A dynamic-programming algorithm for hierarchical discretization of continuous attributes

Discretization techniques can be used to reduce the number of values for a given continuous attribute, and a concept hierarchy can be used to define a discretization of a given continuous attribute. Traditional methods of building a concept hierarchy from a continuous attribute are usually based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research Jg. 184; H. 2; S. 636 - 651
Hauptverfasser: Shen, Ching-Cheng, Chen, Yen-Liang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 16.01.2008
Elsevier
Elsevier Sequoia S.A
Schriftenreihe:European Journal of Operational Research
Schlagworte:
ISSN:0377-2217, 1872-6860
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Discretization techniques can be used to reduce the number of values for a given continuous attribute, and a concept hierarchy can be used to define a discretization of a given continuous attribute. Traditional methods of building a concept hierarchy from a continuous attribute are usually based on the level-wise approach. Unfortunately, this approach suffers from three weaknesses: (1) it only seeks a local optimal solution instead of a global optimal, (2) it is usually subject to the constraint that each interval can only be partitioned into a fixed number of subintervals, and (3) the constructed tree may be unbalanced. In view of these weaknesses, this paper develops a new algorithm based on dynamic-programming strategy for constructing concept hierarchies from continuous attributes. The constructed trees have three merits: (1) they are global optimal trees, (2) each interval is partitioned into the most appropriate number of subintervals, and (3) the trees are balanced. Finally, we carry out an experimental study using real data to show its efficiency and effectiveness.
AbstractList Discretization techniques can be used to reduce the number of values for a given continuous attribute, and a concept hierarchy can be used to define a discretization of a given continuous attribute. Traditional methods of building a concept hierarchy from a continuous attribute are usually based on the level-wise approach. Unfortunately, this approach suffers from three weaknesses: (1) it only seeks a local optimal solution instead of a global optimal, (2) it is usually subject to the constraint that each interval can only be partitioned into a fixed number of subintervals, and (3) the constructed tree may be unbalanced. In view of these weaknesses, this paper develops a new algorithm based on dynamic-programming strategy for constructing concept hierarchies from continuous attributes. The constructed trees have three merits: (1) they are global optimal trees, (2) each interval is partitioned into the most appropriate number of subintervals, and (3) the trees are balanced. Finally, we carry out an experimental study using real data to show its efficiency and effectiveness.
Discretization techniques can be used to reduce the number of values for a given continuous attribute, and a concept hierarchy can be used to define a discretization of a given continuous attribute. Traditional methods of building a concept hierarchy from a continuous attribute are usually based on the level-wise approach. Unfortunately, this approach suffers from three weaknesses: (1) it only seeks a local optimal solution instead of a global optimal, (2) it is usually subject to the constraint that each interval can only be partitioned into a fixed number of subintervals, and (3) the constructed tree may be unbalanced. In view of these weaknesses, this paper develops a new algorithm based on dynamic-programming strategy for constructing concept hierarchies from continuous attributes. The constructed trees have three merits: (1) they are global optimal trees, (2) each interval is partitioned into the most appropriate number of subintervals, and (3) the trees are balanced. Finally, we carry out an experimental study using real data to show its efficiency and effectiveness. [PUBLICATION ABSTRACT]
Author Chen, Yen-Liang
Shen, Ching-Cheng
Author_xml – sequence: 1
  givenname: Ching-Cheng
  surname: Shen
  fullname: Shen, Ching-Cheng
  organization: Department of Information Management, Vanung University, Chung-Li 320, Taiwan, ROC
– sequence: 2
  givenname: Yen-Liang
  surname: Chen
  fullname: Chen, Yen-Liang
  email: ylchen@mgt.ncu.edu.tw
  organization: Department of Information Management, National Central University, Chung-Li 320, Taiwan, ROC
BackLink http://econpapers.repec.org/article/eeeejores/v_3a184_3ay_3a2008_3ai_3a2_3ap_3a636-651.htm$$DView record in RePEc
BookMark eNp9UctqHDEQFMGBrJ38QE5D7jNuSatHIBdj_Ag2-JJAbkKj6dnVsCNtJI1h8_XWZoMPObihunXoKjVV5-QsxICEfKbQUaDycupwiqljALKjrAPK35EV1Yq1Uks4IyvgSrWMUfWBnOc8AQAVVKzIr6tmOAQ7e9fuU9wkO88-bBq728Tky3Zuxpiarcdkk9t6Z3fN4LNLWPwfW3wMTRwbF0PxYYlLbmwpyfdLwfyRvB_tLuOnf_OC_Ly9-XF93z4-3X2_vnps3ZrJ0lKuFfQOlNRaD3wQaJWQPYLuhUIn1eB60PVWR0cOgrmvbA0w6kFYqxTj_IJ8OenW838vmIuZ4pJC_dIwWFOhqIa69HBaSrhHZ_bJzzYdDNaqtmE2z4Zbqte1HyqqjboOf3xW7Cskl0YKarZlrmrspOZSzDnh-CpIwRzjMJM56ppjHIYyU-OoJP0fyfny18KSrN-9Tf12omL18blmYbLzGBwOPqErZoj-LfoLgySojg
CODEN EJORDT
CitedBy_id crossref_primary_10_3233_SW_160226
crossref_primary_10_1016_j_ejor_2009_10_017
crossref_primary_10_1109_TSMCB_2012_2229269
Cites_doi 10.1007/BFb0014140
10.1109/69.204089
10.1023/A:1020991105855
10.1145/248603.248616
10.1109/ICDE.1990.113479
10.1016/j.ejor.2004.04.029
ContentType Journal Article
Copyright 2006 Elsevier B.V.
Copyright Elsevier Sequoia S.A. Jan 16, 2008
Copyright_xml – notice: 2006 Elsevier B.V.
– notice: Copyright Elsevier Sequoia S.A. Jan 16, 2008
DBID AAYXX
CITATION
DKI
X2L
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ejor.2006.12.013
DatabaseName CrossRef
RePEc IDEAS
RePEc
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1872-6860
EndPage 651
ExternalDocumentID 1338230711
eeeejores_v_3a184_3ay_3a2008_3ai_3a2_3ap_3a636_651_htm
10_1016_j_ejor_2006_12_013
S0377221706012227
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29G
4.4
41~
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADIYS
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
VH1
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
02
08R
0R
1
41
6XO
8P
AAPBV
ABFLS
ADALY
DKI
G-
HZ
IPNFZ
K
M
MS
PQEST
STF
X
X2L
7SC
7TB
8FD
AFXIZ
AGCQF
AGRNS
FR3
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c426t-13870bc076888d3d5ea756be08b57ec67dcb08151c1f3052c92400f8d5aa77233
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000250078100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Fri Jul 25 02:57:45 EDT 2025
Wed Aug 18 03:50:56 EDT 2021
Sat Nov 29 01:40:51 EST 2025
Tue Nov 18 20:47:29 EST 2025
Fri Feb 23 02:34:41 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Concept hierarchy
Dynamic programming
Continuous data
Data mining
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c426t-13870bc076888d3d5ea756be08b57ec67dcb08151c1f3052c92400f8d5aa77233
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 204157180
PQPubID 45678
PageCount 16
ParticipantIDs proquest_journals_204157180
repec_primary_eeeejores_v_3a184_3ay_3a2008_3ai_3a2_3ap_3a636_651_htm
crossref_primary_10_1016_j_ejor_2006_12_013
crossref_citationtrail_10_1016_j_ejor_2006_12_013
elsevier_sciencedirect_doi_10_1016_j_ejor_2006_12_013
PublicationCentury 2000
PublicationDate 2008-01-16
PublicationDateYYYYMMDD 2008-01-16
PublicationDate_xml – month: 01
  year: 2008
  text: 2008-01-16
  day: 16
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationSeriesTitle European Journal of Operational Research
PublicationTitle European journal of operational research
PublicationYear 2008
Publisher Elsevier B.V
Elsevier
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: Elsevier Sequoia S.A
References Kerber, R., 1992. Discretization of numeric attributes. In: Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-92), pp. 123–128.
Han, Cai, Cercone (bib11) 1993; 5
Han, J., Cai, Y., Cercone, N., 1992. Knowledge discovery in databases: An attribute-oriented approach. In: Proceedings of 18th International Conference on Very Large Data Bases (VLDB’92), pp. 547–559.
Srikant, R., Agrawal, R., 1995. Mining generalized association rules. In: Proceedings of the 21th International Conference on Very Large Data Bases (VLDB’95), pp. 407–419.
Cai, Y., Cercone, N., Han, J., 1990. An attribute-oriented approach for learning classification rules from relational databases. In: Proceedings of Sixth International Conference on Data Engineering, pp. 281–288.
Chaudhuri, Dayal (bib2) 1997; 26
Srikant, R., Agrawal, R., 1996. Mining sequential patterns: Generalizations and performance improvements. In: Proceedings of the 5th International Conference on Extending Database Technology, pp. 3–17.
Kaufman, Rousseeuw (bib13) 1990
Codd, Codd, Salley (bib5) 1993; 27
Han, Kamber (bib9) 2001
MacQueen, J., 1967. Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability 1, pp. 281–297.
Fayyad, U., Irani, K., 1993. Multi-interval discretion of continuous-values attributes for classification learning. In: Proceedings of 13th International Joint Conference on Artificial Intelligence, pp. 1022–1029.
Quinlan (bib16) 1993
Hong, Lin, Chien (bib12) 2003; 18
Han, Fu (bib8) 1999; 11
Chen, Shen (bib3) 2005; 166
Han, J., Fu, Y., 1994. Dynamic generation and refinement of concept hierarchies for knowledge discovery in database. AAAI Workshops Knowledge Discovery in Database (WS-94-03), pp. 157–168.
Chen, Ye (bib4) 2004; 1
Han (10.1016/j.ejor.2006.12.013_bib9) 2001
Chaudhuri (10.1016/j.ejor.2006.12.013_bib2) 1997; 26
Han (10.1016/j.ejor.2006.12.013_bib8) 1999; 11
10.1016/j.ejor.2006.12.013_bib10
Chen (10.1016/j.ejor.2006.12.013_bib3) 2005; 166
10.1016/j.ejor.2006.12.013_bib1
10.1016/j.ejor.2006.12.013_bib17
10.1016/j.ejor.2006.12.013_bib14
10.1016/j.ejor.2006.12.013_bib15
10.1016/j.ejor.2006.12.013_bib18
Codd (10.1016/j.ejor.2006.12.013_bib5) 1993; 27
Chen (10.1016/j.ejor.2006.12.013_bib4) 2004; 1
Han (10.1016/j.ejor.2006.12.013_bib11) 1993; 5
10.1016/j.ejor.2006.12.013_bib6
10.1016/j.ejor.2006.12.013_bib7
Hong (10.1016/j.ejor.2006.12.013_bib12) 2003; 18
Kaufman (10.1016/j.ejor.2006.12.013_bib13) 1990
Quinlan (10.1016/j.ejor.2006.12.013_bib16) 1993
References_xml – year: 1993
  ident: bib16
  article-title: C4.5: Programs for Machine Learning
– reference: Cai, Y., Cercone, N., Han, J., 1990. An attribute-oriented approach for learning classification rules from relational databases. In: Proceedings of Sixth International Conference on Data Engineering, pp. 281–288.
– volume: 166
  start-page: 221
  year: 2005
  end-page: 245
  ident: bib3
  article-title: Mining generalized knowledge from ordered data through attribute-oriented induction techniques
  publication-title: European Journal of Operational Research
– reference: Han, J., Cai, Y., Cercone, N., 1992. Knowledge discovery in databases: An attribute-oriented approach. In: Proceedings of 18th International Conference on Very Large Data Bases (VLDB’92), pp. 547–559.
– volume: 1
  start-page: 54
  year: 2004
  end-page: 62
  ident: bib4
  article-title: Multiple-level sequential pattern discovery from customer transaction databases
  publication-title: International Journal of Computational Intelligence
– volume: 5
  start-page: 29
  year: 1993
  end-page: 40
  ident: bib11
  article-title: Data-driven discovery of quantitative rules in relational databases
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– year: 2001
  ident: bib9
  article-title: Data Mining: Concepts and Techniques
– volume: 26
  start-page: 65
  year: 1997
  end-page: 74
  ident: bib2
  article-title: An overview of data warehousing and OLAP technology
  publication-title: ACM SIGMOD Record
– reference: Kerber, R., 1992. Discretization of numeric attributes. In: Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-92), pp. 123–128.
– reference: Fayyad, U., Irani, K., 1993. Multi-interval discretion of continuous-values attributes for classification learning. In: Proceedings of 13th International Joint Conference on Artificial Intelligence, pp. 1022–1029.
– reference: Srikant, R., Agrawal, R., 1996. Mining sequential patterns: Generalizations and performance improvements. In: Proceedings of the 5th International Conference on Extending Database Technology, pp. 3–17.
– volume: 27
  start-page: 87
  year: 1993
  end-page: 89
  ident: bib5
  article-title: Beyond decision support
  publication-title: Computer World
– volume: 11
  start-page: 1
  year: 1999
  end-page: 8
  ident: bib8
  article-title: Mining multiple-level association rules in large databases
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: Srikant, R., Agrawal, R., 1995. Mining generalized association rules. In: Proceedings of the 21th International Conference on Very Large Data Bases (VLDB’95), pp. 407–419.
– volume: 18
  start-page: 79
  year: 2003
  end-page: 90
  ident: bib12
  article-title: Mining fuzzy multiple-level association rules from quantitative data
  publication-title: Applied Intelligence
– reference: MacQueen, J., 1967. Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability 1, pp. 281–297.
– reference: Han, J., Fu, Y., 1994. Dynamic generation and refinement of concept hierarchies for knowledge discovery in database. AAAI Workshops Knowledge Discovery in Database (WS-94-03), pp. 157–168.
– year: 1990
  ident: bib13
  article-title: Finding Group in data: An Introduction to Cluster Analysis
– ident: 10.1016/j.ejor.2006.12.013_bib18
  doi: 10.1007/BFb0014140
– year: 1993
  ident: 10.1016/j.ejor.2006.12.013_bib16
– volume: 11
  start-page: 1
  issue: 5
  year: 1999
  ident: 10.1016/j.ejor.2006.12.013_bib8
  article-title: Mining multiple-level association rules in large databases
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 5
  start-page: 29
  issue: 1
  year: 1993
  ident: 10.1016/j.ejor.2006.12.013_bib11
  article-title: Data-driven discovery of quantitative rules in relational databases
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/69.204089
– volume: 18
  start-page: 79
  issue: 1
  year: 2003
  ident: 10.1016/j.ejor.2006.12.013_bib12
  article-title: Mining fuzzy multiple-level association rules from quantitative data
  publication-title: Applied Intelligence
  doi: 10.1023/A:1020991105855
– volume: 26
  start-page: 65
  issue: 1
  year: 1997
  ident: 10.1016/j.ejor.2006.12.013_bib2
  article-title: An overview of data warehousing and OLAP technology
  publication-title: ACM SIGMOD Record
  doi: 10.1145/248603.248616
– volume: 27
  start-page: 87
  issue: 30
  year: 1993
  ident: 10.1016/j.ejor.2006.12.013_bib5
  article-title: Beyond decision support
  publication-title: Computer World
– ident: 10.1016/j.ejor.2006.12.013_bib6
– ident: 10.1016/j.ejor.2006.12.013_bib17
– volume: 1
  start-page: 54
  issue: 1
  year: 2004
  ident: 10.1016/j.ejor.2006.12.013_bib4
  article-title: Multiple-level sequential pattern discovery from customer transaction databases
  publication-title: International Journal of Computational Intelligence
– year: 2001
  ident: 10.1016/j.ejor.2006.12.013_bib9
– ident: 10.1016/j.ejor.2006.12.013_bib1
  doi: 10.1109/ICDE.1990.113479
– ident: 10.1016/j.ejor.2006.12.013_bib7
– ident: 10.1016/j.ejor.2006.12.013_bib15
– ident: 10.1016/j.ejor.2006.12.013_bib14
– ident: 10.1016/j.ejor.2006.12.013_bib10
– year: 1990
  ident: 10.1016/j.ejor.2006.12.013_bib13
– volume: 166
  start-page: 221
  issue: 1
  year: 2005
  ident: 10.1016/j.ejor.2006.12.013_bib3
  article-title: Mining generalized knowledge from ordered data through attribute-oriented induction techniques
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2004.04.029
SSID ssj0001515
Score 1.9225209
Snippet Discretization techniques can be used to reduce the number of values for a given continuous attribute, and a concept hierarchy can be used to define a...
SourceID proquest
repec
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 636
SubjectTerms Concept hierarchy
Continuous data
Data mining
Dynamic programming
Optimization algorithms
Studies
Title A dynamic-programming algorithm for hierarchical discretization of continuous attributes
URI https://dx.doi.org/10.1016/j.ejor.2006.12.013
http://econpapers.repec.org/article/eeeejores/v_3a184_3ay_3a2008_3ai_3a2_3ap_3a636-651.htm
https://www.proquest.com/docview/204157180
Volume 184
WOSCitedRecordID wos000250078100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfQihA88FGYKAPkB94mo8Ru4uSxGkOA0ITEkMqT5dhO12pNqzSbtv31nGPno2Ob2AOVbKVJYyW9n-3z-e5-CH2glMtAU0nGhjEyptyQNJARURkLEiVlqqiqySb40VEynaY_vFVpU9MJ8KJILi7S9X8VNZwDYdvQ2XuIu20UTsAxCB1qEDvU_yT4yb52LPPE-14t6zjE09mqnFcny9qv0BJg11sIfo9G2VjGq1Z7tP7r8-LMesfKylFieVfDm2z4Xp-FE2VjWfQphFpT808fA2LZumfkAL7NOr8Cd-m3Kch3wOpsyw5hXeCIC5Ns4q84J5S6SMxubB33QER7I2XM4t6kG7uss3-N5860sPhoFqvS7RxZ262LXt1Onn1tUmtdDRsvtoWwbVjWzViEVASW6XhAeZTCUDiYfD2cfmsncKvj1ZtP_oV8rJVzC7z-JLfpM731yqA0a6N6asvxc_TUrzfwxOHkBXpgiiF61IQ7DNGzhtYD-1F-iJ70clS-RNMJvgFPuMUTBjzhPp7wNp7wKscdnnCHp1fo1-fD44MvxNNxEAVqXGWzVfIgU3brNkk005GRPIozEyRZxI2KuVYZKJhRqMIcZhGqUuufnCc6khLWcIztop1iVZjXCOexznROQ8PycMx1mHJYSLM8oJqZPIjzEQqbP1Uon6veUqacitvFOUL77T1rl6nlzl9HjayE1zWdDikAenfet9cIVvgutoHroAaDkheM0Kda1u0DGPhAC2YjzgWT0BugvoRSk78yObeHUNZQoEMI6AbipFq-uder7KHHXX98i3aq8sy8Qw_VeTXflO89uP8AuHPE0A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic-programming+algorithm+for+hierarchical+discretization+of+continuous+attributes&rft.jtitle=European+journal+of+operational+research&rft.au=Shen%2C+Ching-Cheng&rft.au=Chen%2C+Yen-Liang&rft.date=2008-01-16&rft.issn=0377-2217&rft.volume=184&rft.issue=2&rft.spage=636&rft.epage=651&rft_id=info:doi/10.1016%2Fj.ejor.2006.12.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2006_12_013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon