Encrypted Thermal Printing with Regionalization Transformation

Artificially structured thermal metamaterials provide an unprecedented possibility of molding heat flow that is drastically distinct from the conventional heat diffusion in naturally conductive materials. The Laplacian nature of heat conduction makes the transformation thermotics, as a design princi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) Jg. 31; H. 25; S. e1807849 - n/a
Hauptverfasser: Hu, Run, Huang, Shiyao, Wang, Meng, Luo, Xiaobing, Shiomi, Junichiro, Qiu, Cheng‐Wei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Wiley Subscription Services, Inc 01.06.2019
Schlagworte:
ISSN:0935-9648, 1521-4095, 1521-4095
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Artificially structured thermal metamaterials provide an unprecedented possibility of molding heat flow that is drastically distinct from the conventional heat diffusion in naturally conductive materials. The Laplacian nature of heat conduction makes the transformation thermotics, as a design principle for thermal metadevices, compatible with transformation optics. Various functional thermal devices, such as thermal cloaks, concentrators, and rotators, have been successfully demonstrated. How far can it possible go beyond just realizing a heat‐distribution function in a thermal metadevice? Herein, the concept of encrypted thermal printing is proposed and experimentally validated, which could conceal encrypted information under natural light and present static or dynamic messages in an infrared image. Regionalization transformation is developed for structuring thermal metamaterial‐strokes as infrared signatures, enabling letters of the alphabet to be written, paintings to be drawn, movies to be made, and information to be displayed. This strategy successfully demonstrates an extreme level of manipulation of heat flow for encryption, illusions, and messaging. Heat conduction has long been considered in an omnidirectional diffusive way. Such a stereotype is successfully broken in this work and extreme heat flow manipulation is achieved, based on which encrypted thermal printing and regionalization transformation for structuring thermal metamaterial‐strokes as infrared signatures are proposed, enabling the writing of letters, the drawing of paintings, and the display of information.
AbstractList Artificially structured thermal metamaterials provide an unprecedented possibility of molding heat flow that is drastically distinct from the conventional heat diffusion in naturally conductive materials. The Laplacian nature of heat conduction makes the transformation thermotics, as a design principle for thermal metadevices, compatible with transformation optics. Various functional thermal devices, such as thermal cloaks, concentrators, and rotators, have been successfully demonstrated. How far can it possible go beyond just realizing a heat‐distribution function in a thermal metadevice? Herein, the concept of encrypted thermal printing is proposed and experimentally validated, which could conceal encrypted information under natural light and present static or dynamic messages in an infrared image. Regionalization transformation is developed for structuring thermal metamaterial‐strokes as infrared signatures, enabling letters of the alphabet to be written, paintings to be drawn, movies to be made, and information to be displayed. This strategy successfully demonstrates an extreme level of manipulation of heat flow for encryption, illusions, and messaging.
Artificially structured thermal metamaterials provide an unprecedented possibility of molding heat flow that is drastically distinct from the conventional heat diffusion in naturally conductive materials. The Laplacian nature of heat conduction makes the transformation thermotics, as a design principle for thermal metadevices, compatible with transformation optics. Various functional thermal devices, such as thermal cloaks, concentrators, and rotators, have been successfully demonstrated. How far can it possible go beyond just realizing a heat-distribution function in a thermal metadevice? Herein, the concept of encrypted thermal printing is proposed and experimentally validated, which could conceal encrypted information under natural light and present static or dynamic messages in an infrared image. Regionalization transformation is developed for structuring thermal metamaterial-strokes as infrared signatures, enabling letters of the alphabet to be written, paintings to be drawn, movies to be made, and information to be displayed. This strategy successfully demonstrates an extreme level of manipulation of heat flow for encryption, illusions, and messaging.Artificially structured thermal metamaterials provide an unprecedented possibility of molding heat flow that is drastically distinct from the conventional heat diffusion in naturally conductive materials. The Laplacian nature of heat conduction makes the transformation thermotics, as a design principle for thermal metadevices, compatible with transformation optics. Various functional thermal devices, such as thermal cloaks, concentrators, and rotators, have been successfully demonstrated. How far can it possible go beyond just realizing a heat-distribution function in a thermal metadevice? Herein, the concept of encrypted thermal printing is proposed and experimentally validated, which could conceal encrypted information under natural light and present static or dynamic messages in an infrared image. Regionalization transformation is developed for structuring thermal metamaterial-strokes as infrared signatures, enabling letters of the alphabet to be written, paintings to be drawn, movies to be made, and information to be displayed. This strategy successfully demonstrates an extreme level of manipulation of heat flow for encryption, illusions, and messaging.
Artificially structured thermal metamaterials provide an unprecedented possibility of molding heat flow that is drastically distinct from the conventional heat diffusion in naturally conductive materials. The Laplacian nature of heat conduction makes the transformation thermotics, as a design principle for thermal metadevices, compatible with transformation optics. Various functional thermal devices, such as thermal cloaks, concentrators, and rotators, have been successfully demonstrated. How far can it possible go beyond just realizing a heat‐distribution function in a thermal metadevice? Herein, the concept of encrypted thermal printing is proposed and experimentally validated, which could conceal encrypted information under natural light and present static or dynamic messages in an infrared image. Regionalization transformation is developed for structuring thermal metamaterial‐strokes as infrared signatures, enabling letters of the alphabet to be written, paintings to be drawn, movies to be made, and information to be displayed. This strategy successfully demonstrates an extreme level of manipulation of heat flow for encryption, illusions, and messaging. Heat conduction has long been considered in an omnidirectional diffusive way. Such a stereotype is successfully broken in this work and extreme heat flow manipulation is achieved, based on which encrypted thermal printing and regionalization transformation for structuring thermal metamaterial‐strokes as infrared signatures are proposed, enabling the writing of letters, the drawing of paintings, and the display of information.
Author Shiomi, Junichiro
Hu, Run
Luo, Xiaobing
Wang, Meng
Huang, Shiyao
Qiu, Cheng‐Wei
Author_xml – sequence: 1
  givenname: Run
  orcidid: 0000-0003-0274-9982
  surname: Hu
  fullname: Hu, Run
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 2
  givenname: Shiyao
  surname: Huang
  fullname: Huang, Shiyao
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 3
  givenname: Meng
  surname: Wang
  fullname: Wang, Meng
  organization: Huazhong University of Science and Technology
– sequence: 4
  givenname: Xiaobing
  surname: Luo
  fullname: Luo, Xiaobing
  email: luoxb@hust.edu.cn
  organization: Huazhong University of Science and Technology
– sequence: 5
  givenname: Junichiro
  surname: Shiomi
  fullname: Shiomi, Junichiro
  email: shiomi@photon.t.u-tokyo.ac.jp
  organization: The University of Tokyo (UTOKYO)
– sequence: 6
  givenname: Cheng‐Wei
  orcidid: 0000-0002-6605-500X
  surname: Qiu
  fullname: Qiu, Cheng‐Wei
  email: eleqc@nus.edu.sg
  organization: National University of Singapore (NUS)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31058371$$D View this record in MEDLINE/PubMed
BookMark eNqFkElLw0AYQAdR7KJXjxLw4qX1myXJzEUotS5QUaSewzT50k7JUmdSSv31JrZWKIiXWeC9-ZjXIcdFWSAhFxT6FIDd6CTXfQZUQiiFOiJt6jPaE6D8Y9IGxf2eCoRskY5zCwBQAQSnpMUp-JKHtE1uR0VsN8sKE28yR5vrzHu1pqhMMfPWppp7bzgzZaEz86mr-uBNrC5cWtZkcz0jJ6nOHJ7v9i55vx9Nho-98cvD03Aw7sWCBapZp8rXISqaCoEYBnGIqaSU8xiUTlKMcUqFTJTgCQs0DYOpkikFDpIDct4l19t3l7b8WKGroty4GLNMF1iuXMQYZ5QFgoU1enWALsqVrX_QUDUQSvAb6nJHraY5JtHSmlzbTfRTpgb6WyC2pXMW0z1CIWrSR036aJ--FsSBEJvqO1Jltcn-1tRWW5sMN_8MiQZ3z4Nf9wuiRZdL
CitedBy_id crossref_primary_10_1016_j_cja_2022_08_004
crossref_primary_10_1021_acs_chemrev_4c00912
crossref_primary_10_1038_s41528_024_00348_6
crossref_primary_10_1016_j_icheatmasstransfer_2023_106730
crossref_primary_10_1002_smll_202100446
crossref_primary_10_1209_0295_5075_131_24002
crossref_primary_10_1016_j_matdes_2021_109657
crossref_primary_10_1103_PhysRevApplied_13_024063
crossref_primary_10_1016_j_egyr_2023_02_050
crossref_primary_10_1002_adfm_202104071
crossref_primary_10_1209_0295_5075_130_34001
crossref_primary_10_1016_j_compstruct_2025_119103
crossref_primary_10_1038_s43246_021_00196_1
crossref_primary_10_1063_5_0195578
crossref_primary_10_1063_5_0007354
crossref_primary_10_3390_s21010161
crossref_primary_10_1002_adfm_202005033
crossref_primary_10_1063_5_0039751
crossref_primary_10_1002_adfm_202007210
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121417
crossref_primary_10_1016_j_apmt_2020_100911
crossref_primary_10_1016_j_tsep_2021_100926
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125205
crossref_primary_10_1038_s41524_022_00861_0
crossref_primary_10_1002_advs_202503024
crossref_primary_10_1088_0256_307X_40_9_094401
crossref_primary_10_1038_s41598_022_06719_1
crossref_primary_10_3389_fphy_2022_898464
crossref_primary_10_1038_s41578_021_00283_2
crossref_primary_10_1002_adem_202300389
crossref_primary_10_1063_5_0108743
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120437
crossref_primary_10_3390_mi16080840
crossref_primary_10_1016_j_compstruct_2020_113319
crossref_primary_10_1016_j_icheatmasstransfer_2024_107976
crossref_primary_10_1103_PhysRevApplied_12_044048
crossref_primary_10_1016_j_physrep_2020_12_006
crossref_primary_10_1002_adma_202003823
crossref_primary_10_1088_0256_307X_39_7_075201
crossref_primary_10_1088_0256_307X_37_8_080502
crossref_primary_10_1063_5_0175410
crossref_primary_10_1016_j_nanoen_2020_104687
crossref_primary_10_1002_marc_202300117
crossref_primary_10_1038_s41598_021_02067_8
crossref_primary_10_1002_adfm_202109674
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119346
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121677
crossref_primary_10_1016_j_ijmecsci_2023_108722
crossref_primary_10_1038_s41467_024_49630_1
crossref_primary_10_1016_j_colsurfa_2021_128022
crossref_primary_10_1007_s12274_023_6044_9
crossref_primary_10_1016_j_amf_2024_200141
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120133
crossref_primary_10_1007_s40843_022_2309_4
crossref_primary_10_1063_5_0100916
crossref_primary_10_3390_ma16103657
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120659
crossref_primary_10_1063_5_0151146
crossref_primary_10_1063_5_0013152
crossref_primary_10_1063_5_0013270
crossref_primary_10_3390_ma15030935
crossref_primary_10_1088_1674_1056_ab592d
crossref_primary_10_1002_adma_202200329
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121177
crossref_primary_10_1002_advs_202201032
crossref_primary_10_1088_0256_307X_38_1_010503
crossref_primary_10_1002_adfm_202514525
crossref_primary_10_1088_0256_307X_38_1_010502
crossref_primary_10_1002_adfm_201906984
crossref_primary_10_1002_adma_202201093
crossref_primary_10_3390_en16155807
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124314
crossref_primary_10_1007_s11433_021_1889_5
crossref_primary_10_1002_aenm_201903921
crossref_primary_10_1016_j_apm_2022_01_026
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123303
crossref_primary_10_1002_smll_202102128
crossref_primary_10_1088_0256_307X_37_12_120501
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124033
crossref_primary_10_1016_j_nanoen_2020_104926
crossref_primary_10_1002_admt_202302176
crossref_primary_10_1002_admt_202100821
crossref_primary_10_1002_adfm_201909788
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126182
crossref_primary_10_1002_admi_202100660
crossref_primary_10_1038_s41467_021_27543_7
crossref_primary_10_1103_PhysRevApplied_14_014008
crossref_primary_10_1557_s43578_023_00964_4
crossref_primary_10_1002_adom_202101930
crossref_primary_10_1103_PhysRevApplied_21_064035
crossref_primary_10_1016_j_applthermaleng_2023_121555
crossref_primary_10_1016_j_applthermaleng_2023_122247
crossref_primary_10_1103_PhysRevApplied_19_054096
crossref_primary_10_1515_nanoph_2019_0485
crossref_primary_10_1016_j_compositesb_2024_112042
crossref_primary_10_1016_j_fmre_2025_02_001
crossref_primary_10_3390_en15051827
crossref_primary_10_3390_coatings12040422
crossref_primary_10_1140_epjb_e2020_10122_6
Cites_doi 10.1063/1.4962473
10.1063/1.4901885
10.1103/PhysRevLett.115.195503
10.1021/nl403773f
10.1103/PhysRevApplied.10.054032
10.1038/srep03600
10.1016/j.ijheatmasstransfer.2018.07.034
10.1103/PhysRevLett.117.055501
10.1063/1.4816775
10.1126/science.1126493
10.1063/1.4917344
10.1038/nmat2561
10.1103/PhysRevLett.113.205501
10.1002/aenm.201702692
10.1103/PhysRevApplied.10.024003
10.1038/s41377-018-0038-5
10.1103/PhysRevLett.112.054301
10.1021/acsnano.8b01645
10.1063/1.4913996
10.1038/natrevmats.2016.1
10.1111/appy.12074
10.1063/1.2951600
10.1063/1.4973309
10.1063/1.4967986
10.1209/0295-5075/111/54003
10.1002/adma.201304448
10.1016/j.physleta.2018.11.041
10.1126/science.1125907
10.1126/science.1133628
10.1038/ncomms5130
10.1364/OE.20.008207
10.1103/PhysRevApplied.10.024034
10.1002/adma.201707237
10.1038/s41563-017-0003-3
10.1038/nmat3431
10.1063/1.4903170
10.1038/nature12608
10.1103/PhysRevLett.101.267203
10.1103/PhysRevLett.108.214303
10.1103/PhysRevLett.110.195901
10.1364/OE.24.005683
10.1093/nsr/nwy005
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201807849
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
PubMed
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 31058371
10_1002_adma_201807849
ADMA201807849
Genre article
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2016YFB0400804
– fundername: Ministry of Education, Singapore
  funderid: R‐263‐ 000‐C05‐112
– fundername: National Natural Science Foundation of China
  funderid: 51606074; 51625601
– fundername: Ministry of Science and Technology of the People's Republic of China
  funderid: 2017YFE0100600
– fundername: National Natural Science Foundation of China
  grantid: 51625601
– fundername: National Natural Science Foundation of China
  grantid: 51606074
– fundername: Ministry of Education, Singapore
  grantid: R-263- 000-C05-112
– fundername: Ministry of Science and Technology of the People's Republic of China
  grantid: 2017YFE0100600
– fundername: National Key Research and Development Program of China
  grantid: 2016YFB0400804
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAYOK
ABTAH
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4269-c42b95a7e91f44ee76c7ef81133c09adfeceb148d943d26a176b98f1030830e33
IEDL.DBID DRFUL
ISICitedReferencesCount 131
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000475269900022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Wed Oct 01 14:02:06 EDT 2025
Sun Nov 09 07:52:58 EST 2025
Thu Apr 03 07:05:23 EDT 2025
Sat Nov 29 07:20:26 EST 2025
Tue Nov 18 21:59:32 EST 2025
Wed Jan 22 16:40:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords thermal metamaterials
regionalization transformation
thermal printing
illusion thermotics
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4269-c42b95a7e91f44ee76c7ef81133c09adfeceb148d943d26a176b98f1030830e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6605-500X
0000-0003-0274-9982
PMID 31058371
PQID 2242778057
PQPubID 2045203
PageCount 7
ParticipantIDs proquest_miscellaneous_2232126427
proquest_journals_2242778057
pubmed_primary_31058371
crossref_primary_10_1002_adma_201807849
crossref_citationtrail_10_1002_adma_201807849
wiley_primary_10_1002_adma_201807849_ADMA201807849
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 5
2015; 4
2018; 127
2016; 109
2013; 503
2014; 26
2013; 103
2015; 106
2006; 314
2008; 101
2019; 383
2008; 92
2013; 5
2012; 11
2012; 108
2006; 312
2014; 112
2014; 113
2018; 7
2014; 105
2016; 6
2018; 17
2018; 8
2014; 5
2014; 4
2016; 1
2018; 5
2015; 115
2015; 111
2014; 14
2009; 8
2018; 30
2016; 117
2013; 110
2018; 12
2018; 10
2012; 20
2016; 24
e_1_2_4_40_1
e_1_2_4_41_1
e_1_2_4_21_1
e_1_2_4_20_1
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_22_1
e_1_2_4_43_1
e_1_2_4_25_1
e_1_2_4_24_1
e_1_2_4_27_1
e_1_2_4_26_1
e_1_2_4_29_1
e_1_2_4_28_1
Moccia M. (e_1_2_4_9_1) 2014; 4
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_2_1
e_1_2_4_5_1
e_1_2_4_4_1
e_1_2_4_7_1
e_1_2_4_6_1
e_1_2_4_8_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_38_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_17_1
e_1_2_4_39_1
e_1_2_4_19_1
References_xml – volume: 92
  start-page: 251907
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 4
  start-page: 021025
  year: 2014
  publication-title: Phys. Rev. X
– volume: 5
  start-page: 4130
  year: 2014
  publication-title: Nat. Commun.
– volume: 1
  start-page: 16001
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 20
  start-page: 8207
  year: 2012
  publication-title: Opt. Express
– volume: 105
  start-page: 193904
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 12
  start-page: 5774
  year: 2018
  publication-title: ACS Nano
– volume: 314
  start-page: 977
  year: 2006
  publication-title: Science
– volume: 111
  start-page: 54003
  year: 2015
  publication-title: Europhys. Lett.
– volume: 11
  start-page: 917
  year: 2012
  publication-title: Nat. Mater.
– volume: 8
  start-page: 931
  year: 2009
  publication-title: Nat. Mater.
– volume: 5
  start-page: 138
  year: 2018
  publication-title: Natl. Sci. Rev.
– volume: 312
  start-page: 1777
  year: 2006
  publication-title: Science
– volume: 7
  start-page: 26
  year: 2018
  publication-title: Light: Sci. Appl.
– volume: 312
  start-page: 1780
  year: 2006
  publication-title: Science
– volume: 109
  start-page: 103506
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 5
  start-page: e73
  year: 2013
  publication-title: NPG Asia Mater.
– volume: 101
  start-page: 267203
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 4
  start-page: 3600
  year: 2015
  publication-title: Sci. Rep.
– volume: 109
  start-page: 201906
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 24
  start-page: 5683
  year: 2016
  publication-title: Opt. Express
– volume: 8
  start-page: 1702692
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 106
  start-page: 143904
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 26
  start-page: 1731
  year: 2014
  publication-title: Adv. Mater.
– volume: 383
  start-page: 759
  year: 2019
  publication-title: Phys. Lett. A
– volume: 110
  start-page: 195901
  year: 2013
  publication-title: Phys. Rev. Lett.
– volume: 113
  start-page: 205501
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 108
  start-page: 214303
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 17
  start-page: 323
  year: 2018
  publication-title: Nat. Mater.
– volume: 14
  start-page: 592
  year: 2014
  publication-title: Nano Lett.
– volume: 105
  start-page: 221904
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 125111
  year: 2016
  publication-title: AIP Adv.
– volume: 10
  start-page: 024034
  year: 2018
  publication-title: Phys. Rev. Appl.
– volume: 127
  start-page: 607
  year: 2018
  publication-title: Int. J. Heat Mass Transfer
– volume: 30
  start-page: 1707237
  year: 2018
  publication-title: Adv. Mater.
– volume: 103
  start-page: 063501
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 503
  start-page: 209
  year: 2013
  publication-title: Nature
– volume: 10
  start-page: 054032
  year: 2018
  publication-title: Phys. Rev. Appl.
– volume: 115
  start-page: 195503
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 10
  start-page: 024003
  year: 2018
  publication-title: Phys. Rev. Appl.
– volume: 112
  start-page: 054301
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 053402
  year: 2015
  publication-title: AIP Adv.
– volume: 117
  start-page: 055501
  year: 2016
  publication-title: Phys. Rev. Lett.
– ident: e_1_2_4_27_1
  doi: 10.1063/1.4962473
– ident: e_1_2_4_42_1
  doi: 10.1063/1.4901885
– ident: e_1_2_4_36_1
  doi: 10.1103/PhysRevLett.115.195503
– ident: e_1_2_4_35_1
  doi: 10.1021/nl403773f
– ident: e_1_2_4_22_1
  doi: 10.1103/PhysRevApplied.10.054032
– ident: e_1_2_4_21_1
  doi: 10.1038/srep03600
– ident: e_1_2_4_23_1
  doi: 10.1016/j.ijheatmasstransfer.2018.07.034
– ident: e_1_2_4_37_1
  doi: 10.1103/PhysRevLett.117.055501
– ident: e_1_2_4_20_1
  doi: 10.1063/1.4816775
– ident: e_1_2_4_2_1
  doi: 10.1126/science.1126493
– ident: e_1_2_4_43_1
  doi: 10.1063/1.4917344
– ident: e_1_2_4_7_1
  doi: 10.1038/nmat2561
– ident: e_1_2_4_8_1
  doi: 10.1103/PhysRevLett.113.205501
– volume: 4
  start-page: 021025
  year: 2014
  ident: e_1_2_4_9_1
  publication-title: Phys. Rev. X
– ident: e_1_2_4_34_1
  doi: 10.1002/aenm.201702692
– ident: e_1_2_4_39_1
  doi: 10.1103/PhysRevApplied.10.024003
– ident: e_1_2_4_26_1
  doi: 10.1038/s41377-018-0038-5
– ident: e_1_2_4_16_1
  doi: 10.1103/PhysRevLett.112.054301
– ident: e_1_2_4_33_1
  doi: 10.1021/acsnano.8b01645
– ident: e_1_2_4_17_1
  doi: 10.1063/1.4913996
– ident: e_1_2_4_13_1
  doi: 10.1038/natrevmats.2016.1
– ident: e_1_2_4_19_1
  doi: 10.1111/appy.12074
– ident: e_1_2_4_4_1
  doi: 10.1063/1.2951600
– ident: e_1_2_4_29_1
  doi: 10.1063/1.4973309
– ident: e_1_2_4_30_1
  doi: 10.1063/1.4967986
– ident: e_1_2_4_18_1
  doi: 10.1209/0295-5075/111/54003
– ident: e_1_2_4_25_1
  doi: 10.1002/adma.201304448
– ident: e_1_2_4_40_1
  doi: 10.1016/j.physleta.2018.11.041
– ident: e_1_2_4_1_1
  doi: 10.1126/science.1125907
– ident: e_1_2_4_3_1
  doi: 10.1126/science.1133628
– ident: e_1_2_4_10_1
  doi: 10.1038/ncomms5130
– ident: e_1_2_4_5_1
  doi: 10.1364/OE.20.008207
– ident: e_1_2_4_32_1
  doi: 10.1103/PhysRevApplied.10.024034
– ident: e_1_2_4_28_1
  doi: 10.1002/adma.201707237
– ident: e_1_2_4_6_1
  doi: 10.1038/s41563-017-0003-3
– ident: e_1_2_4_11_1
  doi: 10.1038/nmat3431
– ident: e_1_2_4_24_1
  doi: 10.1063/1.4903170
– ident: e_1_2_4_12_1
  doi: 10.1038/nature12608
– ident: e_1_2_4_38_1
  doi: 10.1103/PhysRevLett.101.267203
– ident: e_1_2_4_14_1
  doi: 10.1103/PhysRevLett.108.214303
– ident: e_1_2_4_15_1
  doi: 10.1103/PhysRevLett.110.195901
– ident: e_1_2_4_31_1
  doi: 10.1364/OE.24.005683
– ident: e_1_2_4_41_1
  doi: 10.1093/nsr/nwy005
SSID ssj0009606
Score 2.609907
Snippet Artificially structured thermal metamaterials provide an unprecedented possibility of molding heat flow that is drastically distinct from the conventional heat...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1807849
SubjectTerms Concentrators
Conduction heating
Conductive heat transfer
Distribution functions
Encryption
Heat distribution
Heat transmission
illusion thermotics
Illusions
Infrared imagery
Infrared signatures
Materials science
Metamaterials
Natural lighting
regionalization transformation
thermal metamaterials
thermal printing
Thermal transformations
Title Encrypted Thermal Printing with Regionalization Transformation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201807849
https://www.ncbi.nlm.nih.gov/pubmed/31058371
https://www.proquest.com/docview/2242778057
https://www.proquest.com/docview/2232126427
Volume 31
WOSCitedRecordID wos000475269900022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB609aAH34_4KBEET8E8ttndi1CsxUMtpVTpLexuNiKUtPQh-O-dTdK0RUTQS0jYSbLszOx8-_oG4Ea5wlcJk-hpnDlEaXQplkhH8IRK7mkVZmk6X9u002GDAe-unOLP-SHKCTfjGVl_bRxcyOndkjRUxBlvkGcI0wnfhKqPxksqUG32Wi_tJfFumOXXNOt9Dg8JWxA3uv7d-hfWA9M3tLkOXrPo09r7f733YbdAnnYjN5UD2NDpIeys8BEewf1jqiafYwShNpoPdtlDu4slZme0bSZs7Z5-y6YOi8Obdn8F9o7SY3hpPfYfnpwiwYKjzAlWc5W8LqjmXkKI1jRUVCfMw3GrcrmIE62wKycs5iSI_VB4NJSoSZOZjAWuDoITqKSjVJ-BHWuPCiqla7iGFSWSYvBPFFGckborEgucRetGqmAfN0kwhlHOm-xHpl2isl0suC3lxznvxo-SlwtlRYX_TSMEJj416RqoBddlMXqOWQ4RqR7NjUyAcRvHXyhzmiu5_BWC3joO3T0L_EyXv9QhajSfG-XT-V9euoBtvOf5LrRLqMwmc30FW-pj9j6d1GCTDlitsO0v_233yQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rS8MwED90CuoH34_5rCD4qayPrEm-CEMdinOMMcVvJU1TEUY3tin433vXdtUhIohfCm2ubcjd5R5Jfgdwph3l6UREqGlS2EwbVCmRRLaSCY-ka3SQlel8bPF2Wzw9yU6xm5DOwuT4EGXCjTQjm69JwSkhXftEDVVxBhzkEmI6k_OwwFCW6hVYuOo2H1qfyLtBVmCTFvxsGTAxRW50vNrsF2Yt0zd3c9Z7zcxPc-0fOr4Oq4XvaTVyYdmAOZNuwsoXRMItuLhO9eh9iG6ohQKEk3bf6mAL7Y22KGVrdc1zljwsjm9avS-O7yDdhofmde_yxi5KLNiazrDSNZJ1xY10E8aM4YHmJhEuRq7akSpOjMbJnIlYMj_2AuXyIEJeUm0y4TvG93egkg5SswdWbFyueBQ5hDasOYs4mv9EMy0FqzsqqYI9Hd5QF_jjVAajH-bIyV5I4xKW41KF85J-mCNv_Eh5OOVWWGjgOETXxONUsIFX4bRsRt2hBRGVmsEr0fhouTECQ5rdnMvlr9DtrWPw7lbBy5j5Sx_CxtV9o7zb_8tLJ7B007tvha3b9t0BLONzme9JO4TKZPRqjmBRv01exqPjQsQ_AAsq-tE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD7oFNEH75fq1AqCT8Ve0iZ5EYZzKM4xRGVvJU0TEaQbuwj-e0_arjpEBPGl0Oa0DTk5Od_J5TsAp9IVvtQsQUvjzCFSoUkxnTiCa5pwT8koT9P51KadDuv1eLfcTWjOwhT8ENWEm7GMfLw2Bq4GqT7_ZA0VaU4c5BnGdMLnYYGEPELbXGjetx7bn8y7UZ5g0yz4OTwibMrc6Prns1-Y9Uzf4OYses3dT2vtHyq-Dqsl9rQbRWfZgDmVbcLKF0bCLbi4yuTwfYAw1MYOhIP2q93FErM32jZTtva9es4nD8vjm_bDF-Dbz7bhsXX1cHntlCkWHGnOsJprwkNBFfc0IUrRSFKlmYeRq3S5SLWSOJgTlnISpH4kPBolqEuTm4wFrgqCHahl_UztgZ0qjwqaJK5hG5aUJBTdv5ZEckZCV2gLnGnzxrLkHzdpMF7jgjnZj027xFW7WHBWyQ8K5o0fJetTbcWlBY5ihCY-NQkbqAUnVTHajlkQEZnqT4xMgJ4bIzCU2S20XP0KYW-IwbtngZ8r85c6xI3mXaO62__LS8ew1G224vZN5_YAlvExL7ak1aE2Hk7UISzKt_HLaHhU9vAPnHP6TA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Encrypted+Thermal+Printing+with+Regionalization+Transformation&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Hu%2C+Run&rft.au=Huang%2C+Shiyao&rft.au=Wang%2C+Meng&rft.au=Luo%2C+Xiaobing&rft.date=2019-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=25&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201807849&rft.externalDBID=10.1002%252Fadma.201807849&rft.externalDocID=ADMA201807849
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon