Enhancing the prediction of student performance based on the machine learning XGBoost algorithm

Performance Factors Analysis (PFA) is considered one of the most important Knowledge Tracing (KT) approaches used for constructing adaptive educational hypermedia systems. It has shown a high prediction accuracy against many other KT approaches. While, the desire to estimate more accurately the stud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Interactive learning environments Jg. 31; H. 6; S. 3360 - 3379
Hauptverfasser: Asselman, Amal, Khaldi, Mohamed, Aammou, Souhaib
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Abingdon Routledge 18.08.2023
Taylor & Francis Ltd
Schlagworte:
ISSN:1049-4820, 1744-5191
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Performance Factors Analysis (PFA) is considered one of the most important Knowledge Tracing (KT) approaches used for constructing adaptive educational hypermedia systems. It has shown a high prediction accuracy against many other KT approaches. While, the desire to estimate more accurately the student level leads researchers to enhance PFA by inventing several advanced extensions. However, most of the proposed extensions have exclusively been improved in a pedagogical sense, as the improvements have mostly been limited to the analysis of students' behaviour during their learning process. In contrast, Machine Learning provides many powerful methods that could be efficient to enhance, in the technical sense, the prediction of student performance. Our goal is to focus on the exploitation of Ensemble Learning methods as an extremely effective Machine Learning paradigm used to create many advanced solutions in several fields. In this sense, we propose a new PFA approach based on different models (Random Forest, AdaBoost, and XGBoost) in order to increase the predictive accuracy of student performance. Our models have been evaluated on three different datasets. The experimental results show that the scalable XGBoost has outperformed the other evaluated models and substantially improved the performance prediction compared to the original PFA algorithm.
AbstractList Performance Factors Analysis (PFA) is considered one of the most important Knowledge Tracing (KT) approaches used for constructing adaptive educational hypermedia systems. It has shown a high prediction accuracy against many other KT approaches. While, the desire to estimate more accurately the student level leads researchers to enhance PFA by inventing several advanced extensions. However, most of the proposed extensions have exclusively been improved in a pedagogical sense, as the improvements have mostly been limited to the analysis of students’ behaviour during their learning process. In contrast, Machine Learning provides many powerful methods that could be efficient to enhance, in the technical sense, the prediction of student performance. Our goal is to focus on the exploitation of Ensemble Learning methods as an extremely effective Machine Learning paradigm used to create many advanced solutions in several fields. In this sense, we propose a new PFA approach based on different models (Random Forest, AdaBoost, and XGBoost) in order to increase the predictive accuracy of student performance. Our models have been evaluated on three different datasets. The experimental results show that the scalable XGBoost has outperformed the other evaluated models and substantially improved the performance prediction compared to the original PFA algorithm.
Audience Junior High Schools
High Schools
Middle Schools
Secondary Education
Author Asselman, Amal
Khaldi, Mohamed
Aammou, Souhaib
Author_xml – sequence: 1
  givenname: Amal
  orcidid: 0000-0003-3960-2407
  surname: Asselman
  fullname: Asselman, Amal
  email: asselman.amal@gmail.com
  organization: Abdelmalek Essaadi University
– sequence: 2
  givenname: Mohamed
  orcidid: 0000-0002-1593-1073
  surname: Khaldi
  fullname: Khaldi, Mohamed
  organization: Abdelmalek Essaadi University
– sequence: 3
  givenname: Souhaib
  orcidid: 0000-0002-4000-2073
  surname: Aammou
  fullname: Aammou, Souhaib
  organization: Abdelmalek Essaadi University
BackLink http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1397277$$DView record in ERIC
BookMark eNqFkUtLKzEUx4Mo-PwIQsD11DxmmglufFC9VwQ3Cu5CmpzYyDSpSYr029-M1Y0LL2eRA__HgV8O0W6IARA6pWRCSU_OKWll2zMyYYTRCZWsZ7zbQQdUtG3TUUl36149zWjaR4c5vxFCWz5tD5CahYUOxodXXBaAVwmsN8XHgKPDuawthIJXkFxMy-oDPNcZLK76aF9qs_AB8AA6hbHj5e46xlywHl5j8mWxPEZ7Tg8ZTr7eI_R8O3u6-dM8PN79vbl6aEzLpqXpXCusYRwEF3NwRnRaO-ssY30HfVW0GEdIkNZ0ICVjlFNO7FyDoG7Kj9DZtneV4vsaclFvcZ1CPalqBZ9KwSmtrtOtC5I3apX8UqeNmt1TLgUTouoXW92kmHMCp4wvesRRkvaDokSNxNU3cTUSV1_Ea7r7kf6-8L_c5Tbnwyfmj5gGq4reDDG5NP5OVvz3in_n1Zma
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3454770
crossref_primary_10_1007_s11042_022_14083_5
crossref_primary_10_3390_make6010022
crossref_primary_10_3390_math11224602
crossref_primary_10_1016_j_ijhydene_2025_02_342
crossref_primary_10_1007_s42979_024_03622_6
crossref_primary_10_1038_s41598_025_92556_x
crossref_primary_10_1038_s41598_025_99342_9
crossref_primary_10_1016_j_scs_2025_106350
crossref_primary_10_1080_10543406_2022_2148162
crossref_primary_10_3390_risks12120185
crossref_primary_10_3390_rs17020240
crossref_primary_10_59940_jismar_1604942
crossref_primary_10_1016_j_agwat_2025_109615
crossref_primary_10_3390_asi6010031
crossref_primary_10_1016_j_foodchem_2024_142604
crossref_primary_10_2478_amns_2024_2103
crossref_primary_10_1177_23998083241274381
crossref_primary_10_3390_jsan13050064
crossref_primary_10_2478_orga_2025_0018
crossref_primary_10_3389_fdata_2024_1518939
crossref_primary_10_1016_j_procs_2025_04_253
crossref_primary_10_1080_09540091_2025_2549581
crossref_primary_10_1016_j_compbiomed_2024_109240
crossref_primary_10_1108_MMMS_12_2024_0387
crossref_primary_10_12688_openreseurope_18878_1
crossref_primary_10_3389_fenvs_2025_1577298
crossref_primary_10_1016_j_health_2024_100373
crossref_primary_10_1016_j_optcom_2024_131304
crossref_primary_10_1142_S1469026824500275
crossref_primary_10_1016_j_jpdc_2025_105119
crossref_primary_10_3390_math12142231
crossref_primary_10_1007_s12033_024_01328_x
crossref_primary_10_1007_s10763_025_10545_y
crossref_primary_10_3389_fdata_2024_1449572
crossref_primary_10_3390_rs17071315
crossref_primary_10_2174_0123520965312805240506113451
crossref_primary_10_1080_07391102_2023_2194994
crossref_primary_10_1007_s10614_024_10620_6
crossref_primary_10_1016_j_vehcom_2025_100956
crossref_primary_10_1109_ACCESS_2025_3580065
crossref_primary_10_1109_TSM_2025_3559301
crossref_primary_10_1109_JSTARS_2024_3504713
crossref_primary_10_1186_s13321_025_00952_2
crossref_primary_10_1016_j_engappai_2024_108688
crossref_primary_10_1038_s41598_025_17487_z
crossref_primary_10_1109_ACCESS_2024_3496791
crossref_primary_10_1371_journal_pone_0322287
crossref_primary_10_1002_cem_3603
crossref_primary_10_3390_batteries11060207
crossref_primary_10_1016_j_seppur_2023_126023
crossref_primary_10_3390_digital5020016
crossref_primary_10_17798_bitlisfen_1636812
crossref_primary_10_1016_j_ijleo_2024_172088
crossref_primary_10_2478_amns_2023_2_00292
crossref_primary_10_3389_feart_2024_1399602
crossref_primary_10_1002_pc_28801
crossref_primary_10_3390_bioengineering11101016
crossref_primary_10_3390_math12223597
crossref_primary_10_1016_j_ibmed_2025_100209
crossref_primary_10_1108_IDD_08_2024_0120
crossref_primary_10_1155_2024_4105224
crossref_primary_10_3390_info16070520
crossref_primary_10_1007_s42452_025_06810_y
crossref_primary_10_1002_eng2_12599
crossref_primary_10_1177_03091333251349991
crossref_primary_10_1371_journal_pone_0325449
crossref_primary_10_1038_s41598_025_92019_3
crossref_primary_10_1016_j_ijer_2025_102537
crossref_primary_10_1016_j_jhydrol_2024_132337
crossref_primary_10_1007_s10664_025_10692_4
crossref_primary_10_1177_09544062251343470
crossref_primary_10_1016_j_microc_2024_111666
crossref_primary_10_1080_03772063_2025_2519541
crossref_primary_10_3390_tropicalmed9090216
crossref_primary_10_3390_math12244041
crossref_primary_10_1007_s10639_022_11447_0
crossref_primary_10_1016_j_ipm_2025_104351
crossref_primary_10_1007_s10639_024_12976_6
crossref_primary_10_1007_s44163_023_00079_z
crossref_primary_10_1007_s42001_023_00202_1
crossref_primary_10_3390_land14030564
crossref_primary_10_1016_j_im_2024_103946
crossref_primary_10_1007_s11664_025_12333_4
crossref_primary_10_1016_j_physa_2024_129795
crossref_primary_10_1007_s11042_024_18135_w
crossref_primary_10_35860_iarej_1679575
crossref_primary_10_3389_fenrg_2024_1401978
crossref_primary_10_1109_ACCESS_2024_3519219
crossref_primary_10_3390_en18051239
crossref_primary_10_1002_bsd2_70039
crossref_primary_10_1371_journal_pone_0307221
crossref_primary_10_3390_electronics13050920
crossref_primary_10_1007_s11042_024_18262_4
crossref_primary_10_12720_jait_16_8_1187_1193
crossref_primary_10_1007_s12553_022_00706_2
crossref_primary_10_1016_j_jobe_2024_111429
crossref_primary_10_3390_math12101455
crossref_primary_10_21015_vtse_v11i4_1647
crossref_primary_10_3390_jintelligence12120124
crossref_primary_10_3390_systems13090808
crossref_primary_10_1016_j_rsase_2024_101231
crossref_primary_10_1186_s13071_022_05526_x
crossref_primary_10_1016_j_surfin_2025_106795
crossref_primary_10_1111_ejss_13368
crossref_primary_10_3390_electronics14030458
crossref_primary_10_1109_TITS_2023_3337858
crossref_primary_10_12688_f1000research_165342_1
crossref_primary_10_1186_s12963_025_00410_z
crossref_primary_10_1155_2022_1858300
crossref_primary_10_53759_7669_jmc202505198
crossref_primary_10_1080_23249935_2024_2362362
crossref_primary_10_1016_j_eja_2025_127557
crossref_primary_10_1002_aws2_70025
crossref_primary_10_3389_fbuil_2024_1509714
crossref_primary_10_5753_rbie_2025_5127
crossref_primary_10_1007_s10639_025_13614_5
crossref_primary_10_1080_10494820_2023_2232823
crossref_primary_10_1016_j_jwpe_2024_105212
crossref_primary_10_1111_phn_13264
crossref_primary_10_4018_IJITSA_380659
crossref_primary_10_3389_fphy_2024_1476618
crossref_primary_10_1109_TKDE_2024_3393472
crossref_primary_10_1016_j_learninstruc_2025_102210
crossref_primary_10_1007_s41976_024_00184_2
crossref_primary_10_1080_1448837X_2024_2423982
crossref_primary_10_1080_10916466_2025_2477648
crossref_primary_10_1080_19476337_2024_2324024
crossref_primary_10_1016_j_eswa_2024_126268
crossref_primary_10_1155_2022_2206689
crossref_primary_10_3390_app112210639
crossref_primary_10_3233_JIFS_224279
crossref_primary_10_3390_ijms241713548
crossref_primary_10_1016_j_eswa_2025_128724
crossref_primary_10_1007_s40031_025_01240_1
crossref_primary_10_2478_pomr_2024_0030
crossref_primary_10_1007_s11257_025_09426_4
crossref_primary_10_1016_j_egyr_2025_05_059
crossref_primary_10_3389_fgene_2024_1491602
crossref_primary_10_1080_00387010_2025_2501766
crossref_primary_10_1155_2022_4064135
crossref_primary_10_1186_s13065_024_01351_8
crossref_primary_10_1080_08839514_2024_2385856
crossref_primary_10_1007_s43503_025_00052_y
crossref_primary_10_1016_j_omega_2024_103247
crossref_primary_10_1080_19376812_2024_2424378
crossref_primary_10_3390_diagnostics14070723
crossref_primary_10_1186_s12911_024_02683_0
crossref_primary_10_1016_j_rsase_2024_101335
crossref_primary_10_1186_s12913_025_12502_5
crossref_primary_10_1002_qj_4880
crossref_primary_10_3390_bioengineering11100986
crossref_primary_10_3390_diagnostics14222497
crossref_primary_10_1016_j_heliyon_2024_e32570
crossref_primary_10_2478_fcds_2025_0009
crossref_primary_10_3389_frai_2025_1553220
crossref_primary_10_1007_s12525_025_00806_7
crossref_primary_10_1109_ACCESS_2023_3336987
crossref_primary_10_1007_s40996_025_02003_0
crossref_primary_10_1371_journal_pone_0323345
crossref_primary_10_4018_IJITSA_343316
crossref_primary_10_3390_app14188225
crossref_primary_10_1007_s00521_024_09992_5
crossref_primary_10_1016_j_conbuildmat_2025_140628
crossref_primary_10_3390_s24041092
crossref_primary_10_1016_j_ecoinf_2024_102849
crossref_primary_10_1109_ACCESS_2024_3365499
crossref_primary_10_1007_s11042_024_18426_2
crossref_primary_10_1002_dac_70034
crossref_primary_10_1109_ACCESS_2025_3600092
crossref_primary_10_1038_s41598_025_12353_4
crossref_primary_10_1007_s42979_024_03525_6
crossref_primary_10_1007_s10586_024_05087_x
crossref_primary_10_1177_00332941251343544
crossref_primary_10_1016_j_mex_2024_103148
crossref_primary_10_1007_s44163_025_00433_3
Cites_doi 10.1016/j.procs.2015.12.157
10.1109/ICDM.2018.00156
10.1145/3340631.3398668
10.1007/978-3-540-69132-7_44
10.1007/BF01099821
10.2196/10212
10.1145/3231644.3231675
10.1006/jcss.1997.1504
10.1007/s10639-019-10077-3
10.1007/s11257-009-9063-7
10.1007/s11257-017-9193-2
10.1007/978-0-387-73003-5_293
10.1007/978-3-642-13470-8_24
10.1007/978-3-319-12895-5_1
10.1145/2939672.2939785
10.1145/3303772.3303827
10.25046/aj030310
10.1214/aos/1013203451
10.1201/b12207
10.1007/s10462-018-9620-8
10.1007/978-3-642-22362-4_21
10.1007/s11042-005-6538-3
10.1007/978-3-642-39112-5_19
10.1007/BF00058655
10.1109/ACCESS.2018.2818678
10.1007/978-3-030-13743-4_11
10.17265/2159-5313/2016.09.003
10.1016/j.compedu.2010.07.010
10.1016/j.inffus.2013.04.006
10.1007/978-3-540-72079-9_1
ContentType Journal Article
Copyright 2021 Informa UK Limited, trading as Taylor & Francis Group 2021
2021 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2021 Informa UK Limited, trading as Taylor & Francis Group 2021
– notice: 2021 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SW
BJH
BNH
BNI
BNJ
BNO
ERI
PET
REK
WWN
AHOVV
DOI 10.1080/10494820.2021.1928235
DatabaseName CrossRef
ERIC
ERIC (Ovid)
ERIC
ERIC
ERIC (Legacy Platform)
ERIC( SilverPlatter )
ERIC
ERIC PlusText (Legacy Platform)
Education Resources Information Center (ERIC)
ERIC
Education Research Index
DatabaseTitle CrossRef
ERIC
DatabaseTitleList

ERIC
DeliveryMethod fulltext_linktorsrc
Discipline Education
Physics
Mathematics
EISSN 1744-5191
ERIC EJ1397277
EndPage 3379
ExternalDocumentID EJ1397277
10_1080_10494820_2021_1928235
1928235
Genre Research Article
GroupedDBID .7I
.DC
.GO
.QK
0BK
0R~
29J
4.4
5VS
AAGDL
AAGZJ
AAHIA
AAHSB
AAMFJ
AAMIU
AAPUL
AATTQ
AAZJI
AAZMC
ABCCY
ABFIM
ABIVO
ABJNI
ABLIJ
ABPEM
ABTAI
ABXUL
ABXYU
ABZLS
ACGFS
ACHQT
ACTIO
ACTOA
ADAHI
ADCVX
ADKVQ
ADLRE
ADMLS
ADXPE
AECIN
AEFOU
AEISY
AEKEX
AEMXT
AEOZL
AEPSL
AEYOC
AEZRU
AFRVT
AGDLA
AGMYJ
AGRBW
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQTUD
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CQ1
CS3
DGFLZ
DKSSO
DU5
EBS
E~B
E~C
G-F
GTTXZ
H13
HF~
HZ~
IPNFZ
J.O
KYCEM
LJTGL
M4Z
NA5
NX.
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RSYQP
S-F
STATR
TASJS
TBQAZ
TDBHL
TED
TFH
TFL
TFW
TNTFI
TRJHH
TUROJ
UT5
UT9
VAE
~01
~S~
AAYXX
CITATION
07N
1TA
4B4
7SW
AAELO
AAMUQ
ABIFC
ACDYK
ACMAZ
ADQZN
AEHJO
AEWWQ
AFNSQ
AFRRA
AFYVU
AGDNC
AGEYI
AHUAE
AJQZJ
AKCKI
ASRXX
AYGLJ
BJH
BNH
BNI
BNJ
BNO
BRMHY
BUAEY
BWQWQ
C5G
CAG
COF
C~Y
DADXH
DCMBD
EJD
EORKJ
ERI
HLD
HTOLE
IBTYS
L7Z
ONUMK
PET
REK
TBA
TZEDD
UA4
WWN
AHOVV
ID FETCH-LOGICAL-c426t-5f47dc23e737befc75aafdfd2285e8dc2a7a7a779e9dc5e992213130dbae71f63
IEDL.DBID TFW
ISICitedReferencesCount 222
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000652383900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1049-4820
IngestDate Sun Jul 27 14:27:39 EDT 2025
Tue Dec 02 16:47:53 EST 2025
Tue Nov 18 22:12:49 EST 2025
Sat Nov 29 05:32:07 EST 2025
Mon Oct 20 23:45:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess false
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-5f47dc23e737befc75aafdfd2285e8dc2a7a7a779e9dc5e992213130dbae71f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4000-2073
0000-0002-1593-1073
0000-0003-3960-2407
0000-0002-6224-0929
PQID 2853697311
PQPubID 436408
PageCount 20
ParticipantIDs informaworld_taylorfrancis_310_1080_10494820_2021_1928235
proquest_journals_2853697311
crossref_citationtrail_10_1080_10494820_2021_1928235
crossref_primary_10_1080_10494820_2021_1928235
eric_primary_EJ1397277
PublicationCentury 2000
PublicationDate 2023-08-18
PublicationDateYYYYMMDD 2023-08-18
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-18
  day: 18
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Interactive learning environments
PublicationYear 2023
Publisher Routledge
Taylor & Francis Ltd
Publisher_xml – name: Routledge
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
Khajah M. M. (CIT0019) 2014; 1181
CIT0031
CIT0012
CIT0034
CIT0011
CIT0033
Hambleton R. K. (CIT0017) 1991
Rihák J. (CIT0036) 2015
Pardos Z. A. (CIT0029) 2013; 4
CIT0014
Gong Y. (CIT0015) 2011; 21
CIT0013
CIT0038
CIT0037
CIT0018
CIT0039
Xiong X. (CIT0043) 2016
CIT0041
CIT0040
Koedinger K. R. (CIT0021) 2010; 43
CIT0042
CIT0001
CIT0023
CIT0045
CIT0022
CIT0044
González-Brenes J. (CIT0016) 2014
Pelánek R. (CIT0032) 2015
Piech C. (CIT0035) 2015
Papoušek J. (CIT0026) 2015
CIT0003
Koch N. P. (CIT0020) 2001
CIT0025
CIT0002
CIT0024
CIT0046
CIT0005
CIT0027
CIT0004
CIT0007
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0037
  doi: 10.1016/j.procs.2015.12.157
– ident: CIT0024
  doi: 10.1109/ICDM.2018.00156
– ident: CIT0040
  doi: 10.1145/3340631.3398668
– ident: CIT0003
  doi: 10.1007/978-3-540-69132-7_44
– ident: CIT0042
– ident: CIT0010
  doi: 10.1007/BF01099821
– year: 2015
  ident: CIT0036
  publication-title: International Educational Data Mining Society
– ident: CIT0022
  doi: 10.2196/10212
– ident: CIT0034
  doi: 10.1145/3231644.3231675
– ident: CIT0013
  doi: 10.1006/jcss.1997.1504
– year: 2015
  ident: CIT0032
  publication-title: International Educational Data Mining Society
– ident: CIT0001
  doi: 10.1007/s10639-019-10077-3
– ident: CIT0012
  doi: 10.1007/s11257-009-9063-7
– ident: CIT0033
  doi: 10.1007/s11257-017-9193-2
– ident: CIT0031
– start-page: 562
  volume-title: Proceedings of the 8th International Conference on Educational Data mining
  year: 2015
  ident: CIT0026
– ident: CIT0045
  doi: 10.1007/978-0-387-73003-5_293
– ident: CIT0027
  doi: 10.1007/978-3-642-13470-8_24
– ident: CIT0008
  doi: 10.1007/978-3-319-12895-5_1
– volume: 1181
  start-page: 7
  year: 2014
  ident: CIT0019
  publication-title: CEUR Workshop Proceedings
– ident: CIT0006
  doi: 10.1145/2939672.2939785
– start-page: 505
  volume-title: Advances in neural information processing systems
  year: 2015
  ident: CIT0035
– ident: CIT0007
  doi: 10.1145/3303772.3303827
– volume: 21
  start-page: 27
  year: 2011
  ident: CIT0015
  publication-title: International Journal of Artificial Intelligence in Education
– year: 2016
  ident: CIT0043
  publication-title: International Educational Data Mining Society
– volume-title: Fundamentals of item response theory
  year: 1991
  ident: CIT0017
– ident: CIT0039
– ident: CIT0002
  doi: 10.25046/aj030310
– ident: CIT0014
  doi: 10.1214/aos/1013203451
– volume: 43
  start-page: 43
  year: 2010
  ident: CIT0021
  publication-title: Handbook of Educational Data Mining
– ident: CIT0046
  doi: 10.1201/b12207
– volume: 4
  start-page: 3
  year: 2013
  ident: CIT0029
  publication-title: AIED 2013 Workshops Proceedings
– ident: CIT0018
  doi: 10.1007/s10462-018-9620-8
– ident: CIT0028
  doi: 10.1007/978-3-642-22362-4_21
– ident: CIT0011
  doi: 10.1007/s11042-005-6538-3
– start-page: 84
  volume-title: The 7th International Conference on Educational Data mining
  year: 2014
  ident: CIT0016
– ident: CIT0038
  doi: 10.1007/978-3-642-39112-5_19
– ident: CIT0004
  doi: 10.1007/BF00058655
– ident: CIT0044
  doi: 10.1109/ACCESS.2018.2818678
– ident: CIT0009
  doi: 10.1007/978-3-030-13743-4_11
– ident: CIT0025
  doi: 10.17265/2159-5313/2016.09.003
– ident: CIT0023
  doi: 10.1016/j.compedu.2010.07.010
– ident: CIT0041
  doi: 10.1016/j.inffus.2013.04.006
– ident: CIT0030
– volume-title: Software Engineering for adaptive hypermedia systems-reference model
  year: 2001
  ident: CIT0020
– ident: CIT0005
  doi: 10.1007/978-3-540-72079-9_1
SSID ssj0014364
Score 2.6729245
Snippet Performance Factors Analysis (PFA) is considered one of the most important Knowledge Tracing (KT) approaches used for constructing adaptive educational...
SourceID proquest
eric
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3360
SubjectTerms Academic Achievement
Accuracy
Algorithms
Artificial Intelligence
Data Analysis
ensemble learning
Factor Analysis
High School Students
Hypermedia
knowledge tracing
Learning Processes
Machine learning
Mathematics
Mathematics Instruction
Middle School Students
Performance Factors
Performance factors analysis
Performance prediction
Physics
Prediction
prediction accuracy
Student Behavior
XGBoost
Title Enhancing the prediction of student performance based on the machine learning XGBoost algorithm
URI https://www.tandfonline.com/doi/abs/10.1080/10494820.2021.1928235
http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1397277
https://www.proquest.com/docview/2853697311
Volume 31
WOSCitedRecordID wos000652383900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1744-5191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014364
  issn: 1049-4820
  databaseCode: TFW
  dateStart: 19900301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxcDCd0WhIA-sqRI76SUjoBbEUDEU0c1KYrut1CZVE_j9-BKnUCHUAZTBg32Wcrbvzvb5PUJuXeUmLii8U-fa8T3JHLNXiRzZd0MdugCcpRXZBIxG4WQSvdhswsKmVeIeWtdAEZWtxsUdJ0WTEWdKxDRhrtndMa9nQpSQcXxmblw_Ls3x8G1zj-DzCkAKJRwUad7w_NbLlneyCdBbEKY_THblh4ZH__AHx-TQBqH0rp41J2RPZafI32xzPc6IGGQzBOLIptQEiHS1xuscrKK5pkUNh0lXX28OKDpDSU09Nl9WCZqKWkaKKZ083ud5UdJ4Mc3X83K2PCevw8H44cmxVAxOalx46QTaB5kyroBDonQKQRxrqSVjYaBCUxMDfhCpSKaBQrBbjxv3KJNYgaf7vE1aWZ6pC0IBtKshkn0dJb70IJSQJqaNdrkMjAnpEL8ZApFanHKky1gIz8KZNtoTqD1htdchvY3Yqgbq2CXQxvHdNB48YzDMADok-j7ioqyOTnTNcyL4jk67zfQQ1hgUwuiI95EizLv8Q9dX5ACp7vE82wu7pFWu39U12U8_ynmxvqmm_SevWvuL
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZ4SbDwRpSnB9ZUiZ30khFQS3l1KqKblcR2iwRJ1QZ-P77EKUUIdQBlyGCfpZyde9jn7yPkwlVu4oLCM3WuHd-TzDG5SuTIlhvq0AXgLC3JJqDXCweDaP4uDJZVYg6tK6CI0lbjz42b0XVJnHkjqAlzTXrHvKaJUULGg2Wyiux0mID1O8-zkwSflxBSKOKgTH2L57dhvvknWwL9DcT0h9EuPVFn6z--YZts2jiUXlYLZ4csqWwXKZxtucceEe1shFgc2ZCaGJGOJ3iig00013RaIWLS8de1A4r-UFLTjt3fyhpNRS0pxZAObq7yfFrQ-HWYT16K0ds-eeq0-9ddx7IxOKnx4oUTaB9kyrgCDonSKQRxrKWWjIWBCk1LDPhApCKZBgrxbj1uPKRMYgWebvEDspLlmTokFEC7GiLZ0lHiSw9CCWli-miXy8BYkQbx6zkQqYUqR8aMV-FZRNNaewK1J6z2GqQ5ExtXWB2LBA5wgmed23cYDzOABonmp1wU5e6JrqhOBF8w6Em9PoS1B1NhdMRbyBLmHf1h6HOy3u0_PoiH2979MdkwTRy3t73whKwUk3d1StbSj-JlOjkr_4FPrYX_tw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8QgECa-Yrz4Nq5PDl5rWmg77dHHrs9sPGjcG2kL7Jpou9lWf79MS1eNMR40PXCAIekAMwMM30fIkavc1AWFd-pcO74nmWP2KrEjQzfSkQvAWVaTTUC_Hw0G8Z3NJixtWiXuoXUDFFHbalzcY6nbjDhTIqYJc83ujnnHJkSJGA9myXyIz4LNlL7vPU4vEnxeI0ihiIMy7SOen7r54p5sBvQXDNNvNrt2RL2Vf_iFVbJso1B60kybNTKj8nUkcLbJHhtEdPMRInHkQ2oiRDqe4H0OVtFC07LBw6Tjj0cHFL2hpKYem7_UGZqKWkqKIR1cnBZFWdHkeVhMnqrRyyZ56HXvzy4dy8XgZMaHV06gfZAZ4wo4pEpnECSJlloyFgUqMjUJ4AeximUWKES79bjxjzJNFHg65FtkLi9ytU0ogHY1xDLUcepLDyIJWWraaJfLwNiQDvHbIRCZBSpHvoxn4Vk801Z7ArUnrPY65HgqNm6QOn4T2MLxnTbuXmM0zAA6JP484qKqz050Q3Qi-C-d7rXTQ1hrUAqjIx4iR5i384euD8ni3XlP3F71b3bJEtLe49m2F-2RuWryqvbJQvZWPZWTg3oFvAN2Bv5b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+the+Prediction+of+Student+Performance+Based+on+the+Machine+Learning+XGBoost+Algorithm&rft.jtitle=Interactive+learning+environments&rft.au=Asselman%2C+Amal&rft.au=Khaldi%2C+Mohamed&rft.au=Aammou%2C+Souhaib&rft.date=2023-08-18&rft.pub=Routledge&rft.issn=1049-4820&rft.volume=31&rft.issue=6&rft.spage=3360&rft_id=info:doi/10.1080%2F10494820.2021.1928235&rft.externalDocID=EJ1397277
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-4820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-4820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-4820&client=summon