A Declarative Rendering Model for Multiclass Density Maps

Multiclass maps are scatterplots, multidimensional projections, or thematic geographic maps where data points have a categorical attribute in addition to two quantitative attributes. This categorical attribute is often rendered using shape or color, which does not scale when overplotting occurs. Whe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on visualization and computer graphics Ročník 25; číslo 1; s. 470 - 480
Hlavní autoři: Jaemin Jo, Vernier, Frederic, Dragicevic, Pierre, Fekete, Jean-Daniel
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Témata:
ISSN:1077-2626, 1941-0506, 1941-0506
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Multiclass maps are scatterplots, multidimensional projections, or thematic geographic maps where data points have a categorical attribute in addition to two quantitative attributes. This categorical attribute is often rendered using shape or color, which does not scale when overplotting occurs. When the number of data points increases, multiclass maps must resort to data aggregation to remain readable. We present multiclass density maps: multiple 2D histograms computed for each of the category values. Multiclass density maps are meant as a building block to improve the expressiveness and scalability of multiclass map visualization. In this article, we first present a short survey of aggregated multiclass maps, mainly from cartography. We then introduce a declarative model-a simple yet expressive JSON grammar associated with visual semantics-that specifies a wide design space of visualizations for multiclass density maps. Our declarative model is expressive and can be efficiently implemented in visualization front-ends such as modern web browsers. Furthermore, it can be reconfigured dynamically to support data exploration tasks without recomputing the raw data. Finally, we demonstrate how our model can be used to reproduce examples from the past and support exploring data at scale.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1077-2626
1941-0506
1941-0506
DOI:10.1109/TVCG.2018.2865141