Coupled-least-squares identification for multivariable systems
This article studies identification problems of multiple linear regression models, which may be described a class of multi-input multi-output systems (i.e. multivariable systems). Based on the coupling identification concept, a novel coupled-least-squares (C-LS) parameter identification algorithm is...
Uložené v:
| Vydané v: | IET control theory & applications Ročník 7; číslo 1; s. 68 - 79 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Stevenage
The Institution of Engineering and Technology
01.01.2013
John Wiley & Sons, Inc |
| Predmet: | |
| ISSN: | 1751-8644, 1751-8652 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This article studies identification problems of multiple linear regression models, which may be described a class of multi-input multi-output systems (i.e. multivariable systems). Based on the coupling identification concept, a novel coupled-least-squares (C-LS) parameter identification algorithm is introduced for the purpose of avoiding the matrix inversion in the multivariable recursive least-squares (RLS) algorithm for estimating the parameters of the multiple linear regression models. The analysis indicates that the C-LS algorithm does not involve the matrix inversion and requires less computationally efforts than the multivariable RLS algorithm, and that the parameter estimates given by the C-LS algorithm converge to their true values. Simulation results confirm the presented convergence theorems. |
|---|---|
| Bibliografia: | Control Science and Engineering Research Center, Jiangnan University, Wuxi 214122, People's Republic of China SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 1751-8644 1751-8652 |
| DOI: | 10.1049/iet-cta.2012.0171 |