Diversification of refugia types needed to secure the future of coral reefs subject to climate change
Identifying locations of refugia from the thermal stresses of climate change for coral reefs and better managing them is one of the key recommendations for climate change adaptation. We review and summarize approximately 30 years of applied research focused on identifying climate refugia to prioriti...
Gespeichert in:
| Veröffentlicht in: | Conservation biology Jg. 38; H. 1; S. e14108 - n/a |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Blackwell Publishing Ltd
01.02.2024
|
| Schlagworte: | |
| ISSN: | 0888-8892, 1523-1739, 1523-1739 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Identifying locations of refugia from the thermal stresses of climate change for coral reefs and better managing them is one of the key recommendations for climate change adaptation. We review and summarize approximately 30 years of applied research focused on identifying climate refugia to prioritize the conservation actions for coral reefs under rapid climate change. We found that currently proposed climate refugia and the locations predicted to avoid future coral losses are highly reliant on excess heat metrics, such as degree heating weeks. However, many existing alternative environmental, ecological, and life‐history variables could be used to identify other types of refugia that lead to the desired diversified portfolio for coral reef conservation. To improve conservation priorities for coral reefs, there is a need to evaluate and validate the predictions of climate refugia with long‐term field data on coral abundance, diversity, and functioning. There is also the need to identify and safeguard locations displaying resistance toprolonged exposure to heat waves and the ability to recover quickly after thermal exposure. We recommend using more metrics to identify a portfolio of potential refugia sites for coral reefs that can avoid, resist, and recover from exposure to high ocean temperatures and the consequences of climate change, thereby shifting past efforts focused on avoidance to a diversified risk‐spreading portfolio that can be used to improve strategic coral reef conservation in a rapidly warming climate.
Diversificación de los tipos de refugio necesarios para asegurar el futuro de los arrecifes de coral sujetos al cambio climático
Resumen
Una de las principales recomendaciones para la adaptación al cambio climático es identificar los refugios de los arrecifes de coral frente al estrés térmico del cambio climático y mejorar su gestión. Revisamos y resumimos ∼30 años de investigación aplicada centrada en la identificación de refugios climáticos para priorizar las acciones de conservación de los arrecifes de coral bajo un rápido cambio climático. Descubrimos que los refugios climáticos propuestos actualmente y las ubicaciones que pueden evitarlos dependen en gran medida de métricas de exceso de calor, como las semanas de calentamiento en grados (SCG). Sin embargo, existen muchas variables alternativas de historia vital, ambientales y ecológicas que podrían utilizarse para identificar otros tipos de refugios que resulten en el acervo diversificado que se desea para la conservación de los arrecifes de coral. Para mejorar las prioridades de conservación de los arrecifes de coral, es necesario evaluar y validar las predicciones sobre refugios climáticos con datos de campo a largo plazo sobre abundancia, diversidad y funcionamiento de los corales. También es necesario identificar y salvaguardar lugares que muestren resistencia a la exposición climática prolongada a olas de calor y la capacidad de recuperarse rápidamente tras la exposición térmica. Recomendamos utilizar más métricas para identificar un acervo de posibles lugares de refugio para los arrecifes de coral que puedan evitar, resistir y recuperarse de la exposición a las altas temperaturas oceánicas y las consecuencias del cambio climático, para así desplazar los esfuerzos pasados centrados en la evitación hacia un acervo diversificado de riesgos que pueda utilizarse para mejorar la conservación estratégica de los arrecifes de coral en un clima que se calienta rápidamente.
需要多样化的避难所来保障受气候变化影响的珊瑚礁的未来
【摘要】识别保护珊瑚礁免受气候变化热胁迫影响的避难所并加强其管理是气候变化适应的重要建议之一。我们回顾和总结了约30年来关注如何确定气候避难所来优先保护受快速气候变化影响的珊瑚礁的应用研究。我们发现, 目前提出的气候避难所及可以避开气候变化影响的地点高度依赖于衡量过多热量的指标, 如周热度。然而, 还存在许多替代性的环境、生态和生活史变量, 可用于确定其他类型的避难所, 它们可以提供珊瑚礁保护所需的多样化组合。为了改进珊瑚礁的优先保护决策, 需要用珊瑚丰度、多样性和功能的长期野外数据来评估和验证对气候避难所的预测。还需要识别和保护表现出气候抵抗力的地点, 即长期暴露在热浪中且在热暴露后能够迅速恢复的地点。我们建议使用更多指标, 为珊瑚礁确定潜在的避难所组合, 帮助珊瑚礁避免和抵抗海洋高温暴露和气候变化的影响, 并得到更好的恢复, 从而将过去专注于避免海洋高温暴露的努力转变为多样化的风险分散组合, 来促进快速气候变暖下的珊瑚礁战略保护。【翻译:胡怡思;审校:聂永刚】 |
|---|---|
| AbstractList | Identifying locations of refugia from the thermal stresses of climate change for coral reefs and better managing them is one of the key recommendations for climate change adaptation. We review and summarize approximately 30 years of applied research focused on identifying climate refugia to prioritize the conservation actions for coral reefs under rapid climate change. We found that currently proposed climate refugia and the locations predicted to avoid future coral losses are highly reliant on excess heat metrics, such as degree heating weeks. However, many existing alternative environmental, ecological, and life‐history variables could be used to identify other types of refugia that lead to the desired diversified portfolio for coral reef conservation. To improve conservation priorities for coral reefs, there is a need to evaluate and validate the predictions of climate refugia with long‐term field data on coral abundance, diversity, and functioning. There is also the need to identify and safeguard locations displaying resistance toprolonged exposure to heat waves and the ability to recover quickly after thermal exposure. We recommend using more metrics to identify a portfolio of potential refugia sites for coral reefs that can avoid, resist, and recover from exposure to high ocean temperatures and the consequences of climate change, thereby shifting past efforts focused on avoidance to a diversified risk‐spreading portfolio that can be used to improve strategic coral reef conservation in a rapidly warming climate. Identifying locations of refugia from the thermal stresses of climate change for coral reefs and better managing them is one of the key recommendations for climate change adaptation. We review and summarize approximately 30 years of applied research focused on identifying climate refugia to prioritize the conservation actions for coral reefs under rapid climate change. We found that currently proposed climate refugia and the locations predicted to avoid future coral losses are highly reliant on excess heat metrics, such as degree heating weeks. However, many existing alternative environmental, ecological, and life-history variables could be used to identify other types of refugia that lead to the desired diversified portfolio for coral reef conservation. To improve conservation priorities for coral reefs, there is a need to evaluate and validate the predictions of climate refugia with long-term field data on coral abundance, diversity, and functioning. There is also the need to identify and safeguard locations displaying resistance toprolonged exposure to heat waves and the ability to recover quickly after thermal exposure. We recommend using more metrics to identify a portfolio of potential refugia sites for coral reefs that can avoid, resist, and recover from exposure to high ocean temperatures and the consequences of climate change, thereby shifting past efforts focused on avoidance to a diversified risk-spreading portfolio that can be used to improve strategic coral reef conservation in a rapidly warming climate.Identifying locations of refugia from the thermal stresses of climate change for coral reefs and better managing them is one of the key recommendations for climate change adaptation. We review and summarize approximately 30 years of applied research focused on identifying climate refugia to prioritize the conservation actions for coral reefs under rapid climate change. We found that currently proposed climate refugia and the locations predicted to avoid future coral losses are highly reliant on excess heat metrics, such as degree heating weeks. However, many existing alternative environmental, ecological, and life-history variables could be used to identify other types of refugia that lead to the desired diversified portfolio for coral reef conservation. To improve conservation priorities for coral reefs, there is a need to evaluate and validate the predictions of climate refugia with long-term field data on coral abundance, diversity, and functioning. There is also the need to identify and safeguard locations displaying resistance toprolonged exposure to heat waves and the ability to recover quickly after thermal exposure. We recommend using more metrics to identify a portfolio of potential refugia sites for coral reefs that can avoid, resist, and recover from exposure to high ocean temperatures and the consequences of climate change, thereby shifting past efforts focused on avoidance to a diversified risk-spreading portfolio that can be used to improve strategic coral reef conservation in a rapidly warming climate. Identifying locations of refugia from the thermal stresses of climate change for coral reefs and better managing them is one of the key recommendations for climate change adaptation. We review and summarize approximately 30 years of applied research focused on identifying climate refugia to prioritize the conservation actions for coral reefs under rapid climate change. We found that currently proposed climate refugia and the locations predicted to avoid future coral losses are highly reliant on excess heat metrics, such as degree heating weeks. However, many existing alternative environmental, ecological, and life‐history variables could be used to identify other types of refugia that lead to the desired diversified portfolio for coral reef conservation. To improve conservation priorities for coral reefs, there is a need to evaluate and validate the predictions of climate refugia with long‐term field data on coral abundance, diversity, and functioning. There is also the need to identify and safeguard locations displaying resistance toprolonged exposure to heat waves and the ability to recover quickly after thermal exposure. We recommend using more metrics to identify a portfolio of potential refugia sites for coral reefs that can avoid, resist, and recover from exposure to high ocean temperatures and the consequences of climate change, thereby shifting past efforts focused on avoidance to a diversified risk‐spreading portfolio that can be used to improve strategic coral reef conservation in a rapidly warming climate. Diversificación de los tipos de refugio necesarios para asegurar el futuro de los arrecifes de coral sujetos al cambio climático Resumen Una de las principales recomendaciones para la adaptación al cambio climático es identificar los refugios de los arrecifes de coral frente al estrés térmico del cambio climático y mejorar su gestión. Revisamos y resumimos ∼30 años de investigación aplicada centrada en la identificación de refugios climáticos para priorizar las acciones de conservación de los arrecifes de coral bajo un rápido cambio climático. Descubrimos que los refugios climáticos propuestos actualmente y las ubicaciones que pueden evitarlos dependen en gran medida de métricas de exceso de calor, como las semanas de calentamiento en grados (SCG). Sin embargo, existen muchas variables alternativas de historia vital, ambientales y ecológicas que podrían utilizarse para identificar otros tipos de refugios que resulten en el acervo diversificado que se desea para la conservación de los arrecifes de coral. Para mejorar las prioridades de conservación de los arrecifes de coral, es necesario evaluar y validar las predicciones sobre refugios climáticos con datos de campo a largo plazo sobre abundancia, diversidad y funcionamiento de los corales. También es necesario identificar y salvaguardar lugares que muestren resistencia a la exposición climática prolongada a olas de calor y la capacidad de recuperarse rápidamente tras la exposición térmica. Recomendamos utilizar más métricas para identificar un acervo de posibles lugares de refugio para los arrecifes de coral que puedan evitar, resistir y recuperarse de la exposición a las altas temperaturas oceánicas y las consecuencias del cambio climático, para así desplazar los esfuerzos pasados centrados en la evitación hacia un acervo diversificado de riesgos que pueda utilizarse para mejorar la conservación estratégica de los arrecifes de coral en un clima que se calienta rápidamente. 需要多样化的避难所来保障受气候变化影响的珊瑚礁的未来 【摘要】识别保护珊瑚礁免受气候变化热胁迫影响的避难所并加强其管理是气候变化适应的重要建议之一。我们回顾和总结了约30年来关注如何确定气候避难所来优先保护受快速气候变化影响的珊瑚礁的应用研究。我们发现, 目前提出的气候避难所及可以避开气候变化影响的地点高度依赖于衡量过多热量的指标, 如周热度。然而, 还存在许多替代性的环境、生态和生活史变量, 可用于确定其他类型的避难所, 它们可以提供珊瑚礁保护所需的多样化组合。为了改进珊瑚礁的优先保护决策, 需要用珊瑚丰度、多样性和功能的长期野外数据来评估和验证对气候避难所的预测。还需要识别和保护表现出气候抵抗力的地点, 即长期暴露在热浪中且在热暴露后能够迅速恢复的地点。我们建议使用更多指标, 为珊瑚礁确定潜在的避难所组合, 帮助珊瑚礁避免和抵抗海洋高温暴露和气候变化的影响, 并得到更好的恢复, 从而将过去专注于避免海洋高温暴露的努力转变为多样化的风险分散组合, 来促进快速气候变暖下的珊瑚礁战略保护。【翻译:胡怡思;审校:聂永刚】 Identifying locations of refugia from the thermal stresses of climate change for coral reefs and better managing them is one of the key recommendations for climate change adaptation. We review and summarize approximately 30 years of applied research focused on identifying climate refugia to prioritize the conservation actions for coral reefs under rapid climate change. We found that currently proposed climate refugia and the locations predicted to avoid future coral losses are highly reliant on excess heat metrics, such as degree heating weeks. However, many existing alternative environmental, ecological, and life-history variables could be used to identify other types of refugia that lead to the desired diversified portfolio for coral reef conservation. To improve conservation priorities for coral reefs, there is a need to evaluate and validate the predictions of climate refugia with long-term field data on coral abundance, diversity, and functioning. There is also the need to identify and safeguard locations displaying resistance toprolonged exposure to heat waves and the ability to recover quickly after thermal exposure. We recommend using more metrics to identify a portfolio of potential refugia sites for coral reefs that can avoid, resist, and recover from exposure to high ocean temperatures and the consequences of climate change, thereby shifting past efforts focused on avoidance to a diversified risk-spreading portfolio that can be used to improve strategic coral reef conservation in a rapidly warming climate. Identifying locations of refugia from the thermal stresses of climate change for coral reefs and better managing them is one of the key recommendations for climate change adaptation. We review and summarize approximately 30 years of applied research focused on identifying climate refugia to prioritize the conservation actions for coral reefs under rapid climate change. We found that currently proposed climate refugia and the locations predicted to avoid future coral losses are highly reliant on excess heat metrics, such as degree heating weeks. However, many existing alternative environmental, ecological, and life‐history variables could be used to identify other types of refugia that lead to the desired diversified portfolio for coral reef conservation. To improve conservation priorities for coral reefs, there is a need to evaluate and validate the predictions of climate refugia with long‐term field data on coral abundance, diversity, and functioning. There is also the need to identify and safeguard locations displaying resistance toprolonged exposure to heat waves and the ability to recover quickly after thermal exposure. We recommend using more metrics to identify a portfolio of potential refugia sites for coral reefs that can avoid, resist, and recover from exposure to high ocean temperatures and the consequences of climate change, thereby shifting past efforts focused on avoidance to a diversified risk‐spreading portfolio that can be used to improve strategic coral reef conservation in a rapidly warming climate. 【摘要】 识别保护珊瑚礁免受气候变化热胁迫影响的避难所并加强其管理是气候变化适应的重要建议之一。我们回顾和总结了约30年来关注如何确定气候避难所来优先保护受快速气候变化影响的珊瑚礁的应用研究。我们发现, 目前提出的气候避难所及可以避开气候变化影响的地点高度依赖于衡量过多热量的指标, 如周热度。然而, 还存在许多替代性的环境、生态和生活史变量, 可用于确定其他类型的避难所, 它们可以提供珊瑚礁保护所需的多样化组合。为了改进珊瑚礁的优先保护决策, 需要用珊瑚丰度、多样性和功能的长期野外数据来评估和验证对气候避难所的预测。还需要识别和保护表现出气候抵抗力的地点, 即长期暴露在热浪中且在热暴露后能够迅速恢复的地点。我们建议使用更多指标, 为珊瑚礁确定潜在的避难所组合, 帮助珊瑚礁避免和抵抗海洋高温暴露和气候变化的影响, 并得到更好的恢复, 从而将过去专注于避免海洋高温暴露的努力转变为多样化的风险分散组合, 来促进快速气候变暖下的珊瑚礁战略保护。 【翻译:胡怡思;审校:聂永刚】 |
| Author | Beger, Maria Logan, Cheryl A. Fox, Helen E. Maina, Joseph M. Oddenyo, Remy M. Darling, Emily S. Zinke, Jens Grantham, Hedley S. McManus, Lisa C. Surya, Gautam S. Jupiter, Stacy D. McClanahan, Tim R. Mcleod, Elizabeth Wenger, Amelia. S. |
| Author_xml | – sequence: 1 givenname: Tim R. orcidid: 0000-0001-5821-3584 surname: McClanahan fullname: McClanahan, Tim R. organization: Wildlife Conservation Society – sequence: 2 givenname: Emily S. surname: Darling fullname: Darling, Emily S. organization: Wildlife Conservation Society – sequence: 3 givenname: Maria surname: Beger fullname: Beger, Maria organization: University of Queensland – sequence: 4 givenname: Helen E. surname: Fox fullname: Fox, Helen E. organization: Coral Reef Alliance – sequence: 5 givenname: Hedley S. surname: Grantham fullname: Grantham, Hedley S. organization: Wildlife Conservation Society – sequence: 6 givenname: Stacy D. surname: Jupiter fullname: Jupiter, Stacy D. organization: Wildlife Conservation Society – sequence: 7 givenname: Cheryl A. surname: Logan fullname: Logan, Cheryl A. organization: California State University, Monterey Bay – sequence: 8 givenname: Elizabeth surname: Mcleod fullname: Mcleod, Elizabeth organization: The Nature Conservancy – sequence: 9 givenname: Lisa C. surname: McManus fullname: McManus, Lisa C. organization: University of Hawai‘i at Mānoa – sequence: 10 givenname: Remy M. surname: Oddenyo fullname: Oddenyo, Remy M. organization: Wildlife Conservation Society – sequence: 11 givenname: Gautam S. surname: Surya fullname: Surya, Gautam S. organization: Wildlife Conservation Society – sequence: 12 givenname: Amelia. S. surname: Wenger fullname: Wenger, Amelia. S. organization: University of Queensland – sequence: 13 givenname: Jens surname: Zinke fullname: Zinke, Jens email: jz262@le.ac.uk organization: University of Leicester – sequence: 14 givenname: Joseph M. surname: Maina fullname: Maina, Joseph M. organization: Macquarie University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37144480$$D View this record in MEDLINE/PubMed |
| BookMark | eNqF0ctu1DAUBmALFdFpYcMDIEtsEFLK8SUTewnDrVKlbmBtOc5x61EmHmynaN4ep9NuKgTZOIvvP7L_c0ZOpjghIa8ZXLD6fXCxDxdMMlDPyIq1XDSsE_qErEAp1Sil-Sk5y3kLALpl8gU5FR2TUipYEfwc7jDl4IOzJcSJRk8T-vkmWFoOe8x0QhxwoCXSjG5OSMstUj-X5bdiF5MdawR9pnnut-jKYt0YdrYgdbd2usGX5Lm3Y8ZXD-c5-fn1y4_N9-bq-tvl5uNV4yRfq0arVrb9wHrdg8N6VbtG5lWnZdeCFsiF97Buoeukh4Fb2zmuup5xVGvXt1qck3fHufsUf82Yi9mF7HAc7YRxzkaABFGnCfgv5YqBZhLUQt8-ods4p6k-xHDNtBBSMV7Vmwc19zsczD7VBtLBPHZdARyBSzHnWrJxodyXXpINo2FglnWaZZ3mfp018v5J5HHqXzE74t9hxMM_pNlcf7o8Zv4AaxiuFQ |
| CitedBy_id | crossref_primary_10_1111_conl_13108 crossref_primary_10_1111_ddi_13770 crossref_primary_10_1016_j_ecolind_2024_112143 crossref_primary_10_3390_su17177651 crossref_primary_10_1016_j_dsr2_2025_105467 crossref_primary_10_1371_journal_pclm_0000435 crossref_primary_10_1007_s44353_025_00044_0 crossref_primary_10_1002_aqc_70031 crossref_primary_10_1111_rec_14229 crossref_primary_10_1016_j_palaeo_2024_112471 crossref_primary_10_1038_s44358_025_00041_0 crossref_primary_10_1111_gcb_70437 crossref_primary_10_1111_csp2_13043 |
| Cites_doi | 10.5751/ES-00461-060218 10.1371/journal.pone.0236399 10.3390/rs8010059 10.1016/j.tree.2016.12.007 10.1111/gcb.15060 10.3390/rs61111579 10.1038/s41558-018-0351-2 10.1046/j.1461-0248.2001.00203.x 10.1126/sciadv.abj2271 10.1111/gcb.12191 10.1890/ES12-00178.1 10.1038/s41558-021-01037-2 10.1098/rsos.192153 10.1007/s13199-016-0380-4 10.3390/rs13142677 10.1016/j.scitotenv.2023.162113 10.1038/s41598-020-70372-9 10.1007/s12526-021-01165-0 10.1088/1748-9326/acb3e6 10.1111/j.1461-0248.2012.01861.x 10.1111/conl.12587 10.1007/s10584-015-1399-x 10.1126/science.1204794 10.1038/s41559-019-0953-8 10.1098/rspb.2011.2621 10.1126/science.1085046 10.1038/nature01987 10.1007/s40641-018-0087-0 10.1111/gcb.15829 10.1007/s00338-009-0502-z 10.1111/j.1365-2486.2011.02395.x 10.1111/geb.13191 10.1007/s00338-019-01799-4 10.1038/s41586-020-2084-4 10.1016/j.cub.2019.08.042 10.1007/s00338-020-01931-9 10.3389/fmars.2021.778121 10.1073/pnas.2015265118 10.1016/bs.amb.2020.08.003 10.1111/gcb.15436 10.1007/s00338-020-01914-w 10.3389/fmars.2020.00514 10.1371/journal.pone.0023064 10.3354/meps12743 10.1111/cobi.12720 10.1038/s41893-021-00817-0 10.1111/j.1466-8238.2011.00656.x 10.1016/j.tree.2012.04.007 10.1002/ecs2.1812 10.1016/j.tree.2018.09.006 10.1007/s00227-007-0844-4 10.1088/1748-9326/ac7478 10.1002/ecy.1884 10.1371/journal.pclm.0000004 10.1038/nature18607 10.1111/gcb.15725 10.3389/fmars.2018.00004 10.1007/s00338-019-01831-7 10.1111/conl.12858 10.1016/j.biocon.2021.109307 10.1046/j.1523-1739.2003.02055.x 10.1002/rse2.157 10.1111/j.1365-2486.2005.01073.x 10.1111/gcb.13166 10.7717/peerj.9449 10.1126/science.abd9464 10.1093/icesjms/fsx124 10.1016/j.marenvres.2022.105807 10.1073/pnas.2123331119 10.1111/gcb.16167 10.3389/fmars.2022.938454 10.1007/s10021-002-0104-x 10.1016/j.cub.2006.05.062 10.1042/ETLS20210232 10.1038/s41467-019-09238-2 10.1111/ddi.12957 10.1111/gcb.16034 10.1111/j.1466-8238.2011.00686.x 10.1111/gcb.12851 10.1038/ncomms4794 10.1111/ecog.05877 10.1038/s41558-019-0576-8 10.1016/j.marpol.2015.12.026 10.1038/s41586-018-0194-z 10.1101/572321 10.3354/meps13402 10.1038/s41598-020-76604-2 10.1007/s00338-022-02233-y 10.1371/journal.pone.0093385 10.1038/s41597-022-01121-y |
| ContentType | Journal Article |
| Copyright | 2023 The Authors. published by Wiley Periodicals LLC on behalf of Society for Conservation Biology. 2023 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 The Authors. published by Wiley Periodicals LLC on behalf of Society for Conservation Biology. – notice: 2023 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 7QG 7SN 7SS 7ST 7U6 8FD C1K F1W FR3 H95 L.G P64 RC3 SOI 7X8 7S9 L.6 |
| DOI | 10.1111/cobi.14108 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Sustainability Science Abstracts Animal Behavior Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic PubMed AGRICOLA CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Ecology |
| EISSN | 1523-1739 |
| EndPage | n/a |
| ExternalDocumentID | 37144480 10_1111_cobi_14108 COBI14108 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: U.S. Department of the Interior's International Technical Assistance Program (DOI‐ITAP) – fundername: Bloomberg Family Foundation – fundername: U.S. Department of the Interior's International Technical Assistance Program (DOI-ITAP) |
| GroupedDBID | --- -DZ .-4 .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 24P 29F 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANHP AANLZ AAONW AASGY AAUTI AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABJNI ABLJU ABPLY ABPPZ ABPVW ABTLG ABXSQ ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACHIC ACNCT ACPOU ACPRK ACPVT ACRPL ACSCC ACSTJ ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADUKH ADULT ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHXOZ AI. AIAGR AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ANHSF AQVQM ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG CBGCD COF CS3 CUYZI D-E D-F D0L DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST LATKE LC2 LC3 LEEKS LH4 LITHE LMP LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OES OIG OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QN7 R.K ROL RSU RX1 SA0 SAMSI SUPJJ TEORI TN5 UB1 UKR UQL V8K VH1 VOH W8V W99 WBKPD WHG WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH XSW YFH YUY YV5 YZZ ZCA ZCG ZO4 ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX ABSQW ABUFD ADXHL AEFGJ AEYWJ AGHNM AGQPQ AGUYK AGXDD AGYGG AIDQK AIDYY CITATION O8X NPM 7QG 7SN 7SS 7ST 7U6 8FD C1K F1W FR3 H95 L.G P64 RC3 SOI 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c4268-98545bd1b9b0ce514a6e1f879475093e23ff0650774f0d2aa7c287b12e86cb593 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001001091800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0888-8892 1523-1739 |
| IngestDate | Fri Jul 11 18:31:07 EDT 2025 Fri Jul 11 09:28:22 EDT 2025 Tue Aug 12 12:11:57 EDT 2025 Mon Jul 21 05:57:14 EDT 2025 Sat Nov 29 06:53:25 EST 2025 Tue Nov 18 22:28:53 EST 2025 Wed Jan 22 16:16:41 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | environmental stress refugios 海洋空间规划 gap analysis arrecifes de coral marine spatial planning 环境压力 estrés ambiental refugia planeación espacial marina 珊瑚礁 避难所 coral reefs cambio climático 气候变化 análisis de brecha 空缺分析 climate change |
| Language | English |
| License | Attribution 2023 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4268-98545bd1b9b0ce514a6e1f879475093e23ff0650774f0d2aa7c287b12e86cb593 |
| Notes | Diversifying the identification of climate change refugia for coral reefs requires more environmental and coral life‐history metrics. Article impact statement ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-5821-3584 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcobi.14108 |
| PMID | 37144480 |
| PQID | 2919334812 |
| PQPubID | 36794 |
| PageCount | 19 |
| ParticipantIDs | proquest_miscellaneous_3040394730 proquest_miscellaneous_2810914080 proquest_journals_2919334812 pubmed_primary_37144480 crossref_citationtrail_10_1111_cobi_14108 crossref_primary_10_1111_cobi_14108 wiley_primary_10_1111_cobi_14108_COBI14108 |
| PublicationCentury | 2000 |
| PublicationDate | February 2024 2024-02-00 2024-Feb 20240201 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Washington |
| PublicationTitle | Conservation biology |
| PublicationTitleAlternate | Conserv Biol |
| PublicationYear | 2024 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2021; 27 2017; 8 2013; 4 2023; 183 2019; 10 2020; 15 2016; 30 2003; 17 2018; 604 2012; 15 2020; 10 2011; 17 2020; 648 2022; 28 2013; 19 2020; 8 2020; 7 2020; 6 2014; 5 2018; 5 2018; 4 2003; 6 2017; 32 2015; 131 2021; 118 2019; 25 2020; 579 2019; 29 2012; 27 2014; 9 2018; 33 2018; 75 2014; 6 2008; 153 2012; 21 2021; 8 2019; 9 2011; 333 2021; 5 2019; 3 2023; 18 2010 2006; 16 2002; 6 2020; 39 2019; 38 2022; 41 2021; 262 2022; 119 2011; 6 2021; 51 2009; 28 2021; 13 2003; 425 2021; 11 2022; 6 2001; 4 2020 2018; 558 2022; 8 2023; 871 2017; 98 2022; 9 2015; 21 2019 2018 2020; 26 2022; 15 2016; 535 2021; 372 2022; 1 2012; 279 2018; 11 2003; 301 2005; 11 2016; 8 2016; 69 2022; 17 2016; 22 2020; 29 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_72_1 e_1_2_11_91_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_95_1 e_1_2_11_11_1 Obura D. (e_1_2_11_68_1) 2020 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 e_1_2_11_83_1 e_1_2_11_60_1 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_89_1 e_1_2_11_41_1 e_1_2_11_62_1 e_1_2_11_87_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_64_1 e_1_2_11_85_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_59_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_94_1 e_1_2_11_50_1 e_1_2_11_71_1 e_1_2_11_92_1 e_1_2_11_90_1 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_56_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_73_1 e_1_2_11_12_1 Mollica N. R. (e_1_2_11_67_1) 2019 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_82_1 e_1_2_11_61_1 e_1_2_11_80_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_9_1 e_1_2_11_23_1 Hoegh‐Guldberg O. (e_1_2_11_32_1) 2018 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_84_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 Dubinsky Z. (e_1_2_11_24_1) 2010 e_1_2_11_39_1 |
| References_xml | – volume: 9 start-page: 40 year: 2019 end-page: 43 article-title: Ecological memory modifies the cumulative impact of recurrent climate extremes publication-title: Nature Climate Change – volume: 9 start-page: 845 year: 2019 end-page: 851 article-title: Temperature patterns and mechanisms influencing coral bleaching during the 2016 El Niño publication-title: Nature Climate Change – volume: 15 year: 2020 article-title: Interventions to help coral reefs under global change—A complex decision challenge publication-title: PLoS ONE – volume: 29 start-page: 2229 year: 2020 end-page: 2247 article-title: Large geographic variability in the resistance of corals to thermal stress publication-title: Global Ecology and Biogeography – volume: 10 start-page: 1 year: 2020 end-page: 9 article-title: Internal tides can provide thermal refugia that will buffer some coral reefs from future global warming publication-title: Scientific Reports – volume: 22 start-page: 1145 year: 2016 end-page: 1154 article-title: Climate‐change refugia: Shading reef corals by turbidity publication-title: Global Change Biology – volume: 6 year: 2011 article-title: Global gradients of coral exposure to environmental stresses and implications for local management publication-title: PLoS ONE – volume: 27 start-page: 5694 year: 2021 end-page: 5710 article-title: Coral adaptation to climate change: Meta‐analysis reveals high heritability across multiple traits publication-title: Global Change Biology – volume: 17 start-page: 956 year: 2003 end-page: 967 article-title: Resistance and resilience to coral bleaching: Implications for coral reef conservation and management publication-title: Conservation Biology – volume: 301 start-page: 929 year: 2003 end-page: 933 article-title: Climate change, human impacts, and the resilience of coral reefs publication-title: Science – volume: 32 start-page: 167 year: 2017 end-page: 173 article-title: Who should pick the winners of climate change? publication-title: Trends in Ecology & Evolution – volume: 119 year: 2022 article-title: Mapped coral mortality and refugia in an archipelago‐scale marine heat wave publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 6 start-page: 557 year: 2020 end-page: 568 article-title: Mapping the world's coral reefs using a global multiscale earth observation framework publication-title: Remote Sensing in Ecology and Conservation – volume: 30 start-page: 1089 year: 2016 end-page: 1101 article-title: Geography of conservation spending, biodiversity, and culture publication-title: Conservation Biology – volume: 9 start-page: 1 year: 2022 end-page: 7 article-title: A global coral‐bleaching database, 1980–2020 publication-title: Scientific Data – volume: 425 start-page: 294 year: 2003 end-page: 297 article-title: Predicted recurrences of mass coral mortality in the Indian Ocean publication-title: Nature – volume: 21 start-page: 2272 year: 2015 end-page: 2282 article-title: Reef‐coral refugia in a rapidly changing ocean publication-title: Global Change Biology – volume: 11 start-page: 2251 year: 2005 end-page: 2265 article-title: Global assessment of coral bleaching and required rates of adaptation under climate change publication-title: Global Change Biology – volume: 153 start-page: 755 year: 2008 end-page: 768 article-title: Long‐term changes in coral colony size distributions on Kenyan reefs under different management regimes and across the 1998 bleaching event publication-title: Marine Biology – volume: 5 start-page: 4 year: 2018 article-title: The future of coral reefs subject to rapid climate change: Lessons from natural extreme environments publication-title: Frontiers in Marine Science – year: 2018 – volume: 28 start-page: 1956 year: 2022 end-page: 1971 article-title: Coral reef benthic community changes in the Anthropocene: Biogeographic heterogeneity, overlooked configurations, and methodology publication-title: Global Change Biology – volume: 28 start-page: 4054 year: 2022 end-page: 4068 article-title: Planning for resilience: Incorporating scenario and model uncertainty and trade‐offs when prioritizing management of climate refugia publication-title: Global Change Biology – volume: 372 start-page: 977 year: 2021 end-page: 980 article-title: Local conditions magnify coral loss after marine heatwaves publication-title: Science – volume: 19 start-page: 1930 year: 2013 end-page: 1940 article-title: Life histories predict coral community disassembly under multiple stressors publication-title: Global Change Biology – volume: 183 year: 2023 article-title: Turbidity shapes shallow Southwestern Atlantic benthic reef communities publication-title: Marine Environmental Research – volume: 262 year: 2021 article-title: A review of the current global status of blast fishing: Causes, implications and solutions publication-title: Biological Conservation – volume: 7 start-page: 514 year: 2020 article-title: South Atlantic coral reefs are major global warming refugia and less susceptible to bleaching publication-title: Frontiers in Marine Science – volume: 27 start-page: 4307 year: 2021 end-page: 4321 article-title: Evolution and connectivity influence the persistence and recovery of coral reefs under climate change in the Caribbean, Southwest Pacific, and Coral Triangle publication-title: Global Change Biology – volume: 11 start-page: 537 year: 2021 end-page: 542 article-title: Quantifying global potential for coral evolutionary response to climate change publication-title: Nature Climate Change – volume: 17 start-page: 2023 year: 2011 end-page: 2032 article-title: Associations between climate stress and coral reef diversity in the Western Indian Ocean publication-title: Global Change Biology – volume: 27 start-page: 404 year: 2012 end-page: 413 article-title: Global disparity in the resilience of coral reefs publication-title: Trends in Ecology & Evolution – volume: 13 start-page: 2677 issue: 14 year: 2021 article-title: Fine‐tuning heat stress algorithms to optimise global predictions of mass coral bleaching publication-title: Remote Sensing – volume: 5 start-page: 104 year: 2021 end-page: 113 article-title: Vulnerability to collapse of coral reef ecosystems in the Western Indian Ocean publication-title: Nature Sustainability – volume: 21 start-page: 393 year: 2012 end-page: 404 article-title: Refugia: Identifying and understanding safe havens for biodiversity under climate change publication-title: Global Ecology and Biogeography – volume: 26 start-page: 3473 year: 2020 end-page: 3481 article-title: Estimating the potential for coral adaptation to global warming across the Indo‐West Pacific publication-title: Global Change Biology – volume: 8 start-page: 59 issue: 1 year: 2016 article-title: Validation of reef‐scale thermal stress satellite products for coral bleaching monitoring publication-title: Remote Sensing – volume: 39 start-page: 939 year: 2020 end-page: 952 article-title: Contrasting patterns of mortality in Polynesian coral reefs following the third global coral bleaching event in 2016 publication-title: Coral Reefs – volume: 6 start-page: 551 year: 2003 end-page: 563 article-title: Response of coral assemblages to the interaction between natural temperature variation and rare warm‐water events publication-title: Ecosystems – volume: 15 start-page: 1378 year: 2012 end-page: 1386 article-title: Evaluating life‐history strategies of reef corals from species traits publication-title: Ecology Letters – volume: 131 start-page: 607 year: 2015 end-page: 620 article-title: Regional coral responses to climate disturbances and warming are predicted by multivariate stress model and not temperature threshold metrics publication-title: Climatic Change – volume: 558 start-page: 396 year: 2018 end-page: 400 article-title: Loss of coral reef growth capacity to track future increases in sea level publication-title: Nature – volume: 28 start-page: 579 year: 2009 end-page: 587 article-title: Quantifying the quality of coral bleaching predictions publication-title: Coral Reefs – volume: 6 start-page: 18 issue: 2 year: 2002 article-title: Ecological states and the resilience of coral reefs publication-title: Conservation Ecology – volume: 279 start-page: 2448 year: 2012 end-page: 2456 – year: 2019 article-title: Skeletal records of bleaching reveal different thermal thresholds of Pacific coral reef assemblages publication-title: Coral Reefs – volume: 29 start-page: R1021 year: 2019 end-page: R1035 article-title: Climate change, human impacts, and coastal ecosystems in the Anthropocene publication-title: Current Biology – volume: 4 start-page: 122 year: 2001 end-page: 131 article-title: Coral bleaching: The winners and losers publication-title: Ecology Letters – volume: 7 year: 2020 article-title: Bleaching‐driven reef community shifts drive pulses of increased reef sediment generation publication-title: Royal Society Open Science – volume: 8 year: 2022 article-title: Process‐explicit models reveal the structure and dynamics of biodiversity patterns publication-title: Science Advances – volume: 18 year: 2023 article-title: Global analysis of benthic complexity in shallow coral reefs publication-title: Environmental Research Letters – volume: 69 start-page: 189 year: 2016 end-page: 193 article-title: Global fisheries subsidies: An updated estimate publication-title: Marine Policy – volume: 39 start-page: 885 year: 2020 end-page: 902 article-title: Thirty years of coral heat‐stress experiments: A review of methods publication-title: Coral Reefs – volume: 10 start-page: 1 year: 2020 end-page: 13 article-title: Coral cover surveys corroborate predictions on reef adaptive potential to thermal stress publication-title: Scientific Reports – volume: 25 start-page: 1564 year: 2019 end-page: 1574 article-title: Evaluating the impact of accounting for coral cover in large‐scale marine conservation prioritizations publication-title: Diversity and Distributions – volume: 15 year: 2022 article-title: A global map of human pressures on tropical coral reefs publication-title: Conservation Letters – volume: 118 year: 2021 article-title: Global declines in coral reef calcium carbonate production under ocean acidification and warming publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 33 start-page: 936 year: 2018 end-page: 944 article-title: Securing a long‐term future for coral reefs publication-title: Trends in Ecology & Evolution – volume: 871 year: 2023 article-title: Oceanic differences in coral‐bleaching responses to marine heatwaves publication-title: Science of the Total Environment – volume: 9 year: 2014 article-title: Biogeography and change among regional coral communities across the Western Indian Ocean publication-title: PLoS One – volume: 4 start-page: 51 year: 2018 end-page: 64 article-title: Towards developing a mechanistic understanding of coral reef resilience to thermal stress across multiple scales publication-title: Current Climate Change Reports – volume: 98 start-page: 1976 year: 2017 end-page: 1976 article-title: Marine socio‐environmental covariates: Queryable global layers of environmental and anthropogenic variables for marine ecosystem studies publication-title: Ecology – volume: 579 start-page: 385 year: 2020 end-page: 392 article-title: Coupling of Indo‐Pacific climate variability over the last millennium publication-title: Nature – volume: 41 start-page: 239 year: 2022 end-page: 252 article-title: Empirically derived thermal thresholds of four coral species along the Red Sea using a portable and standardized experimental approach publication-title: Coral Reefs – volume: 51 start-page: 1 year: 2021 end-page: 5 article-title: Unexpected high abundance of aragonite forming Nanipora (Octocorallia: Helioporacea) at an acidified volcanic reef in southern Japan publication-title: Marine Biodiversity – volume: 9 year: 2022 article-title: Appraisal of coral bleaching thresholds and thermal projections for the northern Red Sea refugia publication-title: Frontiers in Marine Science – volume: 75 start-page: 43 year: 2018 end-page: 49 article-title: Clarifying the concept of climate change refugia for coral reefs publication-title: ICES Journal of Marine Science – volume: 648 start-page: 135 year: 2020 end-page: 151 article-title: Highly variable taxa‐specific coral bleaching responses to thermal stress publication-title: Marine Ecology Progress Series – volume: 10 start-page: 1 year: 2019 end-page: 5 article-title: A global analysis of coral bleaching over the past two decades publication-title: Nature Communications – volume: 3 start-page: 1341 year: 2019 end-page: 1350 article-title: Social–environmental drivers inform strategic management of coral reefs in the Anthropocene publication-title: Nature Ecology & Evolution – year: 2010 – volume: 535 start-page: 416 year: 2016 end-page: 419 article-title: Bright spots among the world's coral reefs publication-title: Nature – volume: 17 year: 2022 article-title: Coral responses to climate change exposure publication-title: Environmental Research Letters – volume: 21 start-page: 272 year: 2012 end-page: 281 article-title: Bio‐ORACLE: A global environmental dataset for marine species distribution modelling publication-title: Global Ecology and Biogeography – volume: 11 year: 2018 article-title: Risk‐sensitive planning for conserving coral reefs under rapid climate change publication-title: Conservation Letters – volume: 5 start-page: 1 year: 2014 end-page: 9 article-title: The effectiveness of coral reefs for coastal hazard risk reduction and adaptation publication-title: Nature Communications – volume: 8 start-page: 1774 year: 2021 article-title: Environmental variability and threshold model's predictions for coral reefs publication-title: Frontiers in Marine Science – volume: 6 start-page: 107 year: 2022 end-page: 124 article-title: Contingency planning for coral reefs in the Anthropocene; The potential of reef safe havens publication-title: Emerging Topics in Life Sciences – volume: 4 start-page: 1 year: 2013 end-page: 12 article-title: Process‐based models are required to manage ecological systems in a changing world publication-title: Ecosphere – volume: 1 year: 2022 article-title: Future loss of local‐scale thermal refugia in coral reef ecosystems publication-title: PLoS Climate – volume: 333 start-page: 418 year: 2011 end-page: 422 article-title: Projecting coral reef futures under global warming and ocean acidification publication-title: Science – year: 2020 – volume: 8 year: 2017 article-title: Environmental variability indicates a climate‐adaptive center under threat in northern Mozambique coral reefs publication-title: Ecosphere – volume: 27 start-page: 312 year: 2021 end-page: 326 article-title: Divergent expression of hypoxia response systems under deoxygenation in reef‐forming corals aligns with bleaching susceptibility publication-title: Global Change Biology – volume: 6 start-page: 11579 issue: 11 year: 2014 end-page: 11606 article-title: Reef‐scale thermal stress monitoring of coral ecosystems: New 5‐km global products from NOAA coral reef watch publication-title: Remote Sensing – volume: 604 start-page: 211 year: 2018 end-page: 222 article-title: Incorporating feasibility and collaboration into large‐scale planning for regional recovery of coral reef fisheries publication-title: Marine Ecology Progress Series – volume: 8 year: 2020 article-title: Treating coral bleaching as weather: A framework to validate and optimize prediction skill publication-title: PeerJ – volume: 38 start-page: 1255 year: 2019 end-page: 1265 article-title: Abiotic and biotic controls on coral recovery 16 years after mass bleaching publication-title: Coral Reefs – volume: 16 start-page: 1408 year: 2006 end-page: 1413 article-title: A comparison of marine protected areas and alternative approaches to coral‐reef management publication-title: Current Biology – volume: 38 start-page: 547 year: 2019 end-page: 557 article-title: The relentless march of mass coral bleaching: A global perspective of changing heat stress publication-title: Coral Reefs – ident: e_1_2_11_49_1 doi: 10.5751/ES-00461-060218 – ident: e_1_2_11_5_1 doi: 10.1371/journal.pone.0236399 – ident: e_1_2_11_31_1 doi: 10.3390/rs8010059 – ident: e_1_2_11_92_1 doi: 10.1016/j.tree.2016.12.007 – ident: e_1_2_11_48_1 doi: 10.1111/gcb.15060 – ident: e_1_2_11_42_1 doi: 10.3390/rs61111579 – ident: e_1_2_11_35_1 doi: 10.1038/s41558-018-0351-2 – ident: e_1_2_11_45_1 doi: 10.1046/j.1461-0248.2001.00203.x – ident: e_1_2_11_73_1 doi: 10.1126/sciadv.abj2271 – ident: e_1_2_11_19_1 doi: 10.1111/gcb.12191 – ident: e_1_2_11_16_1 doi: 10.1890/ES12-00178.1 – ident: e_1_2_11_43_1 doi: 10.1038/s41558-021-01037-2 – ident: e_1_2_11_72_1 doi: 10.1098/rsos.192153 – ident: e_1_2_11_44_1 doi: 10.1007/s13199-016-0380-4 – ident: e_1_2_11_39_1 doi: 10.3390/rs13142677 – ident: e_1_2_11_82_1 doi: 10.1016/j.scitotenv.2023.162113 – ident: e_1_2_11_84_1 doi: 10.1038/s41598-020-70372-9 – ident: e_1_2_11_74_1 doi: 10.1007/s12526-021-01165-0 – ident: e_1_2_11_41_1 doi: 10.1088/1748-9326/acb3e6 – ident: e_1_2_11_18_1 doi: 10.1111/j.1461-0248.2012.01861.x – ident: e_1_2_11_8_1 doi: 10.1111/conl.12587 – ident: e_1_2_11_58_1 doi: 10.1007/s10584-015-1399-x – ident: e_1_2_11_70_1 doi: 10.1126/science.1204794 – ident: e_1_2_11_17_1 doi: 10.1038/s41559-019-0953-8 – ident: e_1_2_11_89_1 doi: 10.1098/rspb.2011.2621 – ident: e_1_2_11_34_1 doi: 10.1126/science.1085046 – ident: e_1_2_11_81_1 doi: 10.1038/nature01987 – ident: e_1_2_11_77_1 doi: 10.1007/s40641-018-0087-0 – ident: e_1_2_11_7_1 doi: 10.1111/gcb.15829 – volume-title: Coral reefs: An ecosystem in transition year: 2010 ident: e_1_2_11_24_1 – ident: e_1_2_11_88_1 doi: 10.1007/s00338-009-0502-z – ident: e_1_2_11_60_1 doi: 10.1111/j.1365-2486.2011.02395.x – ident: e_1_2_11_59_1 doi: 10.1111/geb.13191 – ident: e_1_2_11_83_1 doi: 10.1007/s00338-019-01799-4 – ident: e_1_2_11_2_1 doi: 10.1038/s41586-020-2084-4 – ident: e_1_2_11_29_1 doi: 10.1016/j.cub.2019.08.042 – ident: e_1_2_11_64_1 doi: 10.1007/s00338-020-01931-9 – ident: e_1_2_11_55_1 doi: 10.3389/fmars.2021.778121 – ident: e_1_2_11_15_1 doi: 10.1073/pnas.2015265118 – volume-title: Status and trends if coral reefs of the Western Indian Ocean region year: 2020 ident: e_1_2_11_68_1 – ident: e_1_2_11_51_1 doi: 10.1016/bs.amb.2020.08.003 – ident: e_1_2_11_3_1 doi: 10.1111/gcb.15436 – ident: e_1_2_11_30_1 doi: 10.1007/s00338-020-01914-w – ident: e_1_2_11_66_1 doi: 10.3389/fmars.2020.00514 – ident: e_1_2_11_47_1 doi: 10.1371/journal.pone.0023064 – ident: e_1_2_11_36_1 doi: 10.3354/meps12743 – ident: e_1_2_11_63_1 doi: 10.1111/cobi.12720 – ident: e_1_2_11_69_1 doi: 10.1038/s41893-021-00817-0 – ident: e_1_2_11_87_1 doi: 10.1111/j.1466-8238.2011.00656.x – ident: e_1_2_11_78_1 doi: 10.1016/j.tree.2012.04.007 – ident: e_1_2_11_62_1 doi: 10.1002/ecs2.1812 – ident: e_1_2_11_33_1 doi: 10.1016/j.tree.2018.09.006 – ident: e_1_2_11_54_1 doi: 10.1007/s00227-007-0844-4 – ident: e_1_2_11_53_1 doi: 10.1088/1748-9326/ac7478 – ident: e_1_2_11_95_1 doi: 10.1002/ecy.1884 – ident: e_1_2_11_21_1 doi: 10.1371/journal.pclm.0000004 – ident: e_1_2_11_14_1 doi: 10.1038/nature18607 – ident: e_1_2_11_65_1 doi: 10.1111/gcb.15725 – ident: e_1_2_11_12_1 doi: 10.3389/fmars.2018.00004 – ident: e_1_2_11_76_1 doi: 10.1007/s00338-019-01831-7 – ident: e_1_2_11_4_1 doi: 10.1111/conl.12858 – ident: e_1_2_11_28_1 doi: 10.1016/j.biocon.2021.109307 – ident: e_1_2_11_93_1 doi: 10.1046/j.1523-1739.2003.02055.x – ident: e_1_2_11_46_1 doi: 10.1002/rse2.157 – ident: e_1_2_11_22_1 doi: 10.1111/j.1365-2486.2005.01073.x – year: 2019 ident: e_1_2_11_67_1 article-title: Skeletal records of bleaching reveal different thermal thresholds of Pacific coral reef assemblages publication-title: Coral Reefs – ident: e_1_2_11_10_1 doi: 10.1111/gcb.13166 – ident: e_1_2_11_20_1 doi: 10.7717/peerj.9449 – ident: e_1_2_11_23_1 doi: 10.1126/science.abd9464 – ident: e_1_2_11_37_1 doi: 10.1093/icesjms/fsx124 – ident: e_1_2_11_79_1 doi: 10.1016/j.marenvres.2022.105807 – ident: e_1_2_11_6_1 doi: 10.1073/pnas.2123331119 – volume-title: Impacts of 1.5 C global warming on natural and human systems year: 2018 ident: e_1_2_11_32_1 – ident: e_1_2_11_13_1 doi: 10.1111/gcb.16167 – ident: e_1_2_11_25_1 doi: 10.3389/fmars.2022.938454 – ident: e_1_2_11_57_1 doi: 10.1007/s10021-002-0104-x – ident: e_1_2_11_61_1 doi: 10.1016/j.cub.2006.05.062 – ident: e_1_2_11_11_1 doi: 10.1042/ETLS20210232 – ident: e_1_2_11_85_1 doi: 10.1038/s41467-019-09238-2 – ident: e_1_2_11_91_1 doi: 10.1111/ddi.12957 – ident: e_1_2_11_75_1 doi: 10.1111/gcb.16034 – ident: e_1_2_11_38_1 doi: 10.1111/j.1466-8238.2011.00686.x – ident: e_1_2_11_9_1 doi: 10.1111/gcb.12851 – ident: e_1_2_11_27_1 doi: 10.1038/ncomms4794 – ident: e_1_2_11_40_1 doi: 10.1111/ecog.05877 – ident: e_1_2_11_56_1 doi: 10.1038/s41558-019-0576-8 – ident: e_1_2_11_86_1 doi: 10.1016/j.marpol.2015.12.026 – ident: e_1_2_11_71_1 doi: 10.1038/s41586-018-0194-z – ident: e_1_2_11_94_1 doi: 10.1101/572321 – ident: e_1_2_11_52_1 doi: 10.3354/meps13402 – ident: e_1_2_11_80_1 doi: 10.1038/s41598-020-76604-2 – ident: e_1_2_11_26_1 doi: 10.1007/s00338-022-02233-y – ident: e_1_2_11_50_1 doi: 10.1371/journal.pone.0093385 – ident: e_1_2_11_90_1 doi: 10.1038/s41597-022-01121-y |
| SSID | ssj0009514 |
| Score | 2.5183551 |
| SecondaryResourceType | review_article |
| Snippet | Identifying locations of refugia from the thermal stresses of climate change for coral reefs and better managing them is one of the key recommendations for... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e14108 |
| SubjectTerms | análisis de brecha applied research arrecifes de coral cambio climático climate Climate adaptation Climate change Climate change adaptation Climate prediction Conservation Coral reef conservation Coral reefs corals environmental stress estrés ambiental Exposure gap analysis Global warming heat Heat waves Heatwaves life history Locations (working) marine spatial planning Ocean temperature planeación espacial marina refuge habitats Refuges Refugia refugios Thermal stress wildlife management 气候变化 海洋空间规划 环境压力 珊瑚礁 空缺分析 避难所 |
| Title | Diversification of refugia types needed to secure the future of coral reefs subject to climate change |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcobi.14108 https://www.ncbi.nlm.nih.gov/pubmed/37144480 https://www.proquest.com/docview/2919334812 https://www.proquest.com/docview/2810914080 https://www.proquest.com/docview/3040394730 |
| Volume | 38 |
| WOSCitedRecordID | wos001001091800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1523-1739 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009514 issn: 0888-8892 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB-unoW-aK1fV6-ypb4opFx2k8sG-qKnh4JcRRTuLWS_yoEkxdwJ_vfOZHOn4geUvoSFzIZld2fnN5OZ3wLsuTBHVzaOAtNTPIhymQYqpsypxCQR2gOTuLpQ-DwZjeR4nF604Ne8FsbzQywCbqQZ9XlNCp6r6omS61JNflKWovwA7TAUki5u4NHFE8pdz-yNPl4gZcobclLK43ns-9wcvcCYzyFrbXOGq_832s-w0mBNdug3xxq0bPEFPvrbJ--xdVIzVt-vgz322RmuCeCx0jEc6uzPJGcUo61YgUbOGjYtWUUBessQNzLPR0LCmur8sYt1FatmimI7JKtvJgiILfPVxRtwPTy5GpwGzf0LgUa7jecgrmGsTKhS1dMWZzPv29BJ1GCCGcJy4RwhPESQrmd4nica_S8Vciv7WsWp2ISloizsNjBrIsM16npo8DM2VlYQl17YMzLhKhUd2J8vQ6YbcnK6I-MmmzspNIFZPYEd-LGQ_espOV6V6s5XM2vUssp4iniVSo95B74vXqNC0V-SvLDlDGUkcaVGiKTflhF49AmcBoEyW36nLIZCFIjo8-Kbg3pDvDPGbPD76Kxuff0X4R34xBFa-dzxLixNb2f2Gyzru-mkut2tlQCfyVjuQvv4cnh9_gAf0QnT |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB7aJKW59JE2rRMn3ZBeGlCxVlK0OjZ-kFDXKcWG3IT2FQxGKpYVyL_PjFZ2bdIWSm8CzYpld2bnm9HMtwAfrZ9hKBuFnu5I7oWZSDwZUeVUrOMQ_YGObd0oPIxHI3Fzk3xvanOoF8bxQ6wSbmQZ9XlNBk4J6TUrV4WcfqYyRfEUtkPUI1Tw7d6PwWS4xrrryL0xzPOESHjDT0qlPL9Gb3qkRzBzE7XWbmfw8j8n_ApeNHiTfXEK8hqemHwPnrkbKO_xqV-zVt-_AdNzFRq2SeKxwjKca3U7zRjlaUuWo6Mzmi0KVlKS3jDEjsxxkpCwol5_HGJsycpKUn6HZNVsiqDYMNdh_BYmg_64e-k1dzB4Cn03noW4j5HUvkxkRxlczuzc-FagFRPUCAwPrCWUhyjSdjTPslhhDCZ9bsS5klES7MNWXuTmPTCjQ80V7pOv8TMmkiYgPj2_o0XMZRK04NNyH1LVEJTTPRmzdBmo0AKm9QK24HQl-9PRcvxWqr3czrQxzTLlCWJWaj_mLThZvUajoj8lWW6KCmUE8aWGiKb_LBPg8RfgMgQo886pymoqRIOIcS--Oas14i9zTLvXF1f108G_CH-A55fjb8N0eDX6egi7HKGWqyVvw9ZiXpkj2FF3i2k5P25s4gFJJAzR |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fSxwxEB7a00pfrD9qe9Zqir5YWLnN7rrZx9bzqHhcpSj4tmySiRzIrrh3Bf97ZzZ7p1JbkL4FMllCksl8MzvzBWDPhQW5skkc2J6WQVyoLNAJZ06lNo3JHtjUNYXCw3Q0UpeX2Vmbm8O1MJ4fYh5wY81o7mtWcLyx7pGWm0qPDzhNUb2GhZhfkenAQv_X4GL4iHXXk3uTmxcolcmWn5RTeR5GP7VIf8DMp6i1MTuDd_854RVYbvGm-OYPyCq8wnIN3vgXKO-oddywVt-tA_Z9hoZrg3iicoLmOr0aF4LjtLUoydChFZNK1BykR0HYUXhOEhY2XOtPQ9DVop5qju-wrLkeEyhG4SuM38PF4Pj86EfQvsEQGLLddBfSPibahjrTPYO0nMUhhk6RFjPUiFBGzjHKIxTpelYWRWrIB9OhRHVodJJFG9ApqxI_gkAbW2lI30NLn8FEY8R8emHPqlTqLOrC_mwfctMSlPM7Gdf5zFHhBcybBezC7lz2xtNyPCu1NdvOvFXNOpcZYVYuP5Zd-DLvJqXiPyVFidWUZBTzpcaEpv8uE9H1F9EyRCTzwR-V-VSYBpH8Xur52pyIf8wxP_r5_aRpbb5EeAeWzvqDfHgyOv0EbyUhLZ9KvgWdye0UP8Oi-T0Z17fbrUrcA8CbDEw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diversification+of+refugia+types+needed+to+secure+the+future+of+coral+reefs+subject+to+climate+change&rft.jtitle=Conservation+biology&rft.au=McClanahan%2C+Tim+R.&rft.au=Darling%2C+Emily+S.&rft.au=Beger%2C+Maria&rft.au=Fox%2C+Helen+E.&rft.date=2024-02-01&rft.issn=0888-8892&rft.eissn=1523-1739&rft.volume=38&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fcobi.14108&rft.externalDBID=10.1111%252Fcobi.14108&rft.externalDocID=COBI14108 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-8892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-8892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-8892&client=summon |