Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes

Hypoxia initiates pulmonary vasoconstriction (HPV) by inhibiting one or more voltage-gated potassium channels (Kv) in the pulmonary artery smooth muscle cells (PASMCs) of resistance arteries. The resulting membrane depolarization increases opening of voltage-gated calcium channels, raising cytosolic...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Journal of clinical investigation Ročník 101; číslo 11; s. 2319
Hlavní autori: Archer, S L, Souil, E, Dinh-Xuan, A T, Schremmer, B, Mercier, J C, El Yaagoubi, A, Nguyen-Huu, L, Reeve, H L, Hampl, V
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.06.1998
Predmet:
ISSN:0021-9738
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Hypoxia initiates pulmonary vasoconstriction (HPV) by inhibiting one or more voltage-gated potassium channels (Kv) in the pulmonary artery smooth muscle cells (PASMCs) of resistance arteries. The resulting membrane depolarization increases opening of voltage-gated calcium channels, raising cytosolic Ca2+ and initiating HPV. There are presently nine families of Kv channels known and pharmacological inhibitors lack the specificity to distinguish those involved in control of resting membrane potential (Em) or HPV. However, the Kv channels involved in Em and HPV have characteristic electrophysiological and pharmacological properties which suggest their molecular identity. They are slowly inactivating, delayed rectifier currents, inhibited by 4-aminopyridine (4-AP) but insensitive to charybdotoxin. Candidate Kv channels with these traits (Kv1.5 and Kv2.1) were studied. Antibodies were used to immunolocalize and functionally characterize the contribution of Kv1. 5 and Kv2.1 to PASMC electrophysiology and vascular tone. Immunoblotting confirmed the presence of Kv1.1, 1.2, 1.3, 1.5, 1.6, and 2.1, but not Kv1.4, in PASMCs. Intracellular administration of anti-Kv2.1 inhibited whole cell K+ current (IK) and depolarized Em. Anti-Kv2.1 also elevated resting tension and diminished 4-AP-induced vasoconstriction in membrane-permeabilized pulmonary artery rings. Anti-Kv1.5 inhibited IK and selectively reduced the rise in [Ca2+]i and constriction caused by hypoxia and 4-AP. However, anti-Kv1.5 neither caused depolarization nor elevated basal pulmonary artery tone. This study demonstrates that antibodies can be used to dissect the whole cell K+ currents in mammalian cells. We conclude that Kv2. 1 is an important determinant of resting Em in PASMCs from resistance arteries. Both Kv2.1 and Kv1.5 contribute to the initiation of HPV.
AbstractList Hypoxia initiates pulmonary vasoconstriction (HPV) by inhibiting one or more voltage-gated potassium channels (Kv) in the pulmonary artery smooth muscle cells (PASMCs) of resistance arteries. The resulting membrane depolarization increases opening of voltage-gated calcium channels, raising cytosolic Ca2+ and initiating HPV. There are presently nine families of Kv channels known and pharmacological inhibitors lack the specificity to distinguish those involved in control of resting membrane potential (Em) or HPV. However, the Kv channels involved in Em and HPV have characteristic electrophysiological and pharmacological properties which suggest their molecular identity. They are slowly inactivating, delayed rectifier currents, inhibited by 4-aminopyridine (4-AP) but insensitive to charybdotoxin. Candidate Kv channels with these traits (Kv1.5 and Kv2.1) were studied. Antibodies were used to immunolocalize and functionally characterize the contribution of Kv1. 5 and Kv2.1 to PASMC electrophysiology and vascular tone. Immunoblotting confirmed the presence of Kv1.1, 1.2, 1.3, 1.5, 1.6, and 2.1, but not Kv1.4, in PASMCs. Intracellular administration of anti-Kv2.1 inhibited whole cell K+ current (IK) and depolarized Em. Anti-Kv2.1 also elevated resting tension and diminished 4-AP-induced vasoconstriction in membrane-permeabilized pulmonary artery rings. Anti-Kv1.5 inhibited IK and selectively reduced the rise in [Ca2+]i and constriction caused by hypoxia and 4-AP. However, anti-Kv1.5 neither caused depolarization nor elevated basal pulmonary artery tone. This study demonstrates that antibodies can be used to dissect the whole cell K+ currents in mammalian cells. We conclude that Kv2. 1 is an important determinant of resting Em in PASMCs from resistance arteries. Both Kv2.1 and Kv1.5 contribute to the initiation of HPV.
Hypoxia initiates pulmonary vasoconstriction (HPV) by inhibiting one or more voltage-gated potassium channels (Kv) in the pulmonary artery smooth muscle cells (PASMCs) of resistance arteries. The resulting membrane depolarization increases opening of voltage-gated calcium channels, raising cytosolic Ca2+ and initiating HPV. There are presently nine families of Kv channels known and pharmacological inhibitors lack the specificity to distinguish those involved in control of resting membrane potential (Em) or HPV. However, the Kv channels involved in Em and HPV have characteristic electrophysiological and pharmacological properties which suggest their molecular identity. They are slowly inactivating, delayed rectifier currents, inhibited by 4-aminopyridine (4-AP) but insensitive to charybdotoxin. Candidate Kv channels with these traits (Kv1.5 and Kv2.1) were studied. Antibodies were used to immunolocalize and functionally characterize the contribution of Kv1. 5 and Kv2.1 to PASMC electrophysiology and vascular tone. Immunoblotting confirmed the presence of Kv1.1, 1.2, 1.3, 1.5, 1.6, and 2.1, but not Kv1.4, in PASMCs. Intracellular administration of anti-Kv2.1 inhibited whole cell K+ current (IK) and depolarized Em. Anti-Kv2.1 also elevated resting tension and diminished 4-AP-induced vasoconstriction in membrane-permeabilized pulmonary artery rings. Anti-Kv1.5 inhibited IK and selectively reduced the rise in [Ca2+]i and constriction caused by hypoxia and 4-AP. However, anti-Kv1.5 neither caused depolarization nor elevated basal pulmonary artery tone. This study demonstrates that antibodies can be used to dissect the whole cell K+ currents in mammalian cells. We conclude that Kv2. 1 is an important determinant of resting Em in PASMCs from resistance arteries. Both Kv2.1 and Kv1.5 contribute to the initiation of HPV.Hypoxia initiates pulmonary vasoconstriction (HPV) by inhibiting one or more voltage-gated potassium channels (Kv) in the pulmonary artery smooth muscle cells (PASMCs) of resistance arteries. The resulting membrane depolarization increases opening of voltage-gated calcium channels, raising cytosolic Ca2+ and initiating HPV. There are presently nine families of Kv channels known and pharmacological inhibitors lack the specificity to distinguish those involved in control of resting membrane potential (Em) or HPV. However, the Kv channels involved in Em and HPV have characteristic electrophysiological and pharmacological properties which suggest their molecular identity. They are slowly inactivating, delayed rectifier currents, inhibited by 4-aminopyridine (4-AP) but insensitive to charybdotoxin. Candidate Kv channels with these traits (Kv1.5 and Kv2.1) were studied. Antibodies were used to immunolocalize and functionally characterize the contribution of Kv1. 5 and Kv2.1 to PASMC electrophysiology and vascular tone. Immunoblotting confirmed the presence of Kv1.1, 1.2, 1.3, 1.5, 1.6, and 2.1, but not Kv1.4, in PASMCs. Intracellular administration of anti-Kv2.1 inhibited whole cell K+ current (IK) and depolarized Em. Anti-Kv2.1 also elevated resting tension and diminished 4-AP-induced vasoconstriction in membrane-permeabilized pulmonary artery rings. Anti-Kv1.5 inhibited IK and selectively reduced the rise in [Ca2+]i and constriction caused by hypoxia and 4-AP. However, anti-Kv1.5 neither caused depolarization nor elevated basal pulmonary artery tone. This study demonstrates that antibodies can be used to dissect the whole cell K+ currents in mammalian cells. We conclude that Kv2. 1 is an important determinant of resting Em in PASMCs from resistance arteries. Both Kv2.1 and Kv1.5 contribute to the initiation of HPV.
Author Souil, E
Dinh-Xuan, A T
Mercier, J C
El Yaagoubi, A
Archer, S L
Nguyen-Huu, L
Schremmer, B
Reeve, H L
Hampl, V
Author_xml – sequence: 1
  givenname: S L
  surname: Archer
  fullname: Archer, S L
  organization: Veteran's Affairs Medical Center, Minneapolis, Minnesota 55417 and University of Alberta, Edmonton, Alberta, Canada
– sequence: 2
  givenname: E
  surname: Souil
  fullname: Souil, E
– sequence: 3
  givenname: A T
  surname: Dinh-Xuan
  fullname: Dinh-Xuan, A T
– sequence: 4
  givenname: B
  surname: Schremmer
  fullname: Schremmer, B
– sequence: 5
  givenname: J C
  surname: Mercier
  fullname: Mercier, J C
– sequence: 6
  givenname: A
  surname: El Yaagoubi
  fullname: El Yaagoubi, A
– sequence: 7
  givenname: L
  surname: Nguyen-Huu
  fullname: Nguyen-Huu, L
– sequence: 8
  givenname: H L
  surname: Reeve
  fullname: Reeve, H L
– sequence: 9
  givenname: V
  surname: Hampl
  fullname: Hampl, V
BackLink https://www.ncbi.nlm.nih.gov/pubmed/9616203$$D View this record in MEDLINE/PubMed
BookMark eNpNUE1P3DAQ9QFEgbb_oJJPXCBbe-JNNkeEyocA9QLn1cSZ7Bo5dmo7K_b_9YfVoXvg9EZv3rz3NGfsyHlHjH2XYiFlDT_ftCnL8oidCgGyaOpy9YWdxfgmhFRqqU7YSVPJCkR5yv4-e0t6shi46cgl0xuNyXjHfc_TlnjI-3neeZtwQ8UGE3X88ZLrLTpHNl7xx51cLDm6TO9gIa-4cXy7H_270Xyc7OAdhj3fYfTau5iC0R8B80EmUk6YAwLFZNyGDzS0AR3x0ae5ENrZL2D65IUhUYZh7_U-UfzKjnu0kb4d8Jy93v56ubkvnn7fPdxcPxVaQZUK6GQlkTrVtSvV9bLtpYSmVbWo2woUVVCutFBEqkOCZQlQQd9L0nWjRI0I5-ziv-8Y_J8p910PJmqyNtf1U1zXTQMlKMjCHwfh1A7Urcdghtx7fXg7_AMThYby
CitedBy_id crossref_primary_10_1096_fj_99_0859com
crossref_primary_10_1111_j_1476_5381_2009_00283_x
crossref_primary_10_1161_CIRCRESAHA_109_206334
crossref_primary_10_1152_physrev_00030_2011
crossref_primary_10_1016_j_mod_2017_06_001
crossref_primary_10_1113_jphysiol_2008_165217
crossref_primary_10_1086_675980
crossref_primary_10_1183_13993003_00754_2017
crossref_primary_10_1016_j_resp_2010_08_007
crossref_primary_10_1016_j_athoracsur_2003_11_035
crossref_primary_10_3389_fcvm_2023_1125063
crossref_primary_10_1165_rcmb_2013_0191OC
crossref_primary_10_3390_ijms26146857
crossref_primary_10_1113_jphysiol_2003_058594
crossref_primary_10_1016_j_bbrc_2007_05_102
crossref_primary_10_1016_j_pbiomolbio_2009_10_001
crossref_primary_10_1080_10739680600930313
crossref_primary_10_1089_ars_2009_2862
crossref_primary_10_1038_sj_bjp_0706285
crossref_primary_10_1016_j_abb_2019_108234
crossref_primary_10_1152_japplphysiol_00722_2004
crossref_primary_10_1002_j_2040_4603_2020_tb00125_x
crossref_primary_10_1016_j_pharmthera_2007_03_014
crossref_primary_10_1111_bph_12822
crossref_primary_10_1161_01_CIR_101_8_923
crossref_primary_10_1016_j_ceca_2004_02_018
crossref_primary_10_1016_j_freeradbiomed_2019_04_008
crossref_primary_10_1016_j_ceca_2004_02_017
crossref_primary_10_1161_CIRCRESAHA_118_314284
crossref_primary_10_3892_ol_2012_718
crossref_primary_10_1113_jphysiol_2002_025171
crossref_primary_10_1196_annals_1378_053
crossref_primary_10_1111_j_1742_7843_2011_00855_x
crossref_primary_10_1016_j_neuroscience_2003_08_036
crossref_primary_10_1085_jgp_201511507
crossref_primary_10_1152_physrev_00032_2009
crossref_primary_10_1016_S1537_1891_02_00126_X
crossref_primary_10_1016_j_bbabio_2012_12_002
crossref_primary_10_1023_B_NEPH_0000008784_83366_9a
crossref_primary_10_1016_j_chest_2016_09_001
crossref_primary_10_1161_01_CIR_0000062688_76508_B3
crossref_primary_10_1016_j_yjmcc_2010_09_012
crossref_primary_10_1113_JP272032
crossref_primary_10_1523_JNEUROSCI_19_05_01728_1999
crossref_primary_10_1016_j_freeradbiomed_2011_12_004
crossref_primary_10_1016_S1569_9048_02_00054_X
crossref_primary_10_1086_674307
crossref_primary_10_3389_fphys_2018_00865
crossref_primary_10_3389_fphys_2020_00947
crossref_primary_10_1016_S0034_5687_99_00025_0
crossref_primary_10_1161_CIRCRESAHA_111_247940
crossref_primary_10_1203_PDR_0b013e3181b1bc89
crossref_primary_10_1111_j_1469_7793_2000_00783_x
crossref_primary_10_1016_j_jneumeth_2005_04_015
crossref_primary_10_1016_j_resp_2010_08_013
crossref_primary_10_1016_j_omtn_2020_09_029
crossref_primary_10_1038_s41572_023_00486_7
crossref_primary_10_3390_biom10091261
crossref_primary_10_1517_14728222_2016_1112792
crossref_primary_10_1080_10739680600930222
crossref_primary_10_1097_MJT_0b013e318249a08c
crossref_primary_10_1111_j_1748_1716_2008_01894_x
crossref_primary_10_1161_01_RES_0000137173_42723_fb
crossref_primary_10_1113_jphysiol_2001_013003
crossref_primary_10_1164_rccm_200711_1631OC
crossref_primary_10_1016_j_bbrc_2006_06_116
crossref_primary_10_4331_wjbc_v5_i2_85
crossref_primary_10_1016_j_pcl_2009_04_004
crossref_primary_10_1161_hc0202_101974
crossref_primary_10_1586_ecp_10_18
crossref_primary_10_1152_japplphysiol_00929_2003
crossref_primary_10_1016_j_lfs_2015_12_054
crossref_primary_10_1113_jphysiol_2005_098855
crossref_primary_10_1097_00005392_200204000_00100
crossref_primary_10_1002_j_2040_4603_2011_tb00316_x
crossref_primary_10_7554_eLife_90604
crossref_primary_10_1016_S0006_8993_01_02121_7
crossref_primary_10_1073_pnas_96_14_7944
crossref_primary_10_3390_biom12101341
crossref_primary_10_3389_fncel_2014_00329
crossref_primary_10_1124_jpet_108_138032
crossref_primary_10_1089_ars_2014_5899
crossref_primary_10_1161_hh2301_100817
crossref_primary_10_1161_01_RES_85_6_489
crossref_primary_10_1111_bph_16426
crossref_primary_10_1016_j_freeradbiomed_2019_09_029
crossref_primary_10_1152_physrev_00041_2010
crossref_primary_10_1016_S1537_1891_02_00127_1
crossref_primary_10_3389_fcell_2023_1105565
crossref_primary_10_1126_scitranslmed_3001327
crossref_primary_10_1186_ar4124
crossref_primary_10_1124_jpet_108_147785
crossref_primary_10_1161_CIRCRESAHA_115_301130
crossref_primary_10_1152_ajpheart_2001_281_3_H1057
crossref_primary_10_1371_journal_pone_0141349
crossref_primary_10_1073_pnas_1917879117
crossref_primary_10_1113_jphysiol_2007_128454
crossref_primary_10_1089_ars_2009_2877
crossref_primary_10_1016_j_placenta_2004_11_008
crossref_primary_10_1186_1465_9921_12_20
crossref_primary_10_1038_nrd2983
crossref_primary_10_1089_ham_2013_1016
crossref_primary_10_1183_09031936_04_00037204
crossref_primary_10_3389_fphys_2023_1142354
crossref_primary_10_1186_s12931_025_03163_3
crossref_primary_10_1515_BC_2004_014
crossref_primary_10_1111_j_1469_7793_2001_00691_x
crossref_primary_10_1016_j_pbiomolbio_2007_07_007
crossref_primary_10_5387_fms_2014_34
crossref_primary_10_1139_y99_098
crossref_primary_10_1016_S0024_3205_00_00529_4
crossref_primary_10_1080_10641950701826158
crossref_primary_10_1016_j_cmet_2014_08_011
crossref_primary_10_1016_S1569_9048_02_00051_4
crossref_primary_10_1002_jcp_1069
crossref_primary_10_1152_japplphysiol_00103_2017
crossref_primary_10_1002_j_1939_4640_2002_tb02348_x
crossref_primary_10_1161_01_RES_86_5_534
crossref_primary_10_1016_j_abb_2019_01_029
crossref_primary_10_1016_j_ejphar_2003_10_028
crossref_primary_10_1016_S0026_895X_24_23177_1
crossref_primary_10_1161_01_RES_0000035057_63303_D1
crossref_primary_10_1016_S0140_6736_00_02452_1
crossref_primary_10_3390_biology12091237
crossref_primary_10_1016_S0008_6363_02_00411_X
crossref_primary_10_1016_j_bbabio_2022_148911
crossref_primary_10_1016_S0022_5347_05_65254_8
crossref_primary_10_1186_rr11
crossref_primary_10_1161_01_CIR_102_22_2781
crossref_primary_10_1152_ajplung_2001_281_5_L1115
crossref_primary_10_1016_j_vph_2008_07_006
crossref_primary_10_1291_hypres_25_589
crossref_primary_10_1016_j_cjca_2014_10_023
crossref_primary_10_1152_jappl_2001_90_6_2249
crossref_primary_10_1161_HYPERTENSIONAHA_114_03406
crossref_primary_10_1183_09031936_01_17100200
crossref_primary_10_3390_ijms19103162
crossref_primary_10_1371_journal_pone_0086636
crossref_primary_10_1152_japplphysiol_00843_2012
crossref_primary_10_1016_S1569_9048_02_00047_2
crossref_primary_10_1172_JCI59176
crossref_primary_10_1152_japplphysiol_01110_2001
crossref_primary_10_1146_annurev_physiol_030212_183804
crossref_primary_10_1016_j_lfs_2004_10_073
crossref_primary_10_1016_j_freeradbiomed_2020_12_452
crossref_primary_10_1016_j_drudis_2024_104015
crossref_primary_10_1161_CIRCRESAHA_111_263848
crossref_primary_10_1016_S1537_1891_02_00121_0
crossref_primary_10_1177_1753465808091327
crossref_primary_10_1152_ajplung_2001_281_6_L1350
crossref_primary_10_1183_09031936_02_00081302
crossref_primary_10_3389_fphys_2017_00903
crossref_primary_10_1074_jbc_RA118_004065
crossref_primary_10_1152_ajplung_2001_280_6_L1138
crossref_primary_10_1161_hh1201_091960
crossref_primary_10_1016_j_pharmthera_2014_08_001
crossref_primary_10_1161_01_ATV_0000158497_09626_3b
crossref_primary_10_1097_00000441_200104000_00009
crossref_primary_10_1165_rcmb_2003_0386OC
crossref_primary_10_1016_S0163_7258_02_00201_2
crossref_primary_10_1038_sj_bjp_0707635
crossref_primary_10_1016_j_yjmcc_2006_03_431
crossref_primary_10_1080_10409238_2021_2004575
crossref_primary_10_1086_689748
crossref_primary_10_1152_ajpheart_01033_2001
crossref_primary_10_1053_pcad_2002_127491
crossref_primary_10_1113_JP282231
crossref_primary_10_1016_S0764_4469_00_86653_6
crossref_primary_10_1152_ajplung_2001_281_6_L1345
crossref_primary_10_1183_09031936_00013908
crossref_primary_10_1007_s11062_005_0021_7
crossref_primary_10_1089_ars_2012_4752
crossref_primary_10_1161_01_RES_0000247068_75808_3f
crossref_primary_10_1016_j_bbrc_2005_08_180
crossref_primary_10_1016_S0022_3565_24_29480_5
crossref_primary_10_1089_ars_2014_6234
crossref_primary_10_1161_CIRCULATIONAHA_111_034512
crossref_primary_10_1016_j_jacc_2009_04_014
crossref_primary_10_1016_j_resp_2005_10_003
crossref_primary_10_1183_09031936_01_00204001
crossref_primary_10_1016_S1537_1891_02_00122_2
crossref_primary_10_1086_680189
crossref_primary_10_1161_JAHA_117_006465
crossref_primary_10_1113_jphysiol_2013_257253
crossref_primary_10_1152_ajplung_2001_281_1_L1
crossref_primary_10_1183_13993003_00945_2015
crossref_primary_10_1016_j_lfs_2010_03_011
crossref_primary_10_1002_j_2040_4603_2011_tb00358_x
crossref_primary_10_1161_01_RES_0000036751_04896_F1
crossref_primary_10_1016_j_ejphar_2014_11_007
crossref_primary_10_1161_01_RES_0000095245_97945_FE
crossref_primary_10_1161_01_RES_0000145360_16770_9f
crossref_primary_10_21693_1933_088X_3_3_6
crossref_primary_10_1016_j_resp_2014_09_025
crossref_primary_10_7554_eLife_90604_3
crossref_primary_10_1016_S0306_3623_99_00026_9
crossref_primary_10_1016_j_abb_2009_05_015
crossref_primary_10_1016_j_hlc_2023_01_013
crossref_primary_10_1038_cddis_2017_568
crossref_primary_10_1152_japplphysiol_00733_2004
crossref_primary_10_1152_ajplung_00238_2014
crossref_primary_10_1152_japplphysiol_00120_2017
crossref_primary_10_1161_01_RES_0000216858_04599_e1
crossref_primary_10_3390_biom12020265
crossref_primary_10_1016_j_placenta_2005_10_006
crossref_primary_10_1152_ajpcell_00967_2024
crossref_primary_10_1007_s00109_011_0762_2
crossref_primary_10_1016_S0272_5231_05_70281_1
crossref_primary_10_1096_fj_00_0649fje
crossref_primary_10_4103_2045_8932_114776
crossref_primary_10_1111_j_1749_6632_2009_05040_x
crossref_primary_10_1152_ajplung_1999_277_3_L431
crossref_primary_10_1161_01_RES_0000222546_45372_a0
crossref_primary_10_1016_j_bcp_2003_08_041
crossref_primary_10_1113_jphysiol_2004_073338
crossref_primary_10_1016_j_cellsig_2005_05_025
crossref_primary_10_1124_mol_107_037002
crossref_primary_10_1016_j_lfs_2005_10_042
crossref_primary_10_1111_j_1476_5381_2009_00353_x
crossref_primary_10_1152_ajpgi_1999_277_5_G1055
crossref_primary_10_1016_S0024_3205_02_01922_7
crossref_primary_10_1111_j_1440_1843_2003_00531_x
crossref_primary_10_1186_s13036_019_0221_0
crossref_primary_10_1093_cvr_cvq305
crossref_primary_10_1111_bph_14662
crossref_primary_10_1164_rccm_201508_1678OC
crossref_primary_10_1074_jbc_RA119_011302
crossref_primary_10_1016_S0006_291X_02_02990_X
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1172/jci333
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
ExternalDocumentID 9616203
Genre Journal Article
GroupedDBID ---
-~X
.55
.GJ
.XZ
08P
29K
2WC
354
3O-
53G
5GY
5RE
5RS
8F7
AAWTL
AAYOK
ABOCM
ABPMR
ACGFO
ACIHN
ACNCT
ACPRK
ADBBV
AEAQA
AENEX
AFCHL
AFFNX
AHMBA
AI.
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ASPBG
AVWKF
AZFZN
BAWUL
CGR
CS3
CUY
CVF
D-I
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
EMB
F5P
FRP
GROUPED_DOAJ
GX1
HYE
H~9
IAO
IEA
IHR
INH
INR
IOF
IPO
J5H
KQ8
L7B
M1P
M5~
MVM
N4W
NPM
OBH
OCB
ODZKP
OFXIZ
OGEVE
OHH
OK1
OVD
OVIDX
P2P
P6G
PKN
RPM
TEORI
TR2
TVE
UHU
VH1
VVN
W2D
WH7
WOQ
WOW
X7M
XSB
YFH
YHG
YKV
YOC
ZGI
ZXP
ZY1
~H1
7X8
OVT
ID FETCH-LOGICAL-c426t-2d161aed4db84df1bf1129b4707b624e6238c04ee4dae2532262ff1ec79407aa2
IEDL.DBID 7X8
ISICitedReferencesCount 341
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000074165900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9738
IngestDate Fri Sep 05 12:15:01 EDT 2025
Wed Feb 19 01:18:56 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-2d161aed4db84df1bf1129b4707b624e6238c04ee4dae2532262ff1ec79407aa2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://www.jci.org/articles/view/333/files/pdf
PMID 9616203
PQID 79923242
PQPubID 23479
ParticipantIDs proquest_miscellaneous_79923242
pubmed_primary_9616203
PublicationCentury 1900
PublicationDate 1998-Jun-01
19980601
PublicationDateYYYYMMDD 1998-06-01
PublicationDate_xml – month: 06
  year: 1998
  text: 1998-Jun-01
  day: 01
PublicationDecade 1990
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of clinical investigation
PublicationTitleAlternate J Clin Invest
PublicationYear 1998
References 9362476 - EMBO J. 1997 Nov 17;16(22):6615-25
9005448 - Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15119-23
7542182 - Circ Res. 1995 Aug;77(2):370-8
8662756 - J Biol Chem. 1996 May 31;271(22):13239-43
8083226 - J Biol Chem. 1994 Sep 16;269(37):23204-11
7491983 - Am J Physiol. 1995 Nov;269(5 Pt 1):L637-44
8352944 - Neuron. 1993 Aug;11(2):359-69
7473178 - J Pharmacol Exp Ther. 1995 Nov;275(2):864-76
8524851 - Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11796-800
5914855 - Circ Res. 1966 Aug;19(2):426-40
1245025 - Circ Res. 1976 Feb;38(2):99-104
8279575 - Am J Physiol. 1993 Dec;265(6 Pt 1):L591-7
8204618 - Biochemistry. 1994 Jun 7;33(22):6834-9
8593702 - Circ Res. 1996 Mar;78(3):431-42
7623158 - J Neurosci. 1995 Jul;15(7 Pt 2):5360-71
7517498 - Mol Pharmacol. 1994 Jun;45(6):1227-34
8081723 - Receptors Channels. 1993;1(2):99-110
8447425 - Am J Physiol. 1993 Feb;264(2 Pt 1):L116-23
8903313 - J Clin Invest. 1996 Nov 1;98(9):1959-65
8901674 - Circulation. 1996 Nov 1;94(9):2216-20
8122319 - Trends Pharmacol Sci. 1993 Dec;14(12):434
8371757 - Nature. 1993 Sep 9;365(6442):153-5
9410914 - J Clin Invest. 1997 Nov 1;100(9):2347-53
2456613 - Science. 1988 Jul 29;241(4865):580-2
7977686 - Am J Physiol. 1994 Nov;267(5 Pt 1):C1231-8
9113366 - Br J Pharmacol. 1997 Apr;120(8):1461-70
7517960 - J Clin Pathol. 1994 May;47(5):448-52
8508921 - FEBS Lett. 1993 Jun 14;324(2):205-10
8355805 - Nature. 1993 Aug 26;364(6440):802-6
8304521 - Am J Physiol. 1994 Jan;266(1 Pt 2):H365-70
8110763 - Biochemistry. 1994 Feb 22;33(7):1617-23
8158277 - J Neurosci. 1994 Apr;14(4):2408-17
1839781 - Brain Res. 1991 Nov 15;564(2):203-19
8011897 - Biophys J. 1994 Mar;66(3 Pt 1):667-73
7615797 - J Clin Invest. 1995 Jul;96(1):282-92
8222081 - Circ Res. 1993 Dec;73(6):1100-12
8964107 - Circulation. 1996 Jul 1;94(1):1-5
2532193 - J Appl Physiol (1985). 1989 Nov;67(5):1903-11
2036711 - Circ Res. 1991 Jun;68(6):1569-81
1566816 - Am J Physiol. 1992 Apr;262(4 Pt 1):C882-90
1875913 - Mol Pharmacol. 1991 Aug;40(2):299-307
9067300 - J Pharmacol Exp Ther. 1997 Mar;280(3):1170-5
8938716 - Neuropharmacology. 1996;35(7):851-65
1415563 - Am J Physiol. 1992 Sep;263(3 Pt 1):L384-93
8447424 - Am J Physiol. 1993 Feb;264(2 Pt 1):L107-15
7788871 - Circ Res. 1995 Jul;77(1):131-9
References_xml – reference: 9113366 - Br J Pharmacol. 1997 Apr;120(8):1461-70
– reference: 1875913 - Mol Pharmacol. 1991 Aug;40(2):299-307
– reference: 8447424 - Am J Physiol. 1993 Feb;264(2 Pt 1):L107-15
– reference: 8110763 - Biochemistry. 1994 Feb 22;33(7):1617-23
– reference: 1839781 - Brain Res. 1991 Nov 15;564(2):203-19
– reference: 8083226 - J Biol Chem. 1994 Sep 16;269(37):23204-11
– reference: 9005448 - Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15119-23
– reference: 9067300 - J Pharmacol Exp Ther. 1997 Mar;280(3):1170-5
– reference: 8011897 - Biophys J. 1994 Mar;66(3 Pt 1):667-73
– reference: 8352944 - Neuron. 1993 Aug;11(2):359-69
– reference: 8355805 - Nature. 1993 Aug 26;364(6440):802-6
– reference: 1566816 - Am J Physiol. 1992 Apr;262(4 Pt 1):C882-90
– reference: 8903313 - J Clin Invest. 1996 Nov 1;98(9):1959-65
– reference: 2532193 - J Appl Physiol (1985). 1989 Nov;67(5):1903-11
– reference: 7542182 - Circ Res. 1995 Aug;77(2):370-8
– reference: 8371757 - Nature. 1993 Sep 9;365(6442):153-5
– reference: 5914855 - Circ Res. 1966 Aug;19(2):426-40
– reference: 7517498 - Mol Pharmacol. 1994 Jun;45(6):1227-34
– reference: 2456613 - Science. 1988 Jul 29;241(4865):580-2
– reference: 1415563 - Am J Physiol. 1992 Sep;263(3 Pt 1):L384-93
– reference: 2036711 - Circ Res. 1991 Jun;68(6):1569-81
– reference: 8122319 - Trends Pharmacol Sci. 1993 Dec;14(12):434
– reference: 8081723 - Receptors Channels. 1993;1(2):99-110
– reference: 9362476 - EMBO J. 1997 Nov 17;16(22):6615-25
– reference: 8447425 - Am J Physiol. 1993 Feb;264(2 Pt 1):L116-23
– reference: 8662756 - J Biol Chem. 1996 May 31;271(22):13239-43
– reference: 8964107 - Circulation. 1996 Jul 1;94(1):1-5
– reference: 8279575 - Am J Physiol. 1993 Dec;265(6 Pt 1):L591-7
– reference: 8524851 - Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11796-800
– reference: 8508921 - FEBS Lett. 1993 Jun 14;324(2):205-10
– reference: 7491983 - Am J Physiol. 1995 Nov;269(5 Pt 1):L637-44
– reference: 7517960 - J Clin Pathol. 1994 May;47(5):448-52
– reference: 7788871 - Circ Res. 1995 Jul;77(1):131-9
– reference: 8938716 - Neuropharmacology. 1996;35(7):851-65
– reference: 7615797 - J Clin Invest. 1995 Jul;96(1):282-92
– reference: 7623158 - J Neurosci. 1995 Jul;15(7 Pt 2):5360-71
– reference: 8222081 - Circ Res. 1993 Dec;73(6):1100-12
– reference: 1245025 - Circ Res. 1976 Feb;38(2):99-104
– reference: 8593702 - Circ Res. 1996 Mar;78(3):431-42
– reference: 8204618 - Biochemistry. 1994 Jun 7;33(22):6834-9
– reference: 7977686 - Am J Physiol. 1994 Nov;267(5 Pt 1):C1231-8
– reference: 7473178 - J Pharmacol Exp Ther. 1995 Nov;275(2):864-76
– reference: 8158277 - J Neurosci. 1994 Apr;14(4):2408-17
– reference: 8901674 - Circulation. 1996 Nov 1;94(9):2216-20
– reference: 8304521 - Am J Physiol. 1994 Jan;266(1 Pt 2):H365-70
– reference: 9410914 - J Clin Invest. 1997 Nov 1;100(9):2347-53
SSID ssj0014454
Score 2.1229792
Snippet Hypoxia initiates pulmonary vasoconstriction (HPV) by inhibiting one or more voltage-gated potassium channels (Kv) in the pulmonary artery smooth muscle cells...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 2319
SubjectTerms Animals
Antibody Specificity
Calcium - metabolism
Delayed Rectifier Potassium Channels
Hypoxia - physiopathology
Immunoblotting
Immunohistochemistry
Kv1.5 Potassium Channel
Male
Membrane Potentials
Mice
Muscle, Smooth, Vascular - physiology
Potassium Channels - genetics
Potassium Channels - physiology
Potassium Channels, Voltage-Gated
Pulmonary Artery - physiology
Rats
Rats, Sprague-Dawley
Shab Potassium Channels
Vasoconstriction
Title Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes
URI https://www.ncbi.nlm.nih.gov/pubmed/9616203
https://www.proquest.com/docview/79923242
Volume 101
WOSCitedRecordID wos000074165900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEF-sluKL9kvU2nYe-lZTk80mm0BBRCpt7R0-qNzbsZ800EvieR7m_-sf5sxegn0pfehLCIHdTJjJzG92vhj7oKWlpkbolqBzEgnjeVQKm0RO-ywviszx0Ezn-occj4vJpLxYY5-HWhhKqxx0YlDUtjF0Rn4kyzIY_-P2JqKZURRb7QdoPGEbKQIZkmk5eYwhCJH1PZiTqJRp0U8WQot99P30W0qjcv8GKoNxOdv-P7Kes60eVMLJSgpesDVXv2TPRn3Y_BX7PRqG4EJl-_SgwBFoPCACBMoxpHvUVQtUMOHQzcL5R6C64BrN5yGco5-bgarx8ZJ_Sg6hquFn1zb3lYH27hdSouYdLBVymyDnvAoFE2FBnw5PL6BJIGgsYeZm6KbXDtpmQQQh9bgfSuMfe4Vs0w5mXWM6BMSv2dXZl8vTr1E_viEyaPYXEbeIJpWzwupCWJ9oT9hOCxlLnXPhEHgVJhbOCascz1Cz5Nz7xBlUEbFUiu-w9bqp3S4DIV0uVJ6V6N4JY-MydR79SK2NS1OlzR57P3Bnir8HxTzwE5q72-nAnz22s2LwtF118ZiWeZLzON3_59I3bHNViEhHLwdsw6NecG_ZU7NcVLfzd0Ho8Dq-GD0AMUDmcw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+identification+of+the+role+of+voltage-gated+K%2B+channels%2C+Kv1.5+and+Kv2.1%2C+in+hypoxic+pulmonary+vasoconstriction+and+control+of+resting+membrane+potential+in+rat+pulmonary+artery+myocytes&rft.jtitle=The+Journal+of+clinical+investigation&rft.au=Archer%2C+S+L&rft.au=Souil%2C+E&rft.au=Dinh-Xuan%2C+A+T&rft.au=Schremmer%2C+B&rft.date=1998-06-01&rft.issn=0021-9738&rft.volume=101&rft.issue=11&rft.spage=2319&rft_id=info:doi/10.1172%2Fjci333&rft_id=info%3Apmid%2F9616203&rft_id=info%3Apmid%2F9616203&rft.externalDocID=9616203
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9738&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9738&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9738&client=summon