A dynamic-programming algorithm for hierarchical discretization of continuous attributes
Discretization techniques can be used to reduce the number of values for a given continuous attribute, and a concept hierarchy can be used to define a discretization of a given continuous attribute. Traditional methods of building a concept hierarchy from a continuous attribute are usually based on...
Gespeichert in:
| Veröffentlicht in: | European journal of operational research Jg. 184; H. 2; S. 636 - 651 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier B.V
16.01.2008
Elsevier Elsevier Sequoia S.A |
| Schriftenreihe: | European Journal of Operational Research |
| Schlagworte: | |
| ISSN: | 0377-2217, 1872-6860 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Discretization techniques can be used to reduce the number of values for a given continuous attribute, and a concept hierarchy can be used to define a discretization of a given continuous attribute. Traditional methods of building a concept hierarchy from a continuous attribute are usually based on the level-wise approach. Unfortunately, this approach suffers from three weaknesses: (1) it only seeks a local optimal solution instead of a global optimal, (2) it is usually subject to the constraint that each interval can only be partitioned into a fixed number of subintervals, and (3) the constructed tree may be unbalanced. In view of these weaknesses, this paper develops a new algorithm based on dynamic-programming strategy for constructing concept hierarchies from continuous attributes. The constructed trees have three merits: (1) they are global optimal trees, (2) each interval is partitioned into the most appropriate number of subintervals, and (3) the trees are balanced. Finally, we carry out an experimental study using real data to show its efficiency and effectiveness. |
|---|---|
| AbstractList | Discretization techniques can be used to reduce the number of values for a given continuous attribute, and a concept hierarchy can be used to define a discretization of a given continuous attribute. Traditional methods of building a concept hierarchy from a continuous attribute are usually based on the level-wise approach. Unfortunately, this approach suffers from three weaknesses: (1) it only seeks a local optimal solution instead of a global optimal, (2) it is usually subject to the constraint that each interval can only be partitioned into a fixed number of subintervals, and (3) the constructed tree may be unbalanced. In view of these weaknesses, this paper develops a new algorithm based on dynamic-programming strategy for constructing concept hierarchies from continuous attributes. The constructed trees have three merits: (1) they are global optimal trees, (2) each interval is partitioned into the most appropriate number of subintervals, and (3) the trees are balanced. Finally, we carry out an experimental study using real data to show its efficiency and effectiveness. Discretization techniques can be used to reduce the number of values for a given continuous attribute, and a concept hierarchy can be used to define a discretization of a given continuous attribute. Traditional methods of building a concept hierarchy from a continuous attribute are usually based on the level-wise approach. Unfortunately, this approach suffers from three weaknesses: (1) it only seeks a local optimal solution instead of a global optimal, (2) it is usually subject to the constraint that each interval can only be partitioned into a fixed number of subintervals, and (3) the constructed tree may be unbalanced. In view of these weaknesses, this paper develops a new algorithm based on dynamic-programming strategy for constructing concept hierarchies from continuous attributes. The constructed trees have three merits: (1) they are global optimal trees, (2) each interval is partitioned into the most appropriate number of subintervals, and (3) the trees are balanced. Finally, we carry out an experimental study using real data to show its efficiency and effectiveness. [PUBLICATION ABSTRACT] |
| Author | Chen, Yen-Liang Shen, Ching-Cheng |
| Author_xml | – sequence: 1 givenname: Ching-Cheng surname: Shen fullname: Shen, Ching-Cheng organization: Department of Information Management, Vanung University, Chung-Li 320, Taiwan, ROC – sequence: 2 givenname: Yen-Liang surname: Chen fullname: Chen, Yen-Liang email: ylchen@mgt.ncu.edu.tw organization: Department of Information Management, National Central University, Chung-Li 320, Taiwan, ROC |
| BackLink | http://econpapers.repec.org/article/eeeejores/v_3a184_3ay_3a2008_3ai_3a2_3ap_3a636-651.htm$$DView record in RePEc |
| BookMark | eNp9UctqHDEQFMGBrJ38QE5D7jNuSatHIBdj_Ag2-JJAbkKj6dnVsCNtJI1h8_XWZoMPObihunXoKjVV5-QsxICEfKbQUaDycupwiqljALKjrAPK35EV1Yq1Uks4IyvgSrWMUfWBnOc8AQAVVKzIr6tmOAQ7e9fuU9wkO88-bBq728Tky3Zuxpiarcdkk9t6Z3fN4LNLWPwfW3wMTRwbF0PxYYlLbmwpyfdLwfyRvB_tLuOnf_OC_Ly9-XF93z4-3X2_vnps3ZrJ0lKuFfQOlNRaD3wQaJWQPYLuhUIn1eB60PVWR0cOgrmvbA0w6kFYqxTj_IJ8OenW838vmIuZ4pJC_dIwWFOhqIa69HBaSrhHZ_bJzzYdDNaqtmE2z4Zbqte1HyqqjboOf3xW7Cskl0YKarZlrmrspOZSzDnh-CpIwRzjMJM56ppjHIYyU-OoJP0fyfny18KSrN-9Tf12omL18blmYbLzGBwOPqErZoj-LfoLgySojg |
| CODEN | EJORDT |
| CitedBy_id | crossref_primary_10_3233_SW_160226 crossref_primary_10_1016_j_ejor_2009_10_017 crossref_primary_10_1109_TSMCB_2012_2229269 |
| Cites_doi | 10.1007/BFb0014140 10.1109/69.204089 10.1023/A:1020991105855 10.1145/248603.248616 10.1109/ICDE.1990.113479 10.1016/j.ejor.2004.04.029 |
| ContentType | Journal Article |
| Copyright | 2006 Elsevier B.V. Copyright Elsevier Sequoia S.A. Jan 16, 2008 |
| Copyright_xml | – notice: 2006 Elsevier B.V. – notice: Copyright Elsevier Sequoia S.A. Jan 16, 2008 |
| DBID | AAYXX CITATION DKI X2L 7SC 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1016/j.ejor.2006.12.013 |
| DatabaseName | CrossRef RePEc IDEAS RePEc Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business |
| EISSN | 1872-6860 |
| EndPage | 651 |
| ExternalDocumentID | 1338230711 eeeejores_v_3a184_3ay_3a2008_3ai_3a2_3ap_3a636_651_htm 10_1016_j_ejor_2006_12_013 S0377221706012227 |
| Genre | Feature |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29G 4.4 41~ 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN AAYOK ABAOU ABBOA ABFNM ABFRF ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIWK ACNCT ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADIYS ADJOM ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HVGLF HZ~ IHE J1W KOM LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SCC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSV SSW SSZ T5K TAE TN5 U5U VH1 WUQ XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 02 08R 0R 1 41 6XO 8P AAPBV ABFLS ADALY DKI G- HZ IPNFZ K M MS PQEST STF X X2L 7SC 7TB 8FD AFXIZ AGCQF AGRNS FR3 JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c426t-13870bc076888d3d5ea756be08b57ec67dcb08151c1f3052c92400f8d5aa77233 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000250078100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0377-2217 |
| IngestDate | Fri Jul 25 02:57:45 EDT 2025 Wed Aug 18 03:50:56 EDT 2021 Sat Nov 29 01:40:51 EST 2025 Tue Nov 18 20:47:29 EST 2025 Fri Feb 23 02:34:41 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Concept hierarchy Dynamic programming Continuous data Data mining |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c426t-13870bc076888d3d5ea756be08b57ec67dcb08151c1f3052c92400f8d5aa77233 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| PQID | 204157180 |
| PQPubID | 45678 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_204157180 repec_primary_eeeejores_v_3a184_3ay_3a2008_3ai_3a2_3ap_3a636_651_htm crossref_primary_10_1016_j_ejor_2006_12_013 crossref_citationtrail_10_1016_j_ejor_2006_12_013 elsevier_sciencedirect_doi_10_1016_j_ejor_2006_12_013 |
| PublicationCentury | 2000 |
| PublicationDate | 2008-01-16 |
| PublicationDateYYYYMMDD | 2008-01-16 |
| PublicationDate_xml | – month: 01 year: 2008 text: 2008-01-16 day: 16 |
| PublicationDecade | 2000 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationSeriesTitle | European Journal of Operational Research |
| PublicationTitle | European journal of operational research |
| PublicationYear | 2008 |
| Publisher | Elsevier B.V Elsevier Elsevier Sequoia S.A |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier – name: Elsevier Sequoia S.A |
| References | Kerber, R., 1992. Discretization of numeric attributes. In: Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-92), pp. 123–128. Han, Cai, Cercone (bib11) 1993; 5 Han, J., Cai, Y., Cercone, N., 1992. Knowledge discovery in databases: An attribute-oriented approach. In: Proceedings of 18th International Conference on Very Large Data Bases (VLDB’92), pp. 547–559. Srikant, R., Agrawal, R., 1995. Mining generalized association rules. In: Proceedings of the 21th International Conference on Very Large Data Bases (VLDB’95), pp. 407–419. Cai, Y., Cercone, N., Han, J., 1990. An attribute-oriented approach for learning classification rules from relational databases. In: Proceedings of Sixth International Conference on Data Engineering, pp. 281–288. Chaudhuri, Dayal (bib2) 1997; 26 Srikant, R., Agrawal, R., 1996. Mining sequential patterns: Generalizations and performance improvements. In: Proceedings of the 5th International Conference on Extending Database Technology, pp. 3–17. Kaufman, Rousseeuw (bib13) 1990 Codd, Codd, Salley (bib5) 1993; 27 Han, Kamber (bib9) 2001 MacQueen, J., 1967. Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability 1, pp. 281–297. Fayyad, U., Irani, K., 1993. Multi-interval discretion of continuous-values attributes for classification learning. In: Proceedings of 13th International Joint Conference on Artificial Intelligence, pp. 1022–1029. Quinlan (bib16) 1993 Hong, Lin, Chien (bib12) 2003; 18 Han, Fu (bib8) 1999; 11 Chen, Shen (bib3) 2005; 166 Han, J., Fu, Y., 1994. Dynamic generation and refinement of concept hierarchies for knowledge discovery in database. AAAI Workshops Knowledge Discovery in Database (WS-94-03), pp. 157–168. Chen, Ye (bib4) 2004; 1 Han (10.1016/j.ejor.2006.12.013_bib9) 2001 Chaudhuri (10.1016/j.ejor.2006.12.013_bib2) 1997; 26 Han (10.1016/j.ejor.2006.12.013_bib8) 1999; 11 10.1016/j.ejor.2006.12.013_bib10 Chen (10.1016/j.ejor.2006.12.013_bib3) 2005; 166 10.1016/j.ejor.2006.12.013_bib1 10.1016/j.ejor.2006.12.013_bib17 10.1016/j.ejor.2006.12.013_bib14 10.1016/j.ejor.2006.12.013_bib15 10.1016/j.ejor.2006.12.013_bib18 Codd (10.1016/j.ejor.2006.12.013_bib5) 1993; 27 Chen (10.1016/j.ejor.2006.12.013_bib4) 2004; 1 Han (10.1016/j.ejor.2006.12.013_bib11) 1993; 5 10.1016/j.ejor.2006.12.013_bib6 10.1016/j.ejor.2006.12.013_bib7 Hong (10.1016/j.ejor.2006.12.013_bib12) 2003; 18 Kaufman (10.1016/j.ejor.2006.12.013_bib13) 1990 Quinlan (10.1016/j.ejor.2006.12.013_bib16) 1993 |
| References_xml | – year: 1993 ident: bib16 article-title: C4.5: Programs for Machine Learning – reference: Cai, Y., Cercone, N., Han, J., 1990. An attribute-oriented approach for learning classification rules from relational databases. In: Proceedings of Sixth International Conference on Data Engineering, pp. 281–288. – volume: 166 start-page: 221 year: 2005 end-page: 245 ident: bib3 article-title: Mining generalized knowledge from ordered data through attribute-oriented induction techniques publication-title: European Journal of Operational Research – reference: Han, J., Cai, Y., Cercone, N., 1992. Knowledge discovery in databases: An attribute-oriented approach. In: Proceedings of 18th International Conference on Very Large Data Bases (VLDB’92), pp. 547–559. – volume: 1 start-page: 54 year: 2004 end-page: 62 ident: bib4 article-title: Multiple-level sequential pattern discovery from customer transaction databases publication-title: International Journal of Computational Intelligence – volume: 5 start-page: 29 year: 1993 end-page: 40 ident: bib11 article-title: Data-driven discovery of quantitative rules in relational databases publication-title: IEEE Transactions on Knowledge and Data Engineering – year: 2001 ident: bib9 article-title: Data Mining: Concepts and Techniques – volume: 26 start-page: 65 year: 1997 end-page: 74 ident: bib2 article-title: An overview of data warehousing and OLAP technology publication-title: ACM SIGMOD Record – reference: Kerber, R., 1992. Discretization of numeric attributes. In: Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-92), pp. 123–128. – reference: Fayyad, U., Irani, K., 1993. Multi-interval discretion of continuous-values attributes for classification learning. In: Proceedings of 13th International Joint Conference on Artificial Intelligence, pp. 1022–1029. – reference: Srikant, R., Agrawal, R., 1996. Mining sequential patterns: Generalizations and performance improvements. In: Proceedings of the 5th International Conference on Extending Database Technology, pp. 3–17. – volume: 27 start-page: 87 year: 1993 end-page: 89 ident: bib5 article-title: Beyond decision support publication-title: Computer World – volume: 11 start-page: 1 year: 1999 end-page: 8 ident: bib8 article-title: Mining multiple-level association rules in large databases publication-title: IEEE Transactions on Knowledge and Data Engineering – reference: Srikant, R., Agrawal, R., 1995. Mining generalized association rules. In: Proceedings of the 21th International Conference on Very Large Data Bases (VLDB’95), pp. 407–419. – volume: 18 start-page: 79 year: 2003 end-page: 90 ident: bib12 article-title: Mining fuzzy multiple-level association rules from quantitative data publication-title: Applied Intelligence – reference: MacQueen, J., 1967. Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability 1, pp. 281–297. – reference: Han, J., Fu, Y., 1994. Dynamic generation and refinement of concept hierarchies for knowledge discovery in database. AAAI Workshops Knowledge Discovery in Database (WS-94-03), pp. 157–168. – year: 1990 ident: bib13 article-title: Finding Group in data: An Introduction to Cluster Analysis – ident: 10.1016/j.ejor.2006.12.013_bib18 doi: 10.1007/BFb0014140 – year: 1993 ident: 10.1016/j.ejor.2006.12.013_bib16 – volume: 11 start-page: 1 issue: 5 year: 1999 ident: 10.1016/j.ejor.2006.12.013_bib8 article-title: Mining multiple-level association rules in large databases publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 5 start-page: 29 issue: 1 year: 1993 ident: 10.1016/j.ejor.2006.12.013_bib11 article-title: Data-driven discovery of quantitative rules in relational databases publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/69.204089 – volume: 18 start-page: 79 issue: 1 year: 2003 ident: 10.1016/j.ejor.2006.12.013_bib12 article-title: Mining fuzzy multiple-level association rules from quantitative data publication-title: Applied Intelligence doi: 10.1023/A:1020991105855 – volume: 26 start-page: 65 issue: 1 year: 1997 ident: 10.1016/j.ejor.2006.12.013_bib2 article-title: An overview of data warehousing and OLAP technology publication-title: ACM SIGMOD Record doi: 10.1145/248603.248616 – volume: 27 start-page: 87 issue: 30 year: 1993 ident: 10.1016/j.ejor.2006.12.013_bib5 article-title: Beyond decision support publication-title: Computer World – ident: 10.1016/j.ejor.2006.12.013_bib6 – ident: 10.1016/j.ejor.2006.12.013_bib17 – volume: 1 start-page: 54 issue: 1 year: 2004 ident: 10.1016/j.ejor.2006.12.013_bib4 article-title: Multiple-level sequential pattern discovery from customer transaction databases publication-title: International Journal of Computational Intelligence – year: 2001 ident: 10.1016/j.ejor.2006.12.013_bib9 – ident: 10.1016/j.ejor.2006.12.013_bib1 doi: 10.1109/ICDE.1990.113479 – ident: 10.1016/j.ejor.2006.12.013_bib7 – ident: 10.1016/j.ejor.2006.12.013_bib15 – ident: 10.1016/j.ejor.2006.12.013_bib14 – ident: 10.1016/j.ejor.2006.12.013_bib10 – year: 1990 ident: 10.1016/j.ejor.2006.12.013_bib13 – volume: 166 start-page: 221 issue: 1 year: 2005 ident: 10.1016/j.ejor.2006.12.013_bib3 article-title: Mining generalized knowledge from ordered data through attribute-oriented induction techniques publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2004.04.029 |
| SSID | ssj0001515 |
| Score | 1.9225209 |
| Snippet | Discretization techniques can be used to reduce the number of values for a given continuous attribute, and a concept hierarchy can be used to define a... |
| SourceID | proquest repec crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 636 |
| SubjectTerms | Concept hierarchy Continuous data Data mining Dynamic programming Optimization algorithms Studies |
| Title | A dynamic-programming algorithm for hierarchical discretization of continuous attributes |
| URI | https://dx.doi.org/10.1016/j.ejor.2006.12.013 http://econpapers.repec.org/article/eeeejores/v_3a184_3ay_3a2008_3ai_3a2_3ap_3a636-651.htm https://www.proquest.com/docview/204157180 |
| Volume | 184 |
| WOSCitedRecordID | wos000250078100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6860 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001515 issn: 0377-2217 databaseCode: AIEXJ dateStart: 19950105 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfQihA88FGYKAPkB94mo8Ru4uSxGkOA0ITEkMqT5dhO12pNqzSbtv31nGPno2Ob2AOVbKVJYyW9n-3z-e5-CH2glMtAU0nGhjEyptyQNJARURkLEiVlqqiqySb40VEynaY_vFVpU9MJ8KJILi7S9X8VNZwDYdvQ2XuIu20UTsAxCB1qEDvU_yT4yb52LPPE-14t6zjE09mqnFcny9qv0BJg11sIfo9G2VjGq1Z7tP7r8-LMesfKylFieVfDm2z4Xp-FE2VjWfQphFpT808fA2LZumfkAL7NOr8Cd-m3Kch3wOpsyw5hXeCIC5Ns4q84J5S6SMxubB33QER7I2XM4t6kG7uss3-N5860sPhoFqvS7RxZ262LXt1Onn1tUmtdDRsvtoWwbVjWzViEVASW6XhAeZTCUDiYfD2cfmsncKvj1ZtP_oV8rJVzC7z-JLfpM731yqA0a6N6asvxc_TUrzfwxOHkBXpgiiF61IQ7DNGzhtYD-1F-iJ70clS-RNMJvgFPuMUTBjzhPp7wNp7wKscdnnCHp1fo1-fD44MvxNNxEAVqXGWzVfIgU3brNkk005GRPIozEyRZxI2KuVYZKJhRqMIcZhGqUuufnCc6khLWcIztop1iVZjXCOexznROQ8PycMx1mHJYSLM8oJqZPIjzEQqbP1Uon6veUqacitvFOUL77T1rl6nlzl9HjayE1zWdDikAenfet9cIVvgutoHroAaDkheM0Kda1u0DGPhAC2YjzgWT0BugvoRSk78yObeHUNZQoEMI6AbipFq-uder7KHHXX98i3aq8sy8Qw_VeTXflO89uP8AuHPE0A |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic-programming+algorithm+for+hierarchical+discretization+of+continuous+attributes&rft.jtitle=European+journal+of+operational+research&rft.au=Shen%2C+Ching-Cheng&rft.au=Chen%2C+Yen-Liang&rft.date=2008-01-16&rft.issn=0377-2217&rft.volume=184&rft.issue=2&rft.spage=636&rft.epage=651&rft_id=info:doi/10.1016%2Fj.ejor.2006.12.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2006_12_013 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon |