Encrypted Thermal Printing with Regionalization Transformation
Artificially structured thermal metamaterials provide an unprecedented possibility of molding heat flow that is drastically distinct from the conventional heat diffusion in naturally conductive materials. The Laplacian nature of heat conduction makes the transformation thermotics, as a design princi...
Gespeichert in:
| Veröffentlicht in: | Advanced materials (Weinheim) Jg. 31; H. 25; S. e1807849 - n/a |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Germany
Wiley Subscription Services, Inc
01.06.2019
|
| Schlagworte: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Artificially structured thermal metamaterials provide an unprecedented possibility of molding heat flow that is drastically distinct from the conventional heat diffusion in naturally conductive materials. The Laplacian nature of heat conduction makes the transformation thermotics, as a design principle for thermal metadevices, compatible with transformation optics. Various functional thermal devices, such as thermal cloaks, concentrators, and rotators, have been successfully demonstrated. How far can it possible go beyond just realizing a heat‐distribution function in a thermal metadevice? Herein, the concept of encrypted thermal printing is proposed and experimentally validated, which could conceal encrypted information under natural light and present static or dynamic messages in an infrared image. Regionalization transformation is developed for structuring thermal metamaterial‐strokes as infrared signatures, enabling letters of the alphabet to be written, paintings to be drawn, movies to be made, and information to be displayed. This strategy successfully demonstrates an extreme level of manipulation of heat flow for encryption, illusions, and messaging.
Heat conduction has long been considered in an omnidirectional diffusive way. Such a stereotype is successfully broken in this work and extreme heat flow manipulation is achieved, based on which encrypted thermal printing and regionalization transformation for structuring thermal metamaterial‐strokes as infrared signatures are proposed, enabling the writing of letters, the drawing of paintings, and the display of information. |
|---|---|
| AbstractList | Artificially structured thermal metamaterials provide an unprecedented possibility of molding heat flow that is drastically distinct from the conventional heat diffusion in naturally conductive materials. The Laplacian nature of heat conduction makes the transformation thermotics, as a design principle for thermal metadevices, compatible with transformation optics. Various functional thermal devices, such as thermal cloaks, concentrators, and rotators, have been successfully demonstrated. How far can it possible go beyond just realizing a heat‐distribution function in a thermal metadevice? Herein, the concept of encrypted thermal printing is proposed and experimentally validated, which could conceal encrypted information under natural light and present static or dynamic messages in an infrared image. Regionalization transformation is developed for structuring thermal metamaterial‐strokes as infrared signatures, enabling letters of the alphabet to be written, paintings to be drawn, movies to be made, and information to be displayed. This strategy successfully demonstrates an extreme level of manipulation of heat flow for encryption, illusions, and messaging. Artificially structured thermal metamaterials provide an unprecedented possibility of molding heat flow that is drastically distinct from the conventional heat diffusion in naturally conductive materials. The Laplacian nature of heat conduction makes the transformation thermotics, as a design principle for thermal metadevices, compatible with transformation optics. Various functional thermal devices, such as thermal cloaks, concentrators, and rotators, have been successfully demonstrated. How far can it possible go beyond just realizing a heat-distribution function in a thermal metadevice? Herein, the concept of encrypted thermal printing is proposed and experimentally validated, which could conceal encrypted information under natural light and present static or dynamic messages in an infrared image. Regionalization transformation is developed for structuring thermal metamaterial-strokes as infrared signatures, enabling letters of the alphabet to be written, paintings to be drawn, movies to be made, and information to be displayed. This strategy successfully demonstrates an extreme level of manipulation of heat flow for encryption, illusions, and messaging.Artificially structured thermal metamaterials provide an unprecedented possibility of molding heat flow that is drastically distinct from the conventional heat diffusion in naturally conductive materials. The Laplacian nature of heat conduction makes the transformation thermotics, as a design principle for thermal metadevices, compatible with transformation optics. Various functional thermal devices, such as thermal cloaks, concentrators, and rotators, have been successfully demonstrated. How far can it possible go beyond just realizing a heat-distribution function in a thermal metadevice? Herein, the concept of encrypted thermal printing is proposed and experimentally validated, which could conceal encrypted information under natural light and present static or dynamic messages in an infrared image. Regionalization transformation is developed for structuring thermal metamaterial-strokes as infrared signatures, enabling letters of the alphabet to be written, paintings to be drawn, movies to be made, and information to be displayed. This strategy successfully demonstrates an extreme level of manipulation of heat flow for encryption, illusions, and messaging. Artificially structured thermal metamaterials provide an unprecedented possibility of molding heat flow that is drastically distinct from the conventional heat diffusion in naturally conductive materials. The Laplacian nature of heat conduction makes the transformation thermotics, as a design principle for thermal metadevices, compatible with transformation optics. Various functional thermal devices, such as thermal cloaks, concentrators, and rotators, have been successfully demonstrated. How far can it possible go beyond just realizing a heat‐distribution function in a thermal metadevice? Herein, the concept of encrypted thermal printing is proposed and experimentally validated, which could conceal encrypted information under natural light and present static or dynamic messages in an infrared image. Regionalization transformation is developed for structuring thermal metamaterial‐strokes as infrared signatures, enabling letters of the alphabet to be written, paintings to be drawn, movies to be made, and information to be displayed. This strategy successfully demonstrates an extreme level of manipulation of heat flow for encryption, illusions, and messaging. Heat conduction has long been considered in an omnidirectional diffusive way. Such a stereotype is successfully broken in this work and extreme heat flow manipulation is achieved, based on which encrypted thermal printing and regionalization transformation for structuring thermal metamaterial‐strokes as infrared signatures are proposed, enabling the writing of letters, the drawing of paintings, and the display of information. |
| Author | Shiomi, Junichiro Hu, Run Luo, Xiaobing Wang, Meng Huang, Shiyao Qiu, Cheng‐Wei |
| Author_xml | – sequence: 1 givenname: Run orcidid: 0000-0003-0274-9982 surname: Hu fullname: Hu, Run organization: Huazhong University of Science and Technology (HUST) – sequence: 2 givenname: Shiyao surname: Huang fullname: Huang, Shiyao organization: Huazhong University of Science and Technology (HUST) – sequence: 3 givenname: Meng surname: Wang fullname: Wang, Meng organization: Huazhong University of Science and Technology – sequence: 4 givenname: Xiaobing surname: Luo fullname: Luo, Xiaobing email: luoxb@hust.edu.cn organization: Huazhong University of Science and Technology – sequence: 5 givenname: Junichiro surname: Shiomi fullname: Shiomi, Junichiro email: shiomi@photon.t.u-tokyo.ac.jp organization: The University of Tokyo (UTOKYO) – sequence: 6 givenname: Cheng‐Wei orcidid: 0000-0002-6605-500X surname: Qiu fullname: Qiu, Cheng‐Wei email: eleqc@nus.edu.sg organization: National University of Singapore (NUS) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31058371$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkElLw0AYQAdR7KJXjxLw4qX1myXJzEUotS5QUaSewzT50k7JUmdSSv31JrZWKIiXWeC9-ZjXIcdFWSAhFxT6FIDd6CTXfQZUQiiFOiJt6jPaE6D8Y9IGxf2eCoRskY5zCwBQAQSnpMUp-JKHtE1uR0VsN8sKE28yR5vrzHu1pqhMMfPWppp7bzgzZaEz86mr-uBNrC5cWtZkcz0jJ6nOHJ7v9i55vx9Nho-98cvD03Aw7sWCBapZp8rXISqaCoEYBnGIqaSU8xiUTlKMcUqFTJTgCQs0DYOpkikFDpIDct4l19t3l7b8WKGroty4GLNMF1iuXMQYZ5QFgoU1enWALsqVrX_QUDUQSvAb6nJHraY5JtHSmlzbTfRTpgb6WyC2pXMW0z1CIWrSR036aJ--FsSBEJvqO1Jltcn-1tRWW5sMN_8MiQZ3z4Nf9wuiRZdL |
| CitedBy_id | crossref_primary_10_1016_j_cja_2022_08_004 crossref_primary_10_1021_acs_chemrev_4c00912 crossref_primary_10_1038_s41528_024_00348_6 crossref_primary_10_1016_j_icheatmasstransfer_2023_106730 crossref_primary_10_1002_smll_202100446 crossref_primary_10_1209_0295_5075_131_24002 crossref_primary_10_1016_j_matdes_2021_109657 crossref_primary_10_1103_PhysRevApplied_13_024063 crossref_primary_10_1016_j_egyr_2023_02_050 crossref_primary_10_1002_adfm_202104071 crossref_primary_10_1209_0295_5075_130_34001 crossref_primary_10_1016_j_compstruct_2025_119103 crossref_primary_10_1038_s43246_021_00196_1 crossref_primary_10_1063_5_0195578 crossref_primary_10_1063_5_0007354 crossref_primary_10_3390_s21010161 crossref_primary_10_1002_adfm_202005033 crossref_primary_10_1063_5_0039751 crossref_primary_10_1002_adfm_202007210 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121417 crossref_primary_10_1016_j_apmt_2020_100911 crossref_primary_10_1016_j_tsep_2021_100926 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125205 crossref_primary_10_1038_s41524_022_00861_0 crossref_primary_10_1002_advs_202503024 crossref_primary_10_1088_0256_307X_40_9_094401 crossref_primary_10_1038_s41598_022_06719_1 crossref_primary_10_3389_fphy_2022_898464 crossref_primary_10_1038_s41578_021_00283_2 crossref_primary_10_1002_adem_202300389 crossref_primary_10_1063_5_0108743 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120437 crossref_primary_10_3390_mi16080840 crossref_primary_10_1016_j_compstruct_2020_113319 crossref_primary_10_1016_j_icheatmasstransfer_2024_107976 crossref_primary_10_1103_PhysRevApplied_12_044048 crossref_primary_10_1016_j_physrep_2020_12_006 crossref_primary_10_1002_adma_202003823 crossref_primary_10_1088_0256_307X_39_7_075201 crossref_primary_10_1088_0256_307X_37_8_080502 crossref_primary_10_1063_5_0175410 crossref_primary_10_1016_j_nanoen_2020_104687 crossref_primary_10_1002_marc_202300117 crossref_primary_10_1038_s41598_021_02067_8 crossref_primary_10_1002_adfm_202109674 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119346 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121677 crossref_primary_10_1016_j_ijmecsci_2023_108722 crossref_primary_10_1038_s41467_024_49630_1 crossref_primary_10_1016_j_colsurfa_2021_128022 crossref_primary_10_1007_s12274_023_6044_9 crossref_primary_10_1016_j_amf_2024_200141 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120133 crossref_primary_10_1007_s40843_022_2309_4 crossref_primary_10_1063_5_0100916 crossref_primary_10_3390_ma16103657 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120659 crossref_primary_10_1063_5_0151146 crossref_primary_10_1063_5_0013152 crossref_primary_10_1063_5_0013270 crossref_primary_10_3390_ma15030935 crossref_primary_10_1088_1674_1056_ab592d crossref_primary_10_1002_adma_202200329 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121177 crossref_primary_10_1002_advs_202201032 crossref_primary_10_1088_0256_307X_38_1_010503 crossref_primary_10_1002_adfm_202514525 crossref_primary_10_1088_0256_307X_38_1_010502 crossref_primary_10_1002_adfm_201906984 crossref_primary_10_1002_adma_202201093 crossref_primary_10_3390_en16155807 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124314 crossref_primary_10_1007_s11433_021_1889_5 crossref_primary_10_1002_aenm_201903921 crossref_primary_10_1016_j_apm_2022_01_026 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123303 crossref_primary_10_1002_smll_202102128 crossref_primary_10_1088_0256_307X_37_12_120501 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124033 crossref_primary_10_1016_j_nanoen_2020_104926 crossref_primary_10_1002_admt_202302176 crossref_primary_10_1002_admt_202100821 crossref_primary_10_1002_adfm_201909788 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126182 crossref_primary_10_1002_admi_202100660 crossref_primary_10_1038_s41467_021_27543_7 crossref_primary_10_1103_PhysRevApplied_14_014008 crossref_primary_10_1557_s43578_023_00964_4 crossref_primary_10_1002_adom_202101930 crossref_primary_10_1103_PhysRevApplied_21_064035 crossref_primary_10_1016_j_applthermaleng_2023_121555 crossref_primary_10_1016_j_applthermaleng_2023_122247 crossref_primary_10_1103_PhysRevApplied_19_054096 crossref_primary_10_1515_nanoph_2019_0485 crossref_primary_10_1016_j_compositesb_2024_112042 crossref_primary_10_1016_j_fmre_2025_02_001 crossref_primary_10_3390_en15051827 crossref_primary_10_3390_coatings12040422 crossref_primary_10_1140_epjb_e2020_10122_6 |
| Cites_doi | 10.1063/1.4962473 10.1063/1.4901885 10.1103/PhysRevLett.115.195503 10.1021/nl403773f 10.1103/PhysRevApplied.10.054032 10.1038/srep03600 10.1016/j.ijheatmasstransfer.2018.07.034 10.1103/PhysRevLett.117.055501 10.1063/1.4816775 10.1126/science.1126493 10.1063/1.4917344 10.1038/nmat2561 10.1103/PhysRevLett.113.205501 10.1002/aenm.201702692 10.1103/PhysRevApplied.10.024003 10.1038/s41377-018-0038-5 10.1103/PhysRevLett.112.054301 10.1021/acsnano.8b01645 10.1063/1.4913996 10.1038/natrevmats.2016.1 10.1111/appy.12074 10.1063/1.2951600 10.1063/1.4973309 10.1063/1.4967986 10.1209/0295-5075/111/54003 10.1002/adma.201304448 10.1016/j.physleta.2018.11.041 10.1126/science.1125907 10.1126/science.1133628 10.1038/ncomms5130 10.1364/OE.20.008207 10.1103/PhysRevApplied.10.024034 10.1002/adma.201707237 10.1038/s41563-017-0003-3 10.1038/nmat3431 10.1063/1.4903170 10.1038/nature12608 10.1103/PhysRevLett.101.267203 10.1103/PhysRevLett.108.214303 10.1103/PhysRevLett.110.195901 10.1364/OE.24.005683 10.1093/nsr/nwy005 |
| ContentType | Journal Article |
| Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.201807849 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 31058371 10_1002_adma_201807849 ADMA201807849 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: 2016YFB0400804 – fundername: Ministry of Education, Singapore funderid: R‐263‐ 000‐C05‐112 – fundername: National Natural Science Foundation of China funderid: 51606074; 51625601 – fundername: Ministry of Science and Technology of the People's Republic of China funderid: 2017YFE0100600 – fundername: National Natural Science Foundation of China grantid: 51625601 – fundername: National Natural Science Foundation of China grantid: 51606074 – fundername: Ministry of Education, Singapore grantid: R-263- 000-C05-112 – fundername: Ministry of Science and Technology of the People's Republic of China grantid: 2017YFE0100600 – fundername: National Key Research and Development Program of China grantid: 2016YFB0400804 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 AAYOK ABTAH NPM 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c4269-c42b95a7e91f44ee76c7ef81133c09adfeceb148d943d26a176b98f1030830e33 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 131 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000475269900022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Wed Oct 01 14:02:06 EDT 2025 Sun Nov 09 07:52:58 EST 2025 Thu Apr 03 07:05:23 EDT 2025 Sat Nov 29 07:20:26 EST 2025 Tue Nov 18 21:59:32 EST 2025 Wed Jan 22 16:40:24 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 25 |
| Keywords | thermal metamaterials regionalization transformation thermal printing illusion thermotics |
| Language | English |
| License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4269-c42b95a7e91f44ee76c7ef81133c09adfeceb148d943d26a176b98f1030830e33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6605-500X 0000-0003-0274-9982 |
| PMID | 31058371 |
| PQID | 2242778057 |
| PQPubID | 2045203 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_2232126427 proquest_journals_2242778057 pubmed_primary_31058371 crossref_primary_10_1002_adma_201807849 crossref_citationtrail_10_1002_adma_201807849 wiley_primary_10_1002_adma_201807849_ADMA201807849 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-06-01 |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2019 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2015; 5 2015; 4 2018; 127 2016; 109 2013; 503 2014; 26 2013; 103 2015; 106 2006; 314 2008; 101 2019; 383 2008; 92 2013; 5 2012; 11 2012; 108 2006; 312 2014; 112 2014; 113 2018; 7 2014; 105 2016; 6 2018; 17 2018; 8 2014; 5 2014; 4 2016; 1 2018; 5 2015; 115 2015; 111 2014; 14 2009; 8 2018; 30 2016; 117 2013; 110 2018; 12 2018; 10 2012; 20 2016; 24 e_1_2_4_40_1 e_1_2_4_41_1 e_1_2_4_21_1 e_1_2_4_20_1 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_22_1 e_1_2_4_43_1 e_1_2_4_25_1 e_1_2_4_24_1 e_1_2_4_27_1 e_1_2_4_26_1 e_1_2_4_29_1 e_1_2_4_28_1 Moccia M. (e_1_2_4_9_1) 2014; 4 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_2_1 e_1_2_4_5_1 e_1_2_4_4_1 e_1_2_4_7_1 e_1_2_4_6_1 e_1_2_4_8_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_15_1 e_1_2_4_16_1 e_1_2_4_38_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_17_1 e_1_2_4_39_1 e_1_2_4_19_1 |
| References_xml | – volume: 92 start-page: 251907 year: 2008 publication-title: Appl. Phys. Lett. – volume: 4 start-page: 021025 year: 2014 publication-title: Phys. Rev. X – volume: 5 start-page: 4130 year: 2014 publication-title: Nat. Commun. – volume: 1 start-page: 16001 year: 2016 publication-title: Nat. Rev. Mater. – volume: 20 start-page: 8207 year: 2012 publication-title: Opt. Express – volume: 105 start-page: 193904 year: 2014 publication-title: Appl. Phys. Lett. – volume: 12 start-page: 5774 year: 2018 publication-title: ACS Nano – volume: 314 start-page: 977 year: 2006 publication-title: Science – volume: 111 start-page: 54003 year: 2015 publication-title: Europhys. Lett. – volume: 11 start-page: 917 year: 2012 publication-title: Nat. Mater. – volume: 8 start-page: 931 year: 2009 publication-title: Nat. Mater. – volume: 5 start-page: 138 year: 2018 publication-title: Natl. Sci. Rev. – volume: 312 start-page: 1777 year: 2006 publication-title: Science – volume: 7 start-page: 26 year: 2018 publication-title: Light: Sci. Appl. – volume: 312 start-page: 1780 year: 2006 publication-title: Science – volume: 109 start-page: 103506 year: 2016 publication-title: Appl. Phys. Lett. – volume: 5 start-page: e73 year: 2013 publication-title: NPG Asia Mater. – volume: 101 start-page: 267203 year: 2008 publication-title: Phys. Rev. Lett. – volume: 4 start-page: 3600 year: 2015 publication-title: Sci. Rep. – volume: 109 start-page: 201906 year: 2016 publication-title: Appl. Phys. Lett. – volume: 24 start-page: 5683 year: 2016 publication-title: Opt. Express – volume: 8 start-page: 1702692 year: 2018 publication-title: Adv. Energy Mater. – volume: 106 start-page: 143904 year: 2015 publication-title: Appl. Phys. Lett. – volume: 26 start-page: 1731 year: 2014 publication-title: Adv. Mater. – volume: 383 start-page: 759 year: 2019 publication-title: Phys. Lett. A – volume: 110 start-page: 195901 year: 2013 publication-title: Phys. Rev. Lett. – volume: 113 start-page: 205501 year: 2014 publication-title: Phys. Rev. Lett. – volume: 108 start-page: 214303 year: 2012 publication-title: Phys. Rev. Lett. – volume: 17 start-page: 323 year: 2018 publication-title: Nat. Mater. – volume: 14 start-page: 592 year: 2014 publication-title: Nano Lett. – volume: 105 start-page: 221904 year: 2014 publication-title: Appl. Phys. Lett. – volume: 6 start-page: 125111 year: 2016 publication-title: AIP Adv. – volume: 10 start-page: 024034 year: 2018 publication-title: Phys. Rev. Appl. – volume: 127 start-page: 607 year: 2018 publication-title: Int. J. Heat Mass Transfer – volume: 30 start-page: 1707237 year: 2018 publication-title: Adv. Mater. – volume: 103 start-page: 063501 year: 2013 publication-title: Appl. Phys. Lett. – volume: 503 start-page: 209 year: 2013 publication-title: Nature – volume: 10 start-page: 054032 year: 2018 publication-title: Phys. Rev. Appl. – volume: 115 start-page: 195503 year: 2015 publication-title: Phys. Rev. Lett. – volume: 10 start-page: 024003 year: 2018 publication-title: Phys. Rev. Appl. – volume: 112 start-page: 054301 year: 2014 publication-title: Phys. Rev. Lett. – volume: 5 start-page: 053402 year: 2015 publication-title: AIP Adv. – volume: 117 start-page: 055501 year: 2016 publication-title: Phys. Rev. Lett. – ident: e_1_2_4_27_1 doi: 10.1063/1.4962473 – ident: e_1_2_4_42_1 doi: 10.1063/1.4901885 – ident: e_1_2_4_36_1 doi: 10.1103/PhysRevLett.115.195503 – ident: e_1_2_4_35_1 doi: 10.1021/nl403773f – ident: e_1_2_4_22_1 doi: 10.1103/PhysRevApplied.10.054032 – ident: e_1_2_4_21_1 doi: 10.1038/srep03600 – ident: e_1_2_4_23_1 doi: 10.1016/j.ijheatmasstransfer.2018.07.034 – ident: e_1_2_4_37_1 doi: 10.1103/PhysRevLett.117.055501 – ident: e_1_2_4_20_1 doi: 10.1063/1.4816775 – ident: e_1_2_4_2_1 doi: 10.1126/science.1126493 – ident: e_1_2_4_43_1 doi: 10.1063/1.4917344 – ident: e_1_2_4_7_1 doi: 10.1038/nmat2561 – ident: e_1_2_4_8_1 doi: 10.1103/PhysRevLett.113.205501 – volume: 4 start-page: 021025 year: 2014 ident: e_1_2_4_9_1 publication-title: Phys. Rev. X – ident: e_1_2_4_34_1 doi: 10.1002/aenm.201702692 – ident: e_1_2_4_39_1 doi: 10.1103/PhysRevApplied.10.024003 – ident: e_1_2_4_26_1 doi: 10.1038/s41377-018-0038-5 – ident: e_1_2_4_16_1 doi: 10.1103/PhysRevLett.112.054301 – ident: e_1_2_4_33_1 doi: 10.1021/acsnano.8b01645 – ident: e_1_2_4_17_1 doi: 10.1063/1.4913996 – ident: e_1_2_4_13_1 doi: 10.1038/natrevmats.2016.1 – ident: e_1_2_4_19_1 doi: 10.1111/appy.12074 – ident: e_1_2_4_4_1 doi: 10.1063/1.2951600 – ident: e_1_2_4_29_1 doi: 10.1063/1.4973309 – ident: e_1_2_4_30_1 doi: 10.1063/1.4967986 – ident: e_1_2_4_18_1 doi: 10.1209/0295-5075/111/54003 – ident: e_1_2_4_25_1 doi: 10.1002/adma.201304448 – ident: e_1_2_4_40_1 doi: 10.1016/j.physleta.2018.11.041 – ident: e_1_2_4_1_1 doi: 10.1126/science.1125907 – ident: e_1_2_4_3_1 doi: 10.1126/science.1133628 – ident: e_1_2_4_10_1 doi: 10.1038/ncomms5130 – ident: e_1_2_4_5_1 doi: 10.1364/OE.20.008207 – ident: e_1_2_4_32_1 doi: 10.1103/PhysRevApplied.10.024034 – ident: e_1_2_4_28_1 doi: 10.1002/adma.201707237 – ident: e_1_2_4_6_1 doi: 10.1038/s41563-017-0003-3 – ident: e_1_2_4_11_1 doi: 10.1038/nmat3431 – ident: e_1_2_4_24_1 doi: 10.1063/1.4903170 – ident: e_1_2_4_12_1 doi: 10.1038/nature12608 – ident: e_1_2_4_38_1 doi: 10.1103/PhysRevLett.101.267203 – ident: e_1_2_4_14_1 doi: 10.1103/PhysRevLett.108.214303 – ident: e_1_2_4_15_1 doi: 10.1103/PhysRevLett.110.195901 – ident: e_1_2_4_31_1 doi: 10.1364/OE.24.005683 – ident: e_1_2_4_41_1 doi: 10.1093/nsr/nwy005 |
| SSID | ssj0009606 |
| Score | 2.609907 |
| Snippet | Artificially structured thermal metamaterials provide an unprecedented possibility of molding heat flow that is drastically distinct from the conventional heat... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e1807849 |
| SubjectTerms | Concentrators Conduction heating Conductive heat transfer Distribution functions Encryption Heat distribution Heat transmission illusion thermotics Illusions Infrared imagery Infrared signatures Materials science Metamaterials Natural lighting regionalization transformation thermal metamaterials thermal printing Thermal transformations |
| Title | Encrypted Thermal Printing with Regionalization Transformation |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201807849 https://www.ncbi.nlm.nih.gov/pubmed/31058371 https://www.proquest.com/docview/2242778057 https://www.proquest.com/docview/2232126427 |
| Volume | 31 |
| WOSCitedRecordID | wos000475269900022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB609aAH34_4KBEET8E8ttndi1CsxUMtpVTpLexuNiKUtPQh-O-dTdK0RUTQS0jYSbLszOx8-_oG4Ea5wlcJk-hpnDlEaXQplkhH8IRK7mkVZmk6X9u002GDAe-unOLP-SHKCTfjGVl_bRxcyOndkjRUxBlvkGcI0wnfhKqPxksqUG32Wi_tJfFumOXXNOt9Dg8JWxA3uv7d-hfWA9M3tLkOXrPo09r7f733YbdAnnYjN5UD2NDpIeys8BEewf1jqiafYwShNpoPdtlDu4slZme0bSZs7Z5-y6YOi8Obdn8F9o7SY3hpPfYfnpwiwYKjzAlWc5W8LqjmXkKI1jRUVCfMw3GrcrmIE62wKycs5iSI_VB4NJSoSZOZjAWuDoITqKSjVJ-BHWuPCiqla7iGFSWSYvBPFFGckborEgucRetGqmAfN0kwhlHOm-xHpl2isl0suC3lxznvxo-SlwtlRYX_TSMEJj416RqoBddlMXqOWQ4RqR7NjUyAcRvHXyhzmiu5_BWC3joO3T0L_EyXv9QhajSfG-XT-V9euoBtvOf5LrRLqMwmc30FW-pj9j6d1GCTDlitsO0v_233yQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rS8MwED90CuoH34_5rCD4qayPrEm-CEMdinOMMcVvJU1TEUY3tin433vXdtUhIohfCm2ubcjd5R5Jfgdwph3l6UREqGlS2EwbVCmRRLaSCY-ka3SQlel8bPF2Wzw9yU6xm5DOwuT4EGXCjTQjm69JwSkhXftEDVVxBhzkEmI6k_OwwFCW6hVYuOo2H1qfyLtBVmCTFvxsGTAxRW50vNrsF2Yt0zd3c9Z7zcxPc-0fOr4Oq4XvaTVyYdmAOZNuwsoXRMItuLhO9eh9iG6ohQKEk3bf6mAL7Y22KGVrdc1zljwsjm9avS-O7yDdhofmde_yxi5KLNiazrDSNZJ1xY10E8aM4YHmJhEuRq7akSpOjMbJnIlYMj_2AuXyIEJeUm0y4TvG93egkg5SswdWbFyueBQ5hDasOYs4mv9EMy0FqzsqqYI9Hd5QF_jjVAajH-bIyV5I4xKW41KF85J-mCNv_Eh5OOVWWGjgOETXxONUsIFX4bRsRt2hBRGVmsEr0fhouTECQ5rdnMvlr9DtrWPw7lbBy5j5Sx_CxtV9o7zb_8tLJ7B007tvha3b9t0BLONzme9JO4TKZPRqjmBRv01exqPjQsQ_AAsq-tE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD7oFNEH75fq1AqCT8Ve0iZ5EYZzKM4xRGVvJU0TEaQbuwj-e0_arjpEBPGl0Oa0DTk5Od_J5TsAp9IVvtQsQUvjzCFSoUkxnTiCa5pwT8koT9P51KadDuv1eLfcTWjOwhT8ENWEm7GMfLw2Bq4GqT7_ZA0VaU4c5BnGdMLnYYGEPELbXGjetx7bn8y7UZ5g0yz4OTwibMrc6Prns1-Y9Uzf4OYses3dT2vtHyq-Dqsl9rQbRWfZgDmVbcLKF0bCLbi4yuTwfYAw1MYOhIP2q93FErM32jZTtva9es4nD8vjm_bDF-Dbz7bhsXX1cHntlCkWHGnOsJprwkNBFfc0IUrRSFKlmYeRq3S5SLWSOJgTlnISpH4kPBolqEuTm4wFrgqCHahl_UztgZ0qjwqaJK5hG5aUJBTdv5ZEckZCV2gLnGnzxrLkHzdpMF7jgjnZj027xFW7WHBWyQ8K5o0fJetTbcWlBY5ihCY-NQkbqAUnVTHajlkQEZnqT4xMgJ4bIzCU2S20XP0KYW-IwbtngZ8r85c6xI3mXaO62__LS8ew1G224vZN5_YAlvExL7ak1aE2Hk7UISzKt_HLaHhU9vAPnHP6TA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Encrypted+Thermal+Printing+with+Regionalization+Transformation&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Hu%2C+Run&rft.au=Huang%2C+Shiyao&rft.au=Wang%2C+Meng&rft.au=Luo%2C+Xiaobing&rft.date=2019-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=25&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201807849&rft.externalDBID=10.1002%252Fadma.201807849&rft.externalDocID=ADMA201807849 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |