. B Condens. Matter
– year: 2010
  ident: bib102
  article-title: Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials
  publication-title: J. Appl. Phys.
– year: 2010
  ident: bib113
  article-title: Multi-cell active acoustic metamaterial with programmable bulk modulus
  publication-title: J. Intell. Mater. Syst. Struct.
– volume: 74
  start-page: 485
  year: 2013
  end-page: 495
  ident: bib131
  article-title: The low frequency performance of metamaterial barriers based on cellular structures
  publication-title: Appl. Acoust.
– year: 2013
  ident: bib44
  article-title: Damped Phononic Crystals and Acoustic Metamaterials
– reference: N. Gao, Z. Zhang, J. Deng, X. Guo, B. Cheng, H. Hou, Acoustic Metamaterials for Noise Reduction: A Review, Adv. Mater. Technol. n/a (n.d.) 2100698.
– year: 2016
  ident: bib20
  article-title: Acoustic Absorbers and Diffusers : Theory, Design and Application
– volume: 205
  year: 2023
  ident: bib144
  article-title: Ventilated acoustic meta-barrier based on layered Helmholtz resonators
  publication-title: Appl. Acoust.
– year: 2016
  ident: bib112
  article-title: Modeling and design of two-dimensional membrane-type active acoustic metamaterials with tunable anisotropic density
  publication-title: J. Acoust. Soc. Am.
– volume: 106
  year: 2015
  ident: bib127
  article-title: A lightweight yet sound-proof honeycomb acoustic metamaterial
  publication-title: Appl. Phys. Lett.
– volume: 112
  year: 2018
  ident: bib79
  article-title: Acoustic perfect absorption and broadband insulation achieved by double-zero metamaterials
  publication-title: Appl. Phys. Lett.
– volume: 118
  year: 2021
  ident: bib97
  article-title: Manually tunable ventilated metamaterial absorbers
  publication-title: Appl. Phys. Lett.
– year: 2010
  ident: bib116
  article-title: Broadband vibration control through periodic arrays of resonant shunts: experimental investigation on plates
  publication-title: Smart Mater. Struct.
– year: 2013
  ident: bib47
  article-title: Metamaterials beyond electromagnetism
  publication-title: Rep. Prog. Phys.
– year: 2015
  ident: bib55
  article-title: Low frequency noise reduction using poro-elastic acoustic metamaterials
  publication-title: 21st AIAA/CEAS Aeroacoustics Conf
– volume: 129
  year: 2021
  ident: bib32
  article-title: Structural designs, principles, and applications of thin-walled membrane and plate-type acoustic/elastic metamaterials
  publication-title: J. Appl. Phys.
– reference: .
– year: 2014
  ident: bib120
  article-title: Harnessing buckling to design tunable locally resonant acoustic metamaterials
  publication-title: Phys. Rev. Lett.
– volume: 67
  start-page: 15
  year: 2006
  end-page: 27
  ident: bib36
  article-title: Using a thin actuator as secondary source for hybrid passive/active absorption in an impedance tube
  publication-title: Appl. Acoust.
– volume: 112
  year: 2018
  ident: bib142
  article-title: High-efficiency ventilated metamaterial absorber at low frequency
  publication-title: Appl. Phys. Lett.
– year: 2019
  ident: bib74
  article-title: Aerogel-based metasurfaces for perfect acoustic energy absorption
  publication-title: Appl. Phys. Lett.
– volume: 159
  year: 2020
  ident: bib138
  article-title: Ventilated acoustic metamaterial window panels for simultaneous noise shielding and air circulation
  publication-title: Appl. Acoust.
– volume: 19
  start-page: 68
  year: 2019
  end-page: 75
  ident: bib64
  article-title: Acoustic absorption of passive destructive interference cavities
  publication-title: Mater. Today Commun.
– volume: 11
  year: 2021
  ident: bib80
  article-title: Study on broadband low-frequency sound insulation of multi-channel resonator acoustic metamaterials
  publication-title: AIP Adv.
– year: 2016
  ident: bib41
  article-title: Acoustic metamaterials
  publication-title: Phys. Today
– volume: 99
  year: 2019
  ident: bib141
  article-title: Ultra-open acoustic metamaterial silencer based on Fano-like interference
  publication-title: Phys. Rev. B
– year: 2014
  ident: bib14
  article-title: Metamaterials-based enhanced energy harvesting: a review
  publication-title: Phys. B Condens. Matter
– volume: 62
  start-page: 145
  year: 2014
  ident: 10.1016/j.buildenv.2024.111250_bib60
  article-title: Attenuating open cavity tones by lining its walls with microperforated panels
  publication-title: Noise Control Eng. J.
  doi: 10.3397/1/376215
– volume: 67
  start-page: 62
  year: 2006
  ident: 10.1016/j.buildenv.2024.111250_bib61
  article-title: Microperforated insertion units: an alternative strategy to design microperforated panels
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2005.05.005
– volume: 14
  start-page: 203
  year: 2007
  ident: 10.1016/j.buildenv.2024.111250_bib23
  article-title: Acoustical design and noise control in metro stations: case studies of the ankara metro system
  publication-title: Build. Acoust.
  doi: 10.1260/135101007781998910
– year: 2017
  ident: 10.1016/j.buildenv.2024.111250_bib70
  article-title: Thin structured rigid body for acoustic absorption
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4974487
– year: 2014
  ident: 10.1016/j.buildenv.2024.111250_bib120
  article-title: Harnessing buckling to design tunable locally resonant acoustic metamaterials
  publication-title: Phys. Rev. Lett.
– volume: 109
  year: 2011
  ident: 10.1016/j.buildenv.2024.111250_bib29
  article-title: Membrane-type metamaterials: transmission loss of multi-celled arrays
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3583656
– volume: 17
  start-page: 524
  year: 2016
  ident: 10.1016/j.buildenv.2024.111250_bib156
  article-title: Acoustic metamaterials for sound mitigation
  publication-title: Compt. Rendus Phys.
  doi: 10.1016/j.crhy.2016.02.002
– volume: 43
  year: 2021
  ident: 10.1016/j.buildenv.2024.111250_bib129
  article-title: Ultraslow medium with an acoustic membrane-like undamped dynamic vibration absorber for low-frequency isolation
  publication-title: Extrem. Mech. Lett.
– volume: 64
  start-page: 136
  year: 2017
  ident: 10.1016/j.buildenv.2024.111250_bib62
  article-title: Selective laser sintering of polymer blends: bulk properties and process behavior
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2017.09.039
– volume: 50
  start-page: 2877
  year: 2022
  ident: 10.1016/j.buildenv.2024.111250_bib152
  article-title: Modeling and optimizing an acoustic metamaterial to minimize low-frequency structure-borne sound
  publication-title: Mech. Base. Des. Struct. Mach.
  doi: 10.1080/15397734.2020.1787842
– volume: 112
  year: 2018
  ident: 10.1016/j.buildenv.2024.111250_bib140
  article-title: Acoustic metamaterial panel for both fluid passage and broadband soundproofing in the audible frequency range
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5004605
– volume: 13
  start-page: 1650
  year: 2023
  ident: 10.1016/j.buildenv.2024.111250_bib148
  article-title: Noise control in air mechanical ventilation systems with three-dimensional metamaterials
  publication-title: Appl. Sci.
  doi: 10.3390/app13031650
– year: 2010
  ident: 10.1016/j.buildenv.2024.111250_bib102
  article-title: Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3514082
– year: 2016
  ident: 10.1016/j.buildenv.2024.111250_bib39
  article-title: Experimental investigation on the sound reduction performance of frequency controlled acoustic interference cavities
– volume: 147
  year: 2020
  ident: 10.1016/j.buildenv.2024.111250_bib96
  article-title: Broadband low frequency sound absorption using a monostable acoustic metamaterial
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/10.0000714
– volume: 47
  start-page: 4700
  year: 2021
  ident: 10.1016/j.buildenv.2024.111250_bib1
  article-title: A review on latest acoustic noise mitigation materials
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2021.05.600
– year: 2019
  ident: 10.1016/j.buildenv.2024.111250_bib51
  article-title: The present and future role of acoustic metamaterials for architectural and urban noise mitigations
  publication-title: Acoustics
  doi: 10.3390/acoustics1030035
– year: 2013
  ident: 10.1016/j.buildenv.2024.111250_bib111
  article-title: Tunable band gaps in acoustic metamaterials with periodic arrays of resonant shunted piezos
  publication-title: Chin. Phys. B
– year: 2013
  ident: 10.1016/j.buildenv.2024.111250_bib44
– volume: 12
  start-page: 34
  year: 2009
  ident: 10.1016/j.buildenv.2024.111250_bib3
  article-title: Phononic crystals and acoustic metamaterials
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(09)70315-3
– volume: 129
  year: 2021
  ident: 10.1016/j.buildenv.2024.111250_bib32
  article-title: Structural designs, principles, and applications of thin-walled membrane and plate-type acoustic/elastic metamaterials
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0042132
– year: 2013
  ident: 10.1016/j.buildenv.2024.111250_bib119
  article-title: Tunable active acoustic metamaterials
  publication-title: Phys. Rev. B Condens. Matter
  doi: 10.1103/PhysRevB.88.024303
– year: 2010
  ident: 10.1016/j.buildenv.2024.111250_bib116
  article-title: Broadband vibration control through periodic arrays of resonant shunts: experimental investigation on plates
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/19/1/015002
– volume: 51
  start-page: 21
  year: 2008
  ident: 10.1016/j.buildenv.2024.111250_bib22
  article-title: The acoustical characteristics of the kocatepe mosque in ankara, Turkey
  publication-title: Architect. Sci. Rev.
  doi: 10.3763/asre.2008.5104
– year: 2009
  ident: 10.1016/j.buildenv.2024.111250_bib40
  article-title: On the negative effective mass density in acoustic metamaterials
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2008.12.007
– year: 2012
  ident: 10.1016/j.buildenv.2024.111250_bib110
  article-title: Piezoelectric resonator arrays for tunable acoustic waveguides and metamaterials
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4752468
– volume: 333
  start-page: 6140
  year: 2014
  ident: 10.1016/j.buildenv.2024.111250_bib10
  article-title: Development of a 3D finite element acoustic model to predict the sound reduction index of stud based double-leaf walls
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2014.06.032
– year: 2017
  ident: 10.1016/j.buildenv.2024.111250_bib115
  article-title: An investigation of electroelastic bandgap formation in locally resonant piezoelectric metastructures
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa6671
– volume: 2
  year: 2016
  ident: 10.1016/j.buildenv.2024.111250_bib7
  article-title: Acoustic metamaterials: from local resonances to broad horizons
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501595
– volume: 112
  year: 2018
  ident: 10.1016/j.buildenv.2024.111250_bib79
  article-title: Acoustic perfect absorption and broadband insulation achieved by double-zero metamaterials
  publication-title: Appl. Phys. Lett.
– volume: 136
  start-page: 969
  year: 2014
  ident: 10.1016/j.buildenv.2024.111250_bib123
  article-title: Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: membrane model
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4892870
– year: 2014
  ident: 10.1016/j.buildenv.2024.111250_bib9
  article-title: Sound frequency dependent mesh modelling to simulate the acoustic insulation of stud based double-leaf walls
– volume: 26
  year: 2022
  ident: 10.1016/j.buildenv.2024.111250_bib11
  article-title: Recent progress in acoustic metamaterials and active piezoelectric acoustic metamaterials - a review
  publication-title: Appl. Mater. Today
– volume: 113
  year: 2018
  ident: 10.1016/j.buildenv.2024.111250_bib78
  article-title: Ultra-thin low frequency perfect sound absorber with high ratio of active area
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5063504
– volume: 118
  year: 2021
  ident: 10.1016/j.buildenv.2024.111250_bib97
  article-title: Manually tunable ventilated metamaterial absorbers
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0037547
– volume: 14
  year: 2012
  ident: 10.1016/j.buildenv.2024.111250_bib42
  article-title: Effective dynamic constitutive parameters of acoustic metamaterials with random microstructure
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/3/033014
– year: 2015
  ident: 10.1016/j.buildenv.2024.111250_bib15
  article-title: Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials
  publication-title: Nature
  doi: 10.1038/nature14678
– year: 2012
  ident: 10.1016/j.buildenv.2024.111250_bib49
  article-title: Elastic metamaterials with local resonances: an overview
  publication-title: Theor. Appl. Mech. Lett.
  doi: 10.1063/2.1204101
– volume: 15
  start-page: 311
  year: 2008
  ident: 10.1016/j.buildenv.2024.111250_bib34
  article-title: Review in sound absorbing materials
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-008-9022-1
– volume: 102
  year: 2020
  ident: 10.1016/j.buildenv.2024.111250_bib63
  article-title: Mechanical performance of highly permeable laser melted Ti6Al4V bone scaffolds
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2019.103517
– year: 2019
  ident: 10.1016/j.buildenv.2024.111250_bib66
  article-title: Computational design of locally resonant acoustic metamaterials
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.10.037
– volume: 108
  year: 2016
  ident: 10.1016/j.buildenv.2024.111250_bib84
  article-title: Acoustic metasurface-based perfect absorber with deep subwavelength thickness
  publication-title: Appl. Phys. Lett.
– volume: 4
  year: 2014
  ident: 10.1016/j.buildenv.2024.111250_bib136
  article-title: Air transparent soundproof window
  publication-title: AIP Adv.
  doi: 10.1063/1.4902155
– volume: 8
  year: 2022
  ident: 10.1016/j.buildenv.2024.111250_bib145
  article-title: High-efficient and broadband acoustic insulation in a ventilated channel with acoustic metamaterials
  publication-title: Front. Mech. Eng.
  doi: 10.3389/fmech.2022.857788
– year: 2019
  ident: 10.1016/j.buildenv.2024.111250_bib13
– start-page: 1581
  year: 2017
  ident: 10.1016/j.buildenv.2024.111250_bib33
  article-title: Poro-elastic acoustic meta materials
– year: 2017
  ident: 10.1016/j.buildenv.2024.111250_bib46
  article-title: Static non-reciprocity in mechanical metamaterials
  publication-title: Nature
  doi: 10.1038/nature21044
– year: 2019
  ident: 10.1016/j.buildenv.2024.111250_bib74
  article-title: Aerogel-based metasurfaces for perfect acoustic energy absorption
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5109084
– volume: 3
  start-page: 1728
  year: 2013
  ident: 10.1016/j.buildenv.2024.111250_bib90
  article-title: Acoustic rainbow trapping
  publication-title: Sci. Rep.
  doi: 10.1038/srep01728
– year: 2020
  ident: 10.1016/j.buildenv.2024.111250_bib5
– volume: 129
  year: 2021
  ident: 10.1016/j.buildenv.2024.111250_bib98
  article-title: Tunable low-frequency and broadband acoustic metamaterial absorber
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0038940
– volume: 110
  year: 2011
  ident: 10.1016/j.buildenv.2024.111250_bib124
  article-title: Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3665213
– year: 2017
  ident: 10.1016/j.buildenv.2024.111250_bib105
  article-title: Ultrathin lightweight plate-type acoustic metamaterials with positive lumped coupling resonant
  publication-title: J. Appl. Phys.
– year: 2014
  ident: 10.1016/j.buildenv.2024.111250_bib14
  article-title: Metamaterials-based enhanced energy harvesting: a review
  publication-title: Phys. B Condens. Matter
  doi: 10.1016/j.physb.2013.12.040
– year: 2014
  ident: 10.1016/j.buildenv.2024.111250_bib56
  article-title: Ultra-broadband absorption by acoustic metamaterials
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4904887
– year: 2019
  ident: 10.1016/j.buildenv.2024.111250_bib73
  article-title: A thin low-frequency broadband metasurface with multi-order sound absorption
  publication-title: J. Phys. D Appl. Phys.
– year: 2010
  ident: 10.1016/j.buildenv.2024.111250_bib113
  article-title: Multi-cell active acoustic metamaterial with programmable bulk modulus
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X09359434
– year: 2019
  ident: 10.1016/j.buildenv.2024.111250_bib72
  article-title: Acoustic perfect absorbers via Helmholtz resonators with embedded apertures
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.5087128
– volume: 74
  start-page: 485
  year: 2013
  ident: 10.1016/j.buildenv.2024.111250_bib131
  article-title: The low frequency performance of metamaterial barriers based on cellular structures
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2012.09.008
– volume: 67
  start-page: 202
  year: 2013
  ident: 10.1016/j.buildenv.2024.111250_bib100
  article-title: Finite element acoustic analysis of a steel stud based double-leaf wall
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2013.05.021
– year: 2017
  ident: 10.1016/j.buildenv.2024.111250_bib109
  article-title: Broadband gradient impedance matching using an acoustic metamaterial for ultrasonic transducers
  publication-title: Sci. Rep.
– year: 2021
  ident: 10.1016/j.buildenv.2024.111250_bib18
  article-title: Advances in acoustic metamaterials
– volume: 3
  year: 2012
  ident: 10.1016/j.buildenv.2024.111250_bib25
  article-title: Dark acoustic metamaterials as super absorbers for low-frequency sound
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1758
– year: 2018
  ident: 10.1016/j.buildenv.2024.111250_bib151
  article-title: Perspective: acoustic metamaterials in transition
  publication-title: J. Appl. Phys.
– year: 2018
  ident: 10.1016/j.buildenv.2024.111250_bib104
  article-title: Double negative acoustic metastructure for attenuation of acoustic emissions
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5022602
– volume: 108
  year: 2016
  ident: 10.1016/j.buildenv.2024.111250_bib128
  article-title: Membrane-constrained acoustic metamaterials for low frequency sound insulation
  publication-title: Appl. Phys. Lett.
– start-page: 16
  year: 2002
  ident: 10.1016/j.buildenv.2024.111250_bib28
  article-title: 27 - noise and vibration
– volume: 30
  start-page: 3941
  year: 2022
  ident: 10.1016/j.buildenv.2024.111250_bib87
  article-title: Realization of broadband truly rainbow trapping in gradient-index metamaterials
  publication-title: Opt Express
  doi: 10.1364/OE.447874
– volume: 24
  year: 2021
  ident: 10.1016/j.buildenv.2024.111250_bib21
  article-title: Recent progress in acoustic materials and noise control strategies – a review
  publication-title: Appl. Mater. Today
– volume: 11
  year: 2021
  ident: 10.1016/j.buildenv.2024.111250_bib26
  article-title: Control the structure to optimize the performance of sound absorption of acoustic metamaterial: a review
  publication-title: AIP Adv.
  doi: 10.1063/5.0042834
– volume: 95
  year: 2017
  ident: 10.1016/j.buildenv.2024.111250_bib149
  article-title: Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.014205
– volume: 183
  year: 2021
  ident: 10.1016/j.buildenv.2024.111250_bib134
  article-title: From mechanics to acoustics: critical assessment of a robust metamaterial for acoustic insulation application
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2021.108311
– ident: 10.1016/j.buildenv.2024.111250_bib93
  doi: 10.1002/admt.202100698
– year: 2018
  ident: 10.1016/j.buildenv.2024.111250_bib24
  article-title: Composite honeycomb metasurface panel for broadband sound absorption
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.5035580
– volume: 67
  start-page: 15
  year: 2006
  ident: 10.1016/j.buildenv.2024.111250_bib36
  article-title: Using a thin actuator as secondary source for hybrid passive/active absorption in an impedance tube
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2005.05.001
– year: 2013
  ident: 10.1016/j.buildenv.2024.111250_bib47
  article-title: Metamaterials beyond electromagnetism
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/76/12/126501
– volume: 6
  year: 2021
  ident: 10.1016/j.buildenv.2024.111250_bib150
  article-title: Acoustic metamaterials: a review of theories, structures, fabrication approaches, and applications
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202000787
– year: 2017
  ident: 10.1016/j.buildenv.2024.111250_bib8
– year: 2015
  ident: 10.1016/j.buildenv.2024.111250_bib55
  article-title: Low frequency noise reduction using poro-elastic acoustic metamaterials
– year: 2011
  ident: 10.1016/j.buildenv.2024.111250_bib114
  article-title: Design of tunable acoustic metamaterials through periodic arrays of resonant shunted piezos
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/13/11/113010
– volume: 260
  year: 2021
  ident: 10.1016/j.buildenv.2024.111250_bib31
  article-title: Sound insulation performance of membrane-type metamaterials combined with pyramidal truss core sandwich structure
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2020.113257
– volume: 112
  year: 2012
  ident: 10.1016/j.buildenv.2024.111250_bib94
  article-title: Experimental characterization of active acoustic metamaterial cell with controllable dynamic density
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4759327
– volume: 4
  year: 2019
  ident: 10.1016/j.buildenv.2024.111250_bib81
  article-title: Active times for acoustic metamaterials
  publication-title: Rev. Phys.
  doi: 10.1016/j.revip.2019.100031
– volume: 1
  year: 2016
  ident: 10.1016/j.buildenv.2024.111250_bib6
  article-title: Controlling sound with acoustic metamaterials
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.1
– year: 2014
  ident: 10.1016/j.buildenv.2024.111250_bib58
  article-title: Acoustic metamaterial panel composed of funnel-shaped cell unit having multi-band negative material properties
– volume: 4
  start-page: 7038
  year: 2014
  ident: 10.1016/j.buildenv.2024.111250_bib92
  article-title: Acoustic rainbow trapping by coiling up space
  publication-title: Sci. Rep.
  doi: 10.1038/srep07038
– volume: 106
  year: 2015
  ident: 10.1016/j.buildenv.2024.111250_bib127
  article-title: A lightweight yet sound-proof honeycomb acoustic metamaterial
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4919235
– volume: 99
  year: 2019
  ident: 10.1016/j.buildenv.2024.111250_bib141
  article-title: Ultra-open acoustic metamaterial silencer based on Fano-like interference
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.024302
– year: 2012
  ident: 10.1016/j.buildenv.2024.111250_bib4
  article-title: Highly tunable acoustic metamaterials based on a resonant tubular array
  publication-title: Phys. Rev. B Condens. Matter
  doi: 10.1103/PhysRevB.86.184302
– year: 2017
  ident: 10.1016/j.buildenv.2024.111250_bib45
  article-title: Dynamic homogenization theory for nonlocal acoustic metamaterials
  publication-title: Extrem. Mech. Lett.
  doi: 10.1016/j.eml.2016.10.006
– volume: 5
  start-page: 1414
  year: 2015
  ident: 10.1016/j.buildenv.2024.111250_bib38
  article-title: A computationally-efficient numerical model to characterize the noise behavior of metal-framed walls
  publication-title: Metals
  doi: 10.3390/met5031414
– volume: 480
  year: 2020
  ident: 10.1016/j.buildenv.2024.111250_bib88
  article-title: Vibration isolation by novel meta-design of pyramid-core lattice sandwich structures
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2020.115377
– year: 2019
  ident: 10.1016/j.buildenv.2024.111250_bib2
  article-title: Acoustic performance of metallic foams
– year: 2007
  ident: 10.1016/j.buildenv.2024.111250_bib43
  article-title: Dynamic mass density and acoustic metamaterials
  publication-title: Phys. B Condens. Matter
  doi: 10.1016/j.physb.2006.12.046
– volume: 159
  year: 2020
  ident: 10.1016/j.buildenv.2024.111250_bib138
  article-title: Ventilated acoustic metamaterial window panels for simultaneous noise shielding and air circulation
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2019.107088
– year: 2018
  ident: 10.1016/j.buildenv.2024.111250_bib71
  article-title: Broadband compact acoustic absorber with high-efficiency ventilation performance
  publication-title: Appl. Phys. Lett.
– year: 2020
  ident: 10.1016/j.buildenv.2024.111250_bib48
  article-title: A review of acoustic metamaterials and phononic crystals
  publication-title: Crystals
– volume: 151
  start-page: 30
  year: 2019
  ident: 10.1016/j.buildenv.2024.111250_bib65
  article-title: Targeted sound attenuation capacity of 3D printed noise cancelling waveguides
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2019.03.008
– year: 2018
  ident: 10.1016/j.buildenv.2024.111250_bib59
  article-title: Low frequency wide band sound absorption performance of asymmetric type acoustic metamaterials
  publication-title: Zhendong Yu Chongji/Journal Vib. Shock.
– volume: 39
  year: 2020
  ident: 10.1016/j.buildenv.2024.111250_bib146
  article-title: Ultra-open ventilated metamaterial absorbers for sound-silencing applications in environment with free air flows
  publication-title: Extrem. Mech. Lett.
  doi: 10.1016/j.eml.2020.100786
– volume: 40
  start-page: 148
  year: 1966
  ident: 10.1016/j.buildenv.2024.111250_bib153
  article-title: Absorption of sound in air versus humidity and temperature
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1910031
– volume: 11
  year: 2021
  ident: 10.1016/j.buildenv.2024.111250_bib80
  article-title: Study on broadband low-frequency sound insulation of multi-channel resonator acoustic metamaterials
  publication-title: AIP Adv.
  doi: 10.1063/5.0047416
– volume: 100
  year: 2012
  ident: 10.1016/j.buildenv.2024.111250_bib86
  article-title: Omnidirectional broadband acoustic absorber based on metamaterials
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3701611
– year: 2017
  ident: 10.1016/j.buildenv.2024.111250_bib118
  article-title: Experimental demonstration of one-dimensional active plate-type acoustic metamaterial with adaptive programmable density
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4979020
– volume: 17
  start-page: L021003
  year: 2022
  ident: 10.1016/j.buildenv.2024.111250_bib91
  article-title: Programmable rainbow trapping and band-gap enhancement via spatial group-velocity tailoring in elastic metamaterials
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.17.L021003
– year: 2022
  ident: 10.1016/j.buildenv.2024.111250_bib155
  article-title: The low frequency structure-borne sound problem in multi-storey timber buildings and potential of acoustic metamaterials: a review
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2022.109531
– volume: 376
  start-page: 1489
  year: 2012
  ident: 10.1016/j.buildenv.2024.111250_bib122
  article-title: Theoretical investigation of the sound attenuation of membrane-type acoustic metamaterials
  publication-title: Phys. Lett.
  doi: 10.1016/j.physleta.2012.03.010
– year: 2016
  ident: 10.1016/j.buildenv.2024.111250_bib101
  article-title: Acoustic metamaterials capable of both sound insulation and energy harvesting
  publication-title: Smart Mater. Struct.
– start-page: 4870
  year: 2019
  ident: 10.1016/j.buildenv.2024.111250_bib130
  article-title: Design of acoustic partitions with thin plate-like acoustic metamaterials
– year: 2015
  ident: 10.1016/j.buildenv.2024.111250_bib12
– volume: 105
  year: 2014
  ident: 10.1016/j.buildenv.2024.111250_bib75
  article-title: Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4895617
– volume: 13
  start-page: 873
  year: 2014
  ident: 10.1016/j.buildenv.2024.111250_bib77
  article-title: Acoustic metasurface with hybrid resonances
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3994
– year: 2018
  ident: 10.1016/j.buildenv.2024.111250_bib117
  article-title: A review of tunable acoustic metamaterials
  publication-title: Appl. Sci.
– year: 2016
  ident: 10.1016/j.buildenv.2024.111250_bib41
  article-title: Acoustic metamaterials
  publication-title: Phys. Today
  doi: 10.1063/PT.3.3198
– year: 2018
  ident: 10.1016/j.buildenv.2024.111250_bib37
– volume: 141
  start-page: 840
  year: 2017
  ident: 10.1016/j.buildenv.2024.111250_bib95
  article-title: Membrane acoustic metamaterial absorbers with magnetic negative stiffness
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4976042
– year: 2018
  ident: 10.1016/j.buildenv.2024.111250_bib107
  article-title: Plate-type acoustic metamaterial with cavities coupled via an orifice for enhanced sound transmission loss
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5019602
– volume: 401
  start-page: 190
  year: 2017
  ident: 10.1016/j.buildenv.2024.111250_bib137
  article-title: On the sound insulation of acoustic metasurface using a sub-structuring approach
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2017.04.042
– year: 2017
  ident: 10.1016/j.buildenv.2024.111250_bib108
  article-title: A comparative study on the acoustic behaviour of free-standing curved and flat single panel screens in an open-plan enclosed environment
– ident: 10.1016/j.buildenv.2024.111250_bib67
– volume: 47
  year: 2021
  ident: 10.1016/j.buildenv.2024.111250_bib17
  article-title: Fused deposition modelling: current status, methodology, applications and future prospects
  publication-title: Addit. Manuf.
– year: 2019
  ident: 10.1016/j.buildenv.2024.111250_bib69
  article-title: Improvement of the sound absorption of flexible micro-perforated panels by local resonances
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.07.046
– year: 2018
  ident: 10.1016/j.buildenv.2024.111250_bib76
  article-title: Acoustic perfect absorbers via spiral metasurfaces with embedded apertures
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5063289
– volume: 1
  year: 2016
  ident: 10.1016/j.buildenv.2024.111250_bib89
  article-title: Planar gradient metamaterials
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.67
– year: 2015
  ident: 10.1016/j.buildenv.2024.111250_bib52
  article-title: Acoustic metamaterial absorbers based on multilayered sonic crystals
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4915346
– volume: 145
  year: 2023
  ident: 10.1016/j.buildenv.2024.111250_bib16
  article-title: Influence of wire feed speed and torch speed on the mechanical properties of wire arc additively manufactured stainless steel
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4063108
– year: 2016
  ident: 10.1016/j.buildenv.2024.111250_bib112
  article-title: Modeling and design of two-dimensional membrane-type active acoustic metamaterials with tunable anisotropic density
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4966627
– volume: 149
  start-page: 156
  year: 2019
  ident: 10.1016/j.buildenv.2024.111250_bib132
  article-title: Plate-type acoustic metamaterials: evaluation of a large-scale design adopting modularity for customizable acoustical performance
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2019.01.027
– volume: 11
  start-page: 5829
  year: 2021
  ident: 10.1016/j.buildenv.2024.111250_bib99
  article-title: Bilayer ventilated labyrinthine metasurfaces with high sound absorption and tunable bandwidth
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-84986-0
– volume: 114
  start-page: 985
  year: 2014
  ident: 10.1016/j.buildenv.2024.111250_bib125
  article-title: Theoretical model and analytical approach for a circular membrane–ring structure of locally resonant acoustic metamaterial
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-013-8047-y
– volume: 132
  start-page: 2784
  year: 2012
  ident: 10.1016/j.buildenv.2024.111250_bib126
  article-title: Scaling of membrane-type locally resonant acoustic metamaterial arrays
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4744941
– year: 2013
  ident: 10.1016/j.buildenv.2024.111250_bib27
– year: 2017
  ident: 10.1016/j.buildenv.2024.111250_bib53
  article-title: Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound
  publication-title: Sci. Rep.
– ident: 10.1016/j.buildenv.2024.111250_bib30
– volume: 11
  start-page: 1423
  year: 2003
  ident: 10.1016/j.buildenv.2024.111250_bib35
  article-title: Application of active noise control to an elevator cabin
  publication-title: Control Eng. Pract.
  doi: 10.1016/S0967-0661(03)00077-7
– volume: 111
  year: 2017
  ident: 10.1016/j.buildenv.2024.111250_bib143
  article-title: Omnidirectional ventilated acoustic barrier
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4993891
– volume: 205
  year: 2023
  ident: 10.1016/j.buildenv.2024.111250_bib144
  article-title: Ventilated acoustic meta-barrier based on layered Helmholtz resonators
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2023.109263
– year: 2019
  ident: 10.1016/j.buildenv.2024.111250_bib54
  article-title: Ultrasparse acoustic absorbers enabling fluid flow and visible-light controls
  publication-title: Phys. Rev. Appl.
– year: 2008
  ident: 10.1016/j.buildenv.2024.111250_bib19
  article-title: Membrane-type acoustic metamaterial with negative dynamic mass
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.204301
– volume: 11
  year: 2021
  ident: 10.1016/j.buildenv.2024.111250_bib83
  article-title: Acoustic behaviour of 3D printed titanium perforated panels
  publication-title: Results Eng
  doi: 10.1016/j.rineng.2021.100252
– year: 2007
  ident: 10.1016/j.buildenv.2024.111250_bib50
  article-title: Method for retrieving effective properties of locally resonant acoustic metamaterials
  publication-title: Phys. Rev. B Condens. Matter
  doi: 10.1103/PhysRevB.76.144302
– year: 2018
  ident: 10.1016/j.buildenv.2024.111250_bib106
  article-title: Bi-layer plate-Type acoustic metamaterials with Willis coupling
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4991426
– volume: 96
  year: 2010
  ident: 10.1016/j.buildenv.2024.111250_bib121
  article-title: Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime
  publication-title: Appl. Phys. Lett.
– volume: 36
  start-page: 223
  year: 1988
  ident: 10.1016/j.buildenv.2024.111250_bib154
  article-title: Environmental effects on the speed of sound
  publication-title: J. Audio Eng. Soc.
– year: 2021
  ident: 10.1016/j.buildenv.2024.111250_bib82
  article-title: Characteristics of acoustic metamaterials
– volume: 6
  year: 2016
  ident: 10.1016/j.buildenv.2024.111250_bib85
  article-title: Experimental study on the sound absorption characteristics of continuously graded phononic crystals
  publication-title: AIP Adv.
  doi: 10.1063/1.4965923
– year: 2018
  ident: 10.1016/j.buildenv.2024.111250_bib57
  article-title: Honeycomb locally resonant absorbing acoustic metamaterials with stop band behavior
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/aadbe2
– volume: 13
  year: 2020
  ident: 10.1016/j.buildenv.2024.111250_bib147
  article-title: Broadband acoustic ventilation barriers
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.13.044028
– year: 2013
  ident: 10.1016/j.buildenv.2024.111250_bib103
  article-title: Coupled membranes with doubly negative mass density and bulk modulus
  publication-title: Phys. Rev. Lett.
– volume: 19
  start-page: 68
  year: 2019
  ident: 10.1016/j.buildenv.2024.111250_bib64
  article-title: Acoustic absorption of passive destructive interference cavities
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2018.12.012
– volume: 112
  year: 2018
  ident: 10.1016/j.buildenv.2024.111250_bib142
  article-title: High-efficiency ventilated metamaterial absorber at low frequency
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5025114
– volume: 273
  year: 2021
  ident: 10.1016/j.buildenv.2024.111250_bib133
  article-title: Sound insulation performance of sandwich structure compounded with a resonant acoustic metamaterial
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2021.114312
– volume: 46
  year: 2021
  ident: 10.1016/j.buildenv.2024.111250_bib139
  article-title: Ventilated metamaterials for broadband sound insulation and tunable transmission at low frequency
  publication-title: Extrem. Mech. Lett.
  doi: 10.1016/j.eml.2021.101348
– year: 2016
  ident: 10.1016/j.buildenv.2024.111250_bib20
– year: 2019
  ident: 10.1016/j.buildenv.2024.111250_bib68
  article-title: Synergetic coupling large-scale plate-type acoustic metamaterial panel for broadband sound insulation
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2019.114867
– volume: 37
  start-page: 471
  year: 2002
  ident: 10.1016/j.buildenv.2024.111250_bib135
  article-title: Noise control strategies for naturally ventilated buildings
  publication-title: Build. Environ.
  doi: 10.1016/S0360-1323(01)00047-6
SSID ssj0016934
Score 2.664323
SecondaryResourceType review_article
Snippet Despite the emergence of acoustic metamaterials with superior sound absorption and transmission loss, their adoption for building sound insulation has been...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111250
SubjectTerms Acoustic metamaterials
Building design
Sound insulation
Sound reduction
Ventilation
Title Acoustic metamaterials for sound absorption and insulation in buildings
URI https://dx.doi.org/10.1016/j.buildenv.2024.111250
Volume 251
WOSCitedRecordID wos001171412100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-684X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016934
  issn: 0360-1323
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECUap4f0UHRFk7QFD70VcmVtFI9q4W6HoIe08E0YLkJqJLIh2UE-P8NFi9ugSQ69CAIhkqLmefxIDucR8k6HgJOumQpkomSQKA0BILEOZsBDyGZaVxFYsQl2cpIvFvyH3zFtrZwAq-v86oqv_6upsQyNbY7O3sPcfaNYgPdodLyi2fF6J8MXcmUVuow4NCAfdX3acMLWaCi9B9GuGucpXOql1kt4mbUP4WWy253dXl9onx8djRvQstx6neOi2fZw-wjNaruBpQ0YKM4uQA3bO8Ops3Ew8C-DQfs0NB4vfkUiSoaQrP4kVhjgLDcee9nI55V1fhI9bOQSzv7lwt1qwnJqx4tDmpoupkOF3ZzZf_yX9RGGXfDasuzaKU07pWtnj-xHLOXoBfeLb_PF937fKeOxTzjmRjA6U37zG91MZ0YU5fQJeeznFrRwmHhKHuj6GXk0yjj5nHzp0EF30EERHdSigw7ooGhtOqADb2mPjhfk5-f56aevgdfSwB9hlG0CyGTF85gJSEQuWJhoiBUOUKokzqTOKi1UBcjmZmbNABjXSS6RLKsK-SVL0vglmdSrWr8itIozEeo8hRDn7orHeRWJCmmh0BmTLEwPSdp9klL6RPNG7-S8_LdRDsmHvt7apVq5tQbvvnjpCaMjgiWC6Za6R_fu7ZgcDGh_TSabZqvfkIfycvO7bd56JF0D0gWTBQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acoustic+metamaterials+for+sound+absorption+and+insulation+in+buildings&rft.jtitle=Building+and+environment&rft.au=Arjunan%2C+Arun&rft.au=Baroutaji%2C+Ahmad&rft.au=Robinson%2C+John&rft.au=Vance%2C+Aaron&rft.date=2024-03-01&rft.issn=0360-1323&rft.volume=251&rft.spage=111250&rft_id=info:doi/10.1016%2Fj.buildenv.2024.111250&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_buildenv_2024_111250
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon