Robust Gain-Scheduled PID Control: A Parameter Dependent BMI Solution

In control practices, problems of parametric or time-varying uncertainties must be dealt with. Robust control based on norm theory and convex and non-convex optimization algorithms is a powerful tool to solve these problems in theory, but it is employed rarely in applications. In most engineering ca...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Cybernetics and information technologies : CIT Ročník 20; číslo 1; s. 156 - 167
Hlavní autoři: Shao, Pengyuan, Wu, Jin, Ma, Songhui
Médium: Journal Article
Jazyk:angličtina
Vydáno: Sofia Sciendo 01.03.2020
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Témata:
ISSN:1314-4081, 1311-9702, 1314-4081
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In control practices, problems of parametric or time-varying uncertainties must be dealt with. Robust control based on norm theory and convex and non-convex optimization algorithms is a powerful tool to solve these problems in theory, but it is employed rarely in applications. In most engineering cases, Proportional-Integration-Derivative (PID) control is still the most popular method for its easy-to-tune and controllable properties. The control method proposed in this paper integrates the PID control into robust control formulation as a robust Structured Static Output Feedback (SSOF) problem of Linear-Parameter-Varying (LPV) systems, which can be converted into a Parameter Dependent Bilinear-Matrix-Inequality (PDBMI) optimization problem. A convex-concave decomposition based method is given to solve the proposed PDBMI problem. The proposed solution has a simple structure in PID form and can guarantee stability and robustness of the system being controlled in the whole operation range with less conservativeness than existing solution.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1314-4081
1311-9702
1314-4081
DOI:10.2478/cait-2020-0011