Effect of growing watershed imperviousness on hydrograph parameters and peak discharge

An increasing impervious area is quickly extending over the Wu‐Tu watershed due to the endless demands of the people. Generally, impervious paving is a major result of urbanization and more recently has had the potential to produce more enormous flood disasters than those of the past. In this study,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Hydrological processes Ročník 22; číslo 13; s. 2075 - 2085
Hlavní autori: Huang, Huang-jia, Cheng, Shin-jen, Wen, Jet-chau, Lee, Ju-huang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Chichester, UK John Wiley & Sons, Ltd 30.06.2008
Wiley
Predmet:
ISSN:0885-6087, 1099-1085
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract An increasing impervious area is quickly extending over the Wu‐Tu watershed due to the endless demands of the people. Generally, impervious paving is a major result of urbanization and more recently has had the potential to produce more enormous flood disasters than those of the past. In this study, 40 available rainfall–runoff events were chosen to calibrate the applicable parameters of the models and to determine the relationships between the impervious surfaces and the calibrated parameters. Model inputs came from the outcomes of the block kriging method and the non‐linear programming method. In the optimal process, the shuffled complex evolution method and three criteria were applied to compare the observed and simulated hydrographs. The tendencies of the variations of the parameters with their corresponding imperviousness were established through regression analysis. Ten cases were used to examine the established equations of the parameters and impervious covers. Finally, the design flood routines of various return periods were furnished through use of approaches containing a design storm, block kriging, the SCS model, and a rainfall‐runoff model with established functional relationships. These simulated flood hydrographs were used to compare and understand the past, present, and future hydrological conditions of the watershed studied. In the research results, the time to peak of flood hydrographs for various storms was diminished approximately from 11 h to 6 h in different decrements, whereas peak flow increased respectively from 127 m3 s−1 to 629 m3 s−1 for different storm intensities. In addition, this study provides a design diagram for the peak flow ratio to help engineers and designers to construct hydraulic structures efficiently and prevent possible damage to human life and property. Copyright © 2007 John Wiley & Sons, Ltd.
AbstractList An increasing impervious area is quickly extending over the Wu‐Tu watershed due to the endless demands of the people. Generally, impervious paving is a major result of urbanization and more recently has had the potential to produce more enormous flood disasters than those of the past. In this study, 40 available rainfall–runoff events were chosen to calibrate the applicable parameters of the models and to determine the relationships between the impervious surfaces and the calibrated parameters. Model inputs came from the outcomes of the block kriging method and the non‐linear programming method. In the optimal process, the shuffled complex evolution method and three criteria were applied to compare the observed and simulated hydrographs. The tendencies of the variations of the parameters with their corresponding imperviousness were established through regression analysis. Ten cases were used to examine the established equations of the parameters and impervious covers. Finally, the design flood routines of various return periods were furnished through use of approaches containing a design storm, block kriging, the SCS model, and a rainfall‐runoff model with established functional relationships. These simulated flood hydrographs were used to compare and understand the past, present, and future hydrological conditions of the watershed studied. In the research results, the time to peak of flood hydrographs for various storms was diminished approximately from 11 h to 6 h in different decrements, whereas peak flow increased respectively from 127 m3 s−1 to 629 m3 s−1 for different storm intensities. In addition, this study provides a design diagram for the peak flow ratio to help engineers and designers to construct hydraulic structures efficiently and prevent possible damage to human life and property. Copyright © 2007 John Wiley & Sons, Ltd.
An increasing impervious area is quickly extending over the Wu-Tu watershed due to the endless demands of the people. Generally, impervious paving is a major result of urbanization and more recently has had the potential to produce more enormous flood disasters than those of the past. In this study, 40 available rainfall-runoff events were chosen to calibrate the applicable parameters of the models and to determine the relationships between the impervious surfaces and the calibrated parameters. Model inputs came from the outcomes of the block kriging method and the non-linear programming method. In the optimal process, the shuffled complex evolution method and three criteria were applied to compare the observed and simulated hydrographs. The tendencies of the variations of the parameters with their corresponding imperviousness were established through regression analysis. Ten cases were used to examine the established equations of the parameters and impervious covers. Finally, the design flood routines of various return periods were furnished through use of approaches containing a design storm, block kriging, the SCS model, and a rainfall-runoff model with established functional relationships. These simulated flood hydrographs were used to compare and understand the past, present, and future hydrological conditions of the watershed studied. In the research results, the time to peak of flood hydrographs for various storms was diminished approximately from 11 h to 6 h in different decrements, whereas peak flow increased respectively from 127 m3 s-1 to 629 m3 s-1 for different storm intensities. In addition, this study provides a design diagram for the peak flow ratio to help engineers and designers to construct hydraulic structures efficiently and prevent possible damage to human life and property.
An increasing impervious area is quickly extending over the Wu-Tu watershed due to the endless demands of the people. Generally, impervious paving is a major result of urbanization and more recently has had the potential to produce more enormous flood disasters than those of the past. In this study, 40 available rainfall-runoff events were chosen to calibrate the applicable parameters of the models and to determine the relationships between the impervious surfaces and the calibrated parameters. Model inputs came from the outcomes of the block kriging method and the non-linear programming method. In the optimal process, the shuffled complex evolution method and three criteria were applied to compare the observed and simulated hydrographs. The tendencies of the variations of the parameters with their corresponding imperviousness were established through regression analysis. Ten cases were used to examine the established equations of the parameters and impervious covers. Finally, the design flood routines of various return periods were furnished through use of approaches containing a design storm, block kriging, the SCS model, and a rainfall-runoff model with established functional relationships. These simulated flood hydrographs were used to compare and understand the past, present, and future hydrological conditions of the watershed studied. In the research results, the time to peak of flood hydrographs for various storms was diminished approximately from 11 h to 6 h in different decrements, whereas peak flow increased respectively from 127 m³ s⁻¹ to 629 m³ s⁻¹ for different storm intensities. In addition, this study provides a design diagram for the peak flow ratio to help engineers and designers to construct hydraulic structures efficiently and prevent possible damage to human life and property.
An increasing impervious area is quickly extending over the Wu‐Tu watershed due to the endless demands of the people. Generally, impervious paving is a major result of urbanization and more recently has had the potential to produce more enormous flood disasters than those of the past. In this study, 40 available rainfall–runoff events were chosen to calibrate the applicable parameters of the models and to determine the relationships between the impervious surfaces and the calibrated parameters. Model inputs came from the outcomes of the block kriging method and the non‐linear programming method. In the optimal process, the shuffled complex evolution method and three criteria were applied to compare the observed and simulated hydrographs. The tendencies of the variations of the parameters with their corresponding imperviousness were established through regression analysis. Ten cases were used to examine the established equations of the parameters and impervious covers. Finally, the design flood routines of various return periods were furnished through use of approaches containing a design storm, block kriging, the SCS model, and a rainfall‐runoff model with established functional relationships. These simulated flood hydrographs were used to compare and understand the past, present, and future hydrological conditions of the watershed studied. In the research results, the time to peak of flood hydrographs for various storms was diminished approximately from 11 h to 6 h in different decrements, whereas peak flow increased respectively from 127 m 3 s −1 to 629 m 3 s −1 for different storm intensities. In addition, this study provides a design diagram for the peak flow ratio to help engineers and designers to construct hydraulic structures efficiently and prevent possible damage to human life and property. Copyright © 2007 John Wiley & Sons, Ltd.
Author Cheng, Shin-jen
Lee, Ju-huang
Huang, Huang-jia
Wen, Jet-chau
Author_xml – sequence: 1
  givenname: Huang-jia
  surname: Huang
  fullname: Huang, Huang-jia
  organization: Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology, Yunlin, Taiwan, ROC
– sequence: 2
  givenname: Shin-jen
  surname: Cheng
  fullname: Cheng, Shin-jen
  email: sjcheng@mail.dwu.edu.tw.
  organization: Department of Environment and Resources Engineering, Diwan University, Tainan, Taiwan, ROC
– sequence: 3
  givenname: Jet-chau
  surname: Wen
  fullname: Wen, Jet-chau
  organization: Department of Safety Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, Taiwan, ROC
– sequence: 4
  givenname: Ju-huang
  surname: Lee
  fullname: Lee, Ju-huang
  organization: Water Resources Agency, Ministry of Economic Affairs, Taipei, Taiwan, ROC
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20410847$$DView record in Pascal Francis
BookMark eNqF0VtrFDEUB_AgFdxWwY-QF8WXWU8uM8k8Sq1tafGC96eQZJKd2Nlkmkxd99s7y1ZBUQoHzsvvHA7nf4gOYooOoccElgSAPu-347KRIO6hBYG2rQjI-gAtQMq6akCKB-iwlG8AwEHCAn068d7ZCSePVzltQlzhjZ5cLr3rcFiPLn8P6aZEVwpOEffbLqdV1mOPR5312u0o1rHDo9NXuAvF9jqv3EN03-uhuEe3_Qh9fHXy4fisunxzen784rKynDaiokYa3gnGraAGPBO18y233piGatMRZhgY27Ja-qbxrQHZUmKEJlw6z4GwI_R0v3fM6frGlUmt5xPcMOjo5rMVF40gQNs7IWN1Q-e6E1ICQkAtZvjkFupi9eCzjjYUNeaw1nmrKPD59XznlntncyolO69smPQUUpyyDoMioHbBqTk4tQtuHnj218Cvnf-g1Z5uwuC2_3Xq7OvbP30ok_vx2-t8pRoxf199fn2qBH35hb-X79QF-wldLrjG
CODEN HYPRE3
CitedBy_id crossref_primary_10_1007_s11069_010_9589_3
crossref_primary_10_2166_nh_2017_249
crossref_primary_10_1111_1752_1688_13073
crossref_primary_10_1007_s11269_011_9898_7
crossref_primary_10_3390_hydrology8020093
crossref_primary_10_1016_j_jhydrol_2014_01_066
crossref_primary_10_1016_j_scitotenv_2018_06_211
crossref_primary_10_2166_ws_2019_064
crossref_primary_10_1016_j_jag_2014_01_002
crossref_primary_10_3390_land12122163
crossref_primary_10_3390_rs14236129
crossref_primary_10_1061__ASCE_WR_1943_5452_0001144
crossref_primary_10_1016_j_jhydrol_2020_125051
crossref_primary_10_1007_s11368_016_1386_5
crossref_primary_10_1016_j_jclepro_2022_130992
crossref_primary_10_1007_s00704_023_04703_x
crossref_primary_10_1061__ASCE_HE_1943_5584_0000675
crossref_primary_10_3390_w12061572
crossref_primary_10_1007_s12517_018_3569_4
crossref_primary_10_1016_j_ancene_2023_100371
crossref_primary_10_1002_hyp_9819
crossref_primary_10_3390_w11061273
crossref_primary_10_5194_hess_22_417_2018
crossref_primary_10_1016_j_jhydrol_2012_12_040
crossref_primary_10_1007_s12040_020_01532_8
crossref_primary_10_1016_j_jhydrol_2017_09_002
crossref_primary_10_1080_02626667_2012_685171
crossref_primary_10_1007_s00267_020_01339_9
crossref_primary_10_1016_j_jhydrol_2008_09_002
crossref_primary_10_1080_1573062X_2013_857420
crossref_primary_10_1016_j_jhydrol_2009_12_043
crossref_primary_10_1080_1573062X_2018_1508597
crossref_primary_10_1007_s11269_015_1014_y
crossref_primary_10_5194_hess_21_1991_2017
crossref_primary_10_3390_w12051386
crossref_primary_10_1007_s10346_019_01167_x
crossref_primary_10_1016_j_jhydrol_2018_07_033
crossref_primary_10_1080_02626667_2011_637044
crossref_primary_10_3390_land9010017
crossref_primary_10_3390_w15010166
crossref_primary_10_1016_j_jhydrol_2018_02_064
crossref_primary_10_1111_j_1752_1688_2010_00484_x
crossref_primary_10_1016_j_advwatres_2012_09_001
crossref_primary_10_1016_j_scitotenv_2016_04_135
crossref_primary_10_1007_s11269_010_9621_0
crossref_primary_10_1002_hyp_13141
crossref_primary_10_1007_s00267_012_0004_6
crossref_primary_10_1016_j_jhydrol_2014_04_011
crossref_primary_10_1016_j_catena_2017_05_002
crossref_primary_10_3390_w12071958
crossref_primary_10_3390_w15173068
crossref_primary_10_1016_j_jhydrol_2014_04_019
crossref_primary_10_1007_s12517_018_3952_1
crossref_primary_10_1002_wwp2_12186
crossref_primary_10_1016_j_ecohyd_2023_06_001
crossref_primary_10_1016_j_jhydrol_2015_07_020
crossref_primary_10_1007_s11069_014_1220_6
crossref_primary_10_3390_w12071870
crossref_primary_10_1007_s13201_021_01547_6
crossref_primary_10_1016_j_jhydrol_2012_06_057
crossref_primary_10_1007_s11069_022_05250_w
crossref_primary_10_2980_15_2_3054
crossref_primary_10_1016_j_jhydrol_2014_12_008
crossref_primary_10_1007_s11269_009_9471_9
crossref_primary_10_1007_s40808_024_01998_1
crossref_primary_10_1007_s11069_010_9596_4
crossref_primary_10_3390_w12051280
crossref_primary_10_1002_hyp_10974
crossref_primary_10_1002_hyp_7699
crossref_primary_10_1088_1755_1315_945_1_012046
crossref_primary_10_1016_j_envpol_2022_120200
crossref_primary_10_1111_jfr3_12651
crossref_primary_10_5004_dwt_2019_24359
crossref_primary_10_1061__ASCE_WR_1943_5452_0000859
crossref_primary_10_1080_02626667_2014_910305
crossref_primary_10_3390_land12112072
crossref_primary_10_1002_hyp_10057
crossref_primary_10_1111_j_1752_1688_2010_00487_x
crossref_primary_10_3390_w12082205
crossref_primary_10_1002_hyp_10290
crossref_primary_10_1080_1573062X_2022_2044495
crossref_primary_10_1080_21683565_2018_1437497
crossref_primary_10_1080_1573062X_2020_1811881
crossref_primary_10_3390_infrastructures4030048
crossref_primary_10_2166_wcc_2016_017
crossref_primary_10_1155_2018_6241892
Cites_doi 10.1029/WR023i011p02123
10.1007/978-3-662-03550-4
10.1002/hyp.1266
10.1111/j.1752-1688.1990.tb01374.x
10.1016/0022-1694(89)90101-7
10.1111/j.1752-1688.1997.tb04114.x
10.1007/s11269-005-7998-y
10.1016/S0022-1694(00)00144-X
10.1002/(SICI)1099-1085(19980430)12:5<769::AID-HYP624>3.0.CO;2-K
10.1002/(SICI)1099-1085(19981030)12:13/14<1983::AID-HYP713>3.0.CO;2-M
10.1016/0022-1694(89)90017-6
10.1029/1998WR900018
10.1016/j.catena.2005.08.013
10.1002/hyp.5634
10.1002/(SICI)1099-1085(19990615)13:8<1247::AID-HYP807>3.0.CO;2-W
10.1016/0341-8162(91)90014-O
10.1007/BF00939380
10.1016/S0022-1694(99)00185-7
10.1016/S0022-1694(01)00364-X
10.1002/(SICI)1099-1085(19981030)12:13/14<2043::AID-HYP718>3.0.CO;2-0
10.1016/0022-1694(73)90089-9
10.1002/(SICI)1099-1085(199802)12:2<351::AID-HYP569>3.0.CO;2-O
10.1111/j.1752-1688.1996.tb03499.x
10.1002/hyp.5553
10.1016/0022-1694(70)90255-6
10.1029/91WR02577
10.1029/WR020i007p00857
10.1002/1099-1085(20000615)14:8<1485::AID-HYP988>3.0.CO;2-1
10.1002/hyp.350
10.1111/j.1752-1688.1997.tb03553.x
10.1029/WR011i003p00431
10.1016/S0022-1694(03)00246-4
10.1002/(SICI)1099-1085(19990815)13:11<1629::AID-HYP833>3.0.CO;2-S
10.1016/0341-8162(92)90009-Z
10.1016/S0022-1694(96)80018-7
10.1080/02626660209492904
10.1016/S0022-1694(02)00311-6
10.1111/j.1752-1688.1997.tb04093.x
10.1002/9780470316993
10.1016/0022-1694(85)90196-9
10.2166/wst.1994.0645
10.1002/hyp.1303
10.1111/j.1752-1688.1982.tb00075.x
10.1111/j.1752-1688.1996.tb03471.x
ContentType Journal Article
Copyright Copyright © 2007 John Wiley & Sons, Ltd.
2008 INIST-CNRS
Copyright_xml – notice: Copyright © 2007 John Wiley & Sons, Ltd.
– notice: 2008 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7ST
7TG
7U6
7UA
C1K
F1W
H96
KL.
L.G
SOI
8FD
FR3
KR7
7S9
L.6
DOI 10.1002/hyp.6807
DatabaseName Istex
CrossRef
Pascal-Francis
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Sustainability Science Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Sustainability Science Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1099-1085
EndPage 2085
ExternalDocumentID 20410847
10_1002_hyp_6807
HYP6807
ark_67375_WNG_72DX4S8Q_K
Genre article
GeographicLocations Far East
Asia
Taiwan
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~KM
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
RWI
WRC
WWD
AAYXX
CITATION
O8X
ABEML
ACSCC
AGHNM
AI.
DDYGU
HF~
IQODW
M62
RIWAO
RJQFR
SAMSI
VH1
ZY4
7ST
7TG
7U6
7UA
C1K
F1W
H96
KL.
L.G
SOI
8FD
FR3
KR7
7S9
L.6
ID FETCH-LOGICAL-c4267-2b8b4d734c72b0f375ef94cfbb62abd13b30bc9358f66f9b08921b7a148ef4013
IEDL.DBID DRFUL
ISICitedReferencesCount 86
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000257090200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-6087
IngestDate Thu Oct 02 11:11:00 EDT 2025
Fri Jul 11 16:41:47 EDT 2025
Tue Oct 07 10:00:20 EDT 2025
Mon Jul 21 09:15:45 EDT 2025
Tue Nov 18 22:32:19 EST 2025
Sat Nov 29 03:25:04 EST 2025
Wed Jan 22 16:33:10 EST 2025
Tue Nov 11 03:32:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords floods
damage
SCS
peak flow
urban environment
kriging
regression analysis
rain water
linear programming
block kriging
drainage basins
hydraulics
NLP
discharge
flow
models
rainfall
river discharge
runoff
urban areas
urbanization
surface water
flood modelling
time to peak
hydrographs
storms
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4267-2b8b4d734c72b0f375ef94cfbb62abd13b30bc9358f66f9b08921b7a148ef4013
Notes ark:/67375/WNG-72DX4S8Q-K
istex:AF578B55D8C3557BD2A98C57657A5278049F788F
ArticleID:HYP6807
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 21077057
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_47671029
proquest_miscellaneous_33562562
proquest_miscellaneous_21077057
pascalfrancis_primary_20410847
crossref_citationtrail_10_1002_hyp_6807
crossref_primary_10_1002_hyp_6807
wiley_primary_10_1002_hyp_6807_HYP6807
istex_primary_ark_67375_WNG_72DX4S8Q_K
PublicationCentury 2000
PublicationDate 30 June 2008
PublicationDateYYYYMMDD 2008-06-30
PublicationDate_xml – month: 06
  year: 2008
  text: 30 June 2008
  day: 30
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle Hydrological processes
PublicationTitleAlternate Hydrol. Process
PublicationYear 2008
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Chow VT, Maidment DR, Mays LW. 1988. Applied Hydrology. McGraw-Hill: New York.
Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual models: 1. A discussion of principles. Journal of Hydrology 10: 282-290.
Simmons DL, Reynolds RJ. 1982. Effects of urbanization on base flow of selected south-shore streams, Long Island, New York. Water Resources Bulletin 18: 797-805.
Kang IS, Park JI, Singh VP. 1998. Effect of urbanization on runoff characteristics of the On-Cheon Stream watershed in Pusan, Korea. Hydrological Processes 12: 351-363.
Clarke RT. 1973. A review of some mathematical models used in hydrology, with observations on their calibration and use. Journal of Hydrology 19: 1-20.
Yue S, Hashino M. 2000. Unit hydrographs to model quick and slow runoff components of streamflow. Journal of Hydrology 227: 195-206.
Legates DR, McCabe Jr GJ. 1999. Evaluating the use of 'goodness-of-fit' measures in hydrologic and hydroclimatic model validation. Water Resource Research 35: 233-241.
Syed KH, Goodrich DC, Myers DE, Sorooshian S. 2003. Spatial characteristics of thunderstorm rainfall fields and their relation to runoff. Journal of Hydrology 271: 1-21.
Goovaerts P. 2000. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology 228: 113-129.
Mather AS, Needle CL, Fairbairn J. 1998. The human derivers of global land cover change: the case of forests. Hydrological Processes 12: 1983-1994.
Wackernagel H. 1998. Multivariate Geostatistics. Springer-Verlag: Berlin.
Rodriguez F, Andrieu H, Creutin J-D. 2003. Surface runoff in urban catchments: morphological identification of unit hydrographs from urban databanks. Journal of Hydrology 283: 146-168.
Beven K. 1989. Changing ideals in hydrology: the case of physically-based models. Journal of Hydrology 105: 157-172.
Agirre U, Goñi M, López JJ, Gimena FN. 2005. Application of a unit hydrograph based on subwatershed division and comparison with Nash's instantaneous unit hydrograph. Catena 64: 321-332.
Franchini M, O'Connell PE. 1996. An analysis of the dynamic component of the geomorphologic instantaneous unit hydrograph. Journal of Hydrology 175: 407-428.
Lee YH, Singh VP. 2005. Tank model for sediment yield. Water Resources Management 19: 349-362.
Moscrip AL, Montgomery DR. 1997. Urbanization, flood frequency, and salmon abundance in Puget lowland streams. Journal of the American Water Resources Association 33: 1289-1297.
Cheng S-J, Wang R-Y. 2002. An approach for evaluating the hydrological effects of urbanization and its application. Hydrological Processes 16: 1403-1418.
Hollis GE. 1975. The effect of urbanization on floods of different recurrence interval. Water Resources Research 11: 431-435.
Changnon D, Fox D, Bork S. 1996. Differences in warm-season, rainstorm-generated stormflows for northeastern Illinois urbanized basins. Water Resources Bulletin 32: 1307-1317.
Lazaro TR. 1979. Urban Hydrology. Ann Arbor Science Publishers: Ann Arbor, MI.
Singh RB. 1998. Land use/cover changes, extreme events and ecohydrological response in the Himalayan region. Hydrological Processes 12: 2043-2055.
Hannah DM, Gurnell AM. 2001. A Conceptual, linear reservoir runoff model to investigate melt season changes in cirque glacier hydrology. Journal of Hydrology 246: 123-141.
Hsieh L-S, Wang R-Y. 1999. A semi-distributed parallel-type linear reservoir rainfall-runoff model and its application in Taiwan. Hydrological Processes 13: 1247-1268.
Marsalek J, Sztruhar D. 1994. Urban drainage: review of contemporary approaches. Water Science and Technology 29: 1-10.
Moramarco T, Melone F, Singh VP. 2005. Assessment of flooding in urbanized ungauged basins: a case study in the upper Tiber area, Italy. Hydrological Processes 19: 1909-1924.
Driver NE, Troutman BM. 1989. Regression models for estimating urban storm-runoff quality and quantity in the United States. Journal of Hydrology 109: 221-236.
Krug WR. 1996. Simulation of temporal changes in rainfall-runoff characteristics, Coon Creek basin, Wisconsin. Water Resources Bulletin 32: 745-752.
Lebel T, Bastin G. 1985. Variogram identification by the mean squared interpolation error method with application to hydrologic field. Journal of Hydrology 77: 31-56.
Wong TSW, Li Y. 1999. Theoretical assessment of changes in design flood peak of an overland plane for two opposing urbanization sequences. Hydrological Processes 13: 1629-1647.
Chen RS, Pi LC, Huang YH. 2003. Analysis of rainfall-runoff relation in paddy fields by diffusive tank model. Hydrological Processes 17: 2541-2553.
Jin CX. 1992. A deterministic gamma-type geomorphologic instantaneous unit hydrograph based on path types. Water Resources Research 28: 479-486.
Sala M, Inbar M. 1992. Some hydrologic effects of urbanization in Catalan rivers. Catena 19: 363-378.
Wilk J, Hughes DA. 2002. Simulating the impacts of land-use and climate change on water resource availability for a large south Indian catchment. Hydrological Sciences 47: 19-30.
Melone F, Corradini C, Singh VP. 1998. Simulation of the direct runoff hydrograph at basin outlet. Hydrological Processes 12: 769-779.
Nayak PC, Sudheer KP, Ramasastri KS. 2005. Fuzzy computing based rainfall-runoff model for real time flood forecasting. Hydrological Processes 19: 955-968.
Leopold LB. 1991. Lag times for small drainage basins. Catena 18: 157-171.
Gremillion P, Gonyeau A, Wanielista M. 2000. Application of alternative hydrograph separation models to detect changes in flow paths in a watershed undergoing urban development. Hydrological Processes 14: 1485-1501.
Bonta JV, Amerman CR, Harlukowicz TJ, Dick WA. 1997. Impact of coal surface mining on three Ohio watersheds-surface-water hydrology. Journal of the American Water Resources Association 33: 907-917.
Moon J, Kim J-H, Yoo C. 2004. Storm-coverage effect on dynamic flood-frequency analysis: empirical data analysis. Hydrological Processes 18: 159-178.
Loganathan GV, Delleur JW. 1984. Effects of urbanization on frequencies of overflows and pollutant loading from storm sewer overflows: a derived distribution approach. Water Resources Research 20: 857-865.
Ferguson BK, Suckling PW. 1990. Changing rainfall-runoff relationships in the urbanizing Peachtree Creek watershed, Atlanta, Georgia. Water Resources Bulletin 26: 313-322.
Tsihrintzis VA, Hamid R. 1997. Urban stormwater quantity/quality modeling using the SCS method and empirical equations. Journal of the American Water Resources Association 33: 163-176.
Chiles JP, Delfiner P. 1999. Geostatistics: Modeling Spatial Uncertainty. Wiley: New York.
Duan Q, Gupta VK, Sorooshian S. 1993. Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory Application 76: 501-521.
Lebel T, Bastin G, Obled C, Creutin JD. 1987. On the accuracy of areal rainfall estimation: a case study. Water Resources Research 23: 2123-2134.
2002; 16
1991; 18
1984; 20
1982; 18
1973; 19
1998
2003; 271
2005; 64
1970; 10
1992; 19
2003; 17
1971
1975; 11
1994; 29
1996; 32
1958
2001; 246
1979
1999
1989; 109
2002; 47
1987; 23
1989; 105
2005; 19
1997; 33
1990; 26
2000; 14
2004; 18
2000; 227
1993; 76
2000; 228
1999; 13
1992; 28
1999; 35
2003; 283
1996; 175
1985; 77
1998; 12
1988
Nash JE (e_1_2_1_37_1) 1958
Marsalek J (e_1_2_1_30_1) 1994; 29
e_1_2_1_42_1
e_1_2_1_20_1
e_1_2_1_41_1
e_1_2_1_40_1
e_1_2_1_46_1
e_1_2_1_24_1
e_1_2_1_45_1
e_1_2_1_21_1
e_1_2_1_44_1
e_1_2_1_22_1
e_1_2_1_43_1
e_1_2_1_27_1
e_1_2_1_28_1
e_1_2_1_49_1
e_1_2_1_25_1
e_1_2_1_48_1
e_1_2_1_26_1
e_1_2_1_47_1
Chow VT (e_1_2_1_9_1) 1988
e_1_2_1_29_1
Lazaro TR (e_1_2_1_23_1) 1979
e_1_2_1_7_1
e_1_2_1_31_1
e_1_2_1_8_1
e_1_2_1_5_1
e_1_2_1_6_1
e_1_2_1_3_1
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_4_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_2_1
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_16_1
e_1_2_1_39_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_14_1
e_1_2_1_15_1
e_1_2_1_36_1
e_1_2_1_18_1
e_1_2_1_19_1
References_xml – reference: Gremillion P, Gonyeau A, Wanielista M. 2000. Application of alternative hydrograph separation models to detect changes in flow paths in a watershed undergoing urban development. Hydrological Processes 14: 1485-1501.
– reference: Syed KH, Goodrich DC, Myers DE, Sorooshian S. 2003. Spatial characteristics of thunderstorm rainfall fields and their relation to runoff. Journal of Hydrology 271: 1-21.
– reference: Moramarco T, Melone F, Singh VP. 2005. Assessment of flooding in urbanized ungauged basins: a case study in the upper Tiber area, Italy. Hydrological Processes 19: 1909-1924.
– reference: Driver NE, Troutman BM. 1989. Regression models for estimating urban storm-runoff quality and quantity in the United States. Journal of Hydrology 109: 221-236.
– reference: Moscrip AL, Montgomery DR. 1997. Urbanization, flood frequency, and salmon abundance in Puget lowland streams. Journal of the American Water Resources Association 33: 1289-1297.
– reference: Clarke RT. 1973. A review of some mathematical models used in hydrology, with observations on their calibration and use. Journal of Hydrology 19: 1-20.
– reference: Goovaerts P. 2000. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology 228: 113-129.
– reference: Loganathan GV, Delleur JW. 1984. Effects of urbanization on frequencies of overflows and pollutant loading from storm sewer overflows: a derived distribution approach. Water Resources Research 20: 857-865.
– reference: Yue S, Hashino M. 2000. Unit hydrographs to model quick and slow runoff components of streamflow. Journal of Hydrology 227: 195-206.
– reference: Moon J, Kim J-H, Yoo C. 2004. Storm-coverage effect on dynamic flood-frequency analysis: empirical data analysis. Hydrological Processes 18: 159-178.
– reference: Jin CX. 1992. A deterministic gamma-type geomorphologic instantaneous unit hydrograph based on path types. Water Resources Research 28: 479-486.
– reference: Lebel T, Bastin G, Obled C, Creutin JD. 1987. On the accuracy of areal rainfall estimation: a case study. Water Resources Research 23: 2123-2134.
– reference: Wackernagel H. 1998. Multivariate Geostatistics. Springer-Verlag: Berlin.
– reference: Nayak PC, Sudheer KP, Ramasastri KS. 2005. Fuzzy computing based rainfall-runoff model for real time flood forecasting. Hydrological Processes 19: 955-968.
– reference: Marsalek J, Sztruhar D. 1994. Urban drainage: review of contemporary approaches. Water Science and Technology 29: 1-10.
– reference: Chow VT, Maidment DR, Mays LW. 1988. Applied Hydrology. McGraw-Hill: New York.
– reference: Lebel T, Bastin G. 1985. Variogram identification by the mean squared interpolation error method with application to hydrologic field. Journal of Hydrology 77: 31-56.
– reference: Legates DR, McCabe Jr GJ. 1999. Evaluating the use of 'goodness-of-fit' measures in hydrologic and hydroclimatic model validation. Water Resource Research 35: 233-241.
– reference: Lazaro TR. 1979. Urban Hydrology. Ann Arbor Science Publishers: Ann Arbor, MI.
– reference: Wilk J, Hughes DA. 2002. Simulating the impacts of land-use and climate change on water resource availability for a large south Indian catchment. Hydrological Sciences 47: 19-30.
– reference: Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual models: 1. A discussion of principles. Journal of Hydrology 10: 282-290.
– reference: Cheng S-J, Wang R-Y. 2002. An approach for evaluating the hydrological effects of urbanization and its application. Hydrological Processes 16: 1403-1418.
– reference: Hannah DM, Gurnell AM. 2001. A Conceptual, linear reservoir runoff model to investigate melt season changes in cirque glacier hydrology. Journal of Hydrology 246: 123-141.
– reference: Kang IS, Park JI, Singh VP. 1998. Effect of urbanization on runoff characteristics of the On-Cheon Stream watershed in Pusan, Korea. Hydrological Processes 12: 351-363.
– reference: Melone F, Corradini C, Singh VP. 1998. Simulation of the direct runoff hydrograph at basin outlet. Hydrological Processes 12: 769-779.
– reference: Agirre U, Goñi M, López JJ, Gimena FN. 2005. Application of a unit hydrograph based on subwatershed division and comparison with Nash's instantaneous unit hydrograph. Catena 64: 321-332.
– reference: Simmons DL, Reynolds RJ. 1982. Effects of urbanization on base flow of selected south-shore streams, Long Island, New York. Water Resources Bulletin 18: 797-805.
– reference: Singh RB. 1998. Land use/cover changes, extreme events and ecohydrological response in the Himalayan region. Hydrological Processes 12: 2043-2055.
– reference: Bonta JV, Amerman CR, Harlukowicz TJ, Dick WA. 1997. Impact of coal surface mining on three Ohio watersheds-surface-water hydrology. Journal of the American Water Resources Association 33: 907-917.
– reference: Changnon D, Fox D, Bork S. 1996. Differences in warm-season, rainstorm-generated stormflows for northeastern Illinois urbanized basins. Water Resources Bulletin 32: 1307-1317.
– reference: Chen RS, Pi LC, Huang YH. 2003. Analysis of rainfall-runoff relation in paddy fields by diffusive tank model. Hydrological Processes 17: 2541-2553.
– reference: Ferguson BK, Suckling PW. 1990. Changing rainfall-runoff relationships in the urbanizing Peachtree Creek watershed, Atlanta, Georgia. Water Resources Bulletin 26: 313-322.
– reference: Rodriguez F, Andrieu H, Creutin J-D. 2003. Surface runoff in urban catchments: morphological identification of unit hydrographs from urban databanks. Journal of Hydrology 283: 146-168.
– reference: Sala M, Inbar M. 1992. Some hydrologic effects of urbanization in Catalan rivers. Catena 19: 363-378.
– reference: Hsieh L-S, Wang R-Y. 1999. A semi-distributed parallel-type linear reservoir rainfall-runoff model and its application in Taiwan. Hydrological Processes 13: 1247-1268.
– reference: Beven K. 1989. Changing ideals in hydrology: the case of physically-based models. Journal of Hydrology 105: 157-172.
– reference: Leopold LB. 1991. Lag times for small drainage basins. Catena 18: 157-171.
– reference: Franchini M, O'Connell PE. 1996. An analysis of the dynamic component of the geomorphologic instantaneous unit hydrograph. Journal of Hydrology 175: 407-428.
– reference: Lee YH, Singh VP. 2005. Tank model for sediment yield. Water Resources Management 19: 349-362.
– reference: Krug WR. 1996. Simulation of temporal changes in rainfall-runoff characteristics, Coon Creek basin, Wisconsin. Water Resources Bulletin 32: 745-752.
– reference: Wong TSW, Li Y. 1999. Theoretical assessment of changes in design flood peak of an overland plane for two opposing urbanization sequences. Hydrological Processes 13: 1629-1647.
– reference: Chiles JP, Delfiner P. 1999. Geostatistics: Modeling Spatial Uncertainty. Wiley: New York.
– reference: Tsihrintzis VA, Hamid R. 1997. Urban stormwater quantity/quality modeling using the SCS method and empirical equations. Journal of the American Water Resources Association 33: 163-176.
– reference: Hollis GE. 1975. The effect of urbanization on floods of different recurrence interval. Water Resources Research 11: 431-435.
– reference: Mather AS, Needle CL, Fairbairn J. 1998. The human derivers of global land cover change: the case of forests. Hydrological Processes 12: 1983-1994.
– reference: Duan Q, Gupta VK, Sorooshian S. 1993. Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory Application 76: 501-521.
– volume: 12
  start-page: 2043
  year: 1998
  end-page: 2055
  article-title: Land use/cover changes, extreme events and ecohydrological response in the Himalayan region
  publication-title: Hydrological Processes
– volume: 33
  start-page: 907
  year: 1997
  end-page: 917
  article-title: Impact of coal surface mining on three Ohio watersheds—surface‐water hydrology
  publication-title: Journal of the American Water Resources Association
– volume: 19
  start-page: 1
  year: 1973
  end-page: 20
  article-title: A review of some mathematical models used in hydrology, with observations on their calibration and use
  publication-title: Journal of Hydrology
– start-page: 114
  year: 1958
  end-page: 121
– volume: 271
  start-page: 1
  year: 2003
  end-page: 21
  article-title: Spatial characteristics of thunderstorm rainfall fields and their relation to runoff
  publication-title: Journal of Hydrology
– volume: 11
  start-page: 431
  year: 1975
  end-page: 435
  article-title: The effect of urbanization on floods of different recurrence interval
  publication-title: Water Resources Research
– volume: 19
  start-page: 363
  year: 1992
  end-page: 378
  article-title: Some hydrologic effects of urbanization in Catalan rivers
  publication-title: Catena
– volume: 47
  start-page: 19
  year: 2002
  end-page: 30
  article-title: Simulating the impacts of land‐use and climate change on water resource availability for a large south Indian catchment
  publication-title: Hydrological Sciences
– volume: 227
  start-page: 195
  year: 2000
  end-page: 206
  article-title: Unit hydrographs to model quick and slow runoff components of streamflow
  publication-title: Journal of Hydrology
– volume: 175
  start-page: 407
  year: 1996
  end-page: 428
  article-title: An analysis of the dynamic component of the geomorphologic instantaneous unit hydrograph
  publication-title: Journal of Hydrology
– volume: 23
  start-page: 2123
  year: 1987
  end-page: 2134
  article-title: On the accuracy of areal rainfall estimation: a case study
  publication-title: Water Resources Research
– volume: 77
  start-page: 31
  year: 1985
  end-page: 56
  article-title: Variogram identification by the mean squared interpolation error method with application to hydrologic field
  publication-title: Journal of Hydrology
– volume: 32
  start-page: 1307
  year: 1996
  end-page: 1317
  article-title: Differences in warm‐season, rainstorm‐generated stormflows for northeastern Illinois urbanized basins
  publication-title: Water Resources Bulletin
– volume: 29
  start-page: 1
  year: 1994
  end-page: 10
  article-title: Urban drainage: review of contemporary approaches
  publication-title: Water Science and Technology
– volume: 33
  start-page: 1289
  year: 1997
  end-page: 1297
  article-title: Urbanization, flood frequency, and salmon abundance in Puget lowland streams
  publication-title: Journal of the American Water Resources Association
– volume: 105
  start-page: 157
  year: 1989
  end-page: 172
  article-title: Changing ideals in hydrology: the case of physically‐based models
  publication-title: Journal of Hydrology
– volume: 18
  start-page: 797
  year: 1982
  end-page: 805
  article-title: Effects of urbanization on base flow of selected south‐shore streams, Long Island, New York
  publication-title: Water Resources Bulletin
– volume: 13
  start-page: 1629
  year: 1999
  end-page: 1647
  article-title: Theoretical assessment of changes in design flood peak of an overland plane for two opposing urbanization sequences
  publication-title: Hydrological Processes
– year: 1971
– year: 1979
– volume: 10
  start-page: 282
  year: 1970
  end-page: 290
  article-title: River flow forecasting through conceptual models: 1. A discussion of principles
  publication-title: Journal of Hydrology
– volume: 228
  start-page: 113
  year: 2000
  end-page: 129
  article-title: Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall
  publication-title: Journal of Hydrology
– year: 1998
– volume: 32
  start-page: 745
  year: 1996
  end-page: 752
  article-title: Simulation of temporal changes in rainfall‐runoff characteristics, Coon Creek basin, Wisconsin
  publication-title: Water Resources Bulletin
– volume: 19
  start-page: 1909
  year: 2005
  end-page: 1924
  article-title: Assessment of flooding in urbanized ungauged basins: a case study in the upper Tiber area, Italy
  publication-title: Hydrological Processes
– volume: 17
  start-page: 2541
  year: 2003
  end-page: 2553
  article-title: Analysis of rainfall–runoff relation in paddy fields by diffusive tank model
  publication-title: Hydrological Processes
– volume: 283
  start-page: 146
  year: 2003
  end-page: 168
  article-title: Surface runoff in urban catchments: morphological identification of unit hydrographs from urban databanks
  publication-title: Journal of Hydrology
– volume: 28
  start-page: 479
  year: 1992
  end-page: 486
  article-title: A deterministic gamma‐type geomorphologic instantaneous unit hydrograph based on path types
  publication-title: Water Resources Research
– year: 1988
– volume: 26
  start-page: 313
  year: 1990
  end-page: 322
  article-title: Changing rainfall–runoff relationships in the urbanizing Peachtree Creek watershed, Atlanta, Georgia
  publication-title: Water Resources Bulletin
– volume: 109
  start-page: 221
  year: 1989
  end-page: 236
  article-title: Regression models for estimating urban storm‐runoff quality and quantity in the United States
  publication-title: Journal of Hydrology
– volume: 13
  start-page: 1247
  year: 1999
  end-page: 1268
  article-title: A semi‐distributed parallel‐type linear reservoir rainfall–runoff model and its application in Taiwan
  publication-title: Hydrological Processes
– volume: 20
  start-page: 857
  year: 1984
  end-page: 865
  article-title: Effects of urbanization on frequencies of overflows and pollutant loading from storm sewer overflows: a derived distribution approach
  publication-title: Water Resources Research
– volume: 16
  start-page: 1403
  year: 2002
  end-page: 1418
  article-title: An approach for evaluating the hydrological effects of urbanization and its application
  publication-title: Hydrological Processes
– volume: 12
  start-page: 769
  year: 1998
  end-page: 779
  article-title: Simulation of the direct runoff hydrograph at basin outlet
  publication-title: Hydrological Processes
– volume: 64
  start-page: 321
  year: 2005
  end-page: 332
  article-title: Application of a unit hydrograph based on subwatershed division and comparison with Nash's instantaneous unit hydrograph
  publication-title: Catena
– volume: 14
  start-page: 1485
  year: 2000
  end-page: 1501
  article-title: Application of alternative hydrograph separation models to detect changes in flow paths in a watershed undergoing urban development
  publication-title: Hydrological Processes
– volume: 18
  start-page: 157
  year: 1991
  end-page: 171
  article-title: Lag times for small drainage basins
  publication-title: Catena
– volume: 76
  start-page: 501
  year: 1993
  end-page: 521
  article-title: Shuffled complex evolution approach for effective and efficient global minimization
  publication-title: Journal of Optimization Theory Application
– volume: 19
  start-page: 349
  year: 2005
  end-page: 362
  article-title: Tank model for sediment yield
  publication-title: Water Resources Management
– volume: 12
  start-page: 351
  year: 1998
  end-page: 363
  article-title: Effect of urbanization on runoff characteristics of the On‐Cheon Stream watershed in Pusan, Korea
  publication-title: Hydrological Processes
– volume: 35
  start-page: 233
  year: 1999
  end-page: 241
  article-title: Evaluating the use of ‘goodness‐of‐fit’ measures in hydrologic and hydroclimatic model validation
  publication-title: Water Resource Research
– volume: 12
  start-page: 1983
  year: 1998
  end-page: 1994
  article-title: The human derivers of global land cover change: the case of forests
  publication-title: Hydrological Processes
– volume: 246
  start-page: 123
  year: 2001
  end-page: 141
  article-title: A Conceptual, linear reservoir runoff model to investigate melt season changes in cirque glacier hydrology
  publication-title: Journal of Hydrology
– volume: 33
  start-page: 163
  year: 1997
  end-page: 176
  article-title: Urban stormwater quantity/quality modeling using the SCS method and empirical equations
  publication-title: Journal of the American Water Resources Association
– year: 1999
– volume: 18
  start-page: 159
  year: 2004
  end-page: 178
  article-title: Storm‐coverage effect on dynamic flood‐frequency analysis: empirical data analysis
  publication-title: Hydrological Processes
– volume: 19
  start-page: 955
  year: 2005
  end-page: 968
  article-title: Fuzzy computing based rainfall–runoff model for real time flood forecasting
  publication-title: Hydrological Processes
– ident: e_1_2_1_25_1
  doi: 10.1029/WR023i011p02123
– ident: e_1_2_1_46_1
  doi: 10.1007/978-3-662-03550-4
– ident: e_1_2_1_32_1
– ident: e_1_2_1_6_1
  doi: 10.1002/hyp.1266
– ident: e_1_2_1_13_1
  doi: 10.1111/j.1752-1688.1990.tb01374.x
– ident: e_1_2_1_3_1
  doi: 10.1016/0022-1694(89)90101-7
– ident: e_1_2_1_4_1
  doi: 10.1111/j.1752-1688.1997.tb04114.x
– ident: e_1_2_1_26_1
  doi: 10.1007/s11269-005-7998-y
– volume-title: Applied Hydrology
  year: 1988
  ident: e_1_2_1_9_1
– ident: e_1_2_1_15_1
  doi: 10.1016/S0022-1694(00)00144-X
– ident: e_1_2_1_33_1
  doi: 10.1002/(SICI)1099-1085(19980430)12:5<769::AID-HYP624>3.0.CO;2-K
– ident: e_1_2_1_31_1
  doi: 10.1002/(SICI)1099-1085(19981030)12:13/14<1983::AID-HYP713>3.0.CO;2-M
– ident: e_1_2_1_11_1
  doi: 10.1016/0022-1694(89)90017-6
– ident: e_1_2_1_27_1
  doi: 10.1029/1998WR900018
– ident: e_1_2_1_2_1
  doi: 10.1016/j.catena.2005.08.013
– ident: e_1_2_1_35_1
  doi: 10.1002/hyp.5634
– ident: e_1_2_1_19_1
  doi: 10.1002/(SICI)1099-1085(19990615)13:8<1247::AID-HYP807>3.0.CO;2-W
– ident: e_1_2_1_28_1
  doi: 10.1016/0341-8162(91)90014-O
– ident: e_1_2_1_12_1
  doi: 10.1007/BF00939380
– ident: e_1_2_1_49_1
  doi: 10.1016/S0022-1694(99)00185-7
– ident: e_1_2_1_17_1
  doi: 10.1016/S0022-1694(01)00364-X
– ident: e_1_2_1_43_1
  doi: 10.1002/(SICI)1099-1085(19981030)12:13/14<2043::AID-HYP718>3.0.CO;2-0
– ident: e_1_2_1_10_1
  doi: 10.1016/0022-1694(73)90089-9
– ident: e_1_2_1_21_1
  doi: 10.1002/(SICI)1099-1085(199802)12:2<351::AID-HYP569>3.0.CO;2-O
– ident: e_1_2_1_5_1
  doi: 10.1111/j.1752-1688.1996.tb03499.x
– ident: e_1_2_1_39_1
  doi: 10.1002/hyp.5553
– ident: e_1_2_1_38_1
  doi: 10.1016/0022-1694(70)90255-6
– ident: e_1_2_1_20_1
  doi: 10.1029/91WR02577
– ident: e_1_2_1_29_1
  doi: 10.1029/WR020i007p00857
– ident: e_1_2_1_16_1
  doi: 10.1002/1099-1085(20000615)14:8<1485::AID-HYP988>3.0.CO;2-1
– ident: e_1_2_1_7_1
  doi: 10.1002/hyp.350
– ident: e_1_2_1_36_1
  doi: 10.1111/j.1752-1688.1997.tb03553.x
– ident: e_1_2_1_18_1
  doi: 10.1029/WR011i003p00431
– ident: e_1_2_1_40_1
  doi: 10.1016/S0022-1694(03)00246-4
– ident: e_1_2_1_48_1
  doi: 10.1002/(SICI)1099-1085(19990815)13:11<1629::AID-HYP833>3.0.CO;2-S
– start-page: 114
  volume-title: General Assembly of Toronto, 3–14 September 1957, Volume III, Surface Water, Prevision, Evaporation
  year: 1958
  ident: e_1_2_1_37_1
– ident: e_1_2_1_41_1
  doi: 10.1016/0341-8162(92)90009-Z
– ident: e_1_2_1_14_1
  doi: 10.1016/S0022-1694(96)80018-7
– ident: e_1_2_1_47_1
  doi: 10.1080/02626660209492904
– ident: e_1_2_1_44_1
  doi: 10.1016/S0022-1694(02)00311-6
– ident: e_1_2_1_45_1
  doi: 10.1111/j.1752-1688.1997.tb04093.x
– ident: e_1_2_1_8_1
  doi: 10.1002/9780470316993
– volume-title: Urban Hydrology
  year: 1979
  ident: e_1_2_1_23_1
– ident: e_1_2_1_24_1
  doi: 10.1016/0022-1694(85)90196-9
– volume: 29
  start-page: 1
  year: 1994
  ident: e_1_2_1_30_1
  article-title: Urban drainage: review of contemporary approaches
  publication-title: Water Science and Technology
  doi: 10.2166/wst.1994.0645
– ident: e_1_2_1_34_1
  doi: 10.1002/hyp.1303
– ident: e_1_2_1_42_1
  doi: 10.1111/j.1752-1688.1982.tb00075.x
– ident: e_1_2_1_22_1
  doi: 10.1111/j.1752-1688.1996.tb03471.x
SSID ssj0004080
Score 2.2205734
Snippet An increasing impervious area is quickly extending over the Wu‐Tu watershed due to the endless demands of the people. Generally, impervious paving is a major...
An increasing impervious area is quickly extending over the Wu-Tu watershed due to the endless demands of the people. Generally, impervious paving is a major...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2075
SubjectTerms block kriging
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
engineers
equations
Exact sciences and technology
flood modelling
floods
Freshwater
hydraulic structures
Hydrology
Hydrology. Hydrogeology
kriging
Natural hazards: prediction, damages, etc
NLP
peak flow
regression analysis
SCS
storms
time to peak
urbanization
watersheds
Title Effect of growing watershed imperviousness on hydrograph parameters and peak discharge
URI https://api.istex.fr/ark:/67375/WNG-72DX4S8Q-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.6807
https://www.proquest.com/docview/21077057
https://www.proquest.com/docview/33562562
https://www.proquest.com/docview/47671029
Volume 22
WOSCitedRecordID wos000257090200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1085
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004080
  issn: 0885-6087
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-hFgle-BigdRvDkxA8hTmOGyeP07ZuEqgaG4PyZNmJTadBWjUtW__73SVpRyUqIfGUPJwl5873Fd_9DuBtzo3BMMMFeDpsgAYvDAwPPb5JG4ZOGJuYatiE6veTwSA9a6oqqRemxodY_nAjzajsNSm4seX-PWjocD7-ECfUSN4WeGxlC9pH573LT_ddkbyam4Zq1A1inqgF9CwX-4u1K86oTXy9peJIUyJ_fD3YYiXy_DN-rRxQ7-n_bP0ZPGnCTnZQn5Pn8MAVG_ComYA-nL-ArzWMMRt59gMzc3Ro7MYQ8ubQ5ewKY2s0KaNZSYaRjQo2nOeTei0j8PBfVFRTMlPkbOzMNaNeX4Jgci_hsnf85fA0aGYuBBn6ahUIm1iZq0hmSljuI9V1PpWZtzZGueVhZCNuM7o89XHsU8uTVIRWGcyqnKdc7RW0ilHhNoFJb7LQ55JbJVHwnuyudypLUooafd6B9wvm66wBJKe5GD91DaUsNPJJE586sLekHNcgHH-heVfJb0lgJtdUtKa6-lv_RCtxNJAXyWf9sQO7KwJeLhBchhyddQfeLCSuUdfoAsUUDlmsMT1WCgPc9RRRRAllLNZTSBVTUJfifqsjsvaD9On3M3pu_SvhNjyui1momHEHWtPJzL2Gh9nv6VU52W204w6e0xV6
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9NLdJ4gfElymAzEoKnMMdx40Q8IUZXtFIN2KA8WXZi02ksrdoN6H-_u3x0q0QlJJ6Sh7Pk3PfF598BvMi5MZhmuAC1wwbo8MLA8NDjm7Rh6ISxiSmHTajhMBmN0qMNeNPchanwIZY_3MgySn9NBk4_pPeuUUPHi-nrOKGb5G2JWtRtQXv_c-9kcH0tkpeD09COukHME9Vgz3Kx16xdiUZtYuwf6o40c2SQryZbrKSeNxPYMgL17v7X3rfgTp14sreVptyDDVfch816Bvp48QC-VkDGbOLZD6zNMaSx34awN8cuZ6eYXaNTmVzOyTWyScHGi3xWrWUEH35ObTVzZoqcTZ05Y3Tbl0CY3EM46b0_ftcP6qkLQYbRWgXCJlbmKpKZEpb7SHWdT2XmrY1RcnkY2YjbjI5PfRz71PIkFaFVBusq56laewStYlK4x8CkN1noc8mtkih6T57XO5UlKeWNPu_Aq4b7OqshyWkyxk9dgSkLjXzSxKcOPF9STisYjr_QvCwFuCQwszNqW1Nd_W14oJXYH8kvySd92IGdFQkvFwguQ47hugO7jcg1WhsdoZjCIYs1FshKYYq7niKKqKSMxXoKqWJK61Lcb6kjaz9I978f0fPJvxLuwmb_-ONADz4MD7fhdtXaQq2NT6F1Mbt0z-BW9uvidD7bqU3lCiYIGWo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5VDQIuvBHh0RoJwWmp1-usd8UJEUJRqyg8CuFk2Wu7qVo2UdIC-ffM7CMlEpGQOO0expJ3xvNaz3wD8MxxYzDM8BGeDhuhwYsjw-OAb9LGsRfGZqYaNqGGw2w8zkdb8KrthanxIVY_3EgzKntNCu5nLuxdooZOlrOXaUad5B3Zy1PUyk7_4-Do8LItkleD01CPelHKM9Viz3Kx165d80YdYuwvqo40C2RQqCdbrIWefwawlQca3Pyvvd-CG03gyV7XJ-U2bPnyDlxrZqBPlnfhSw1kzKaBHWNuji6N_TSEvTnxjp1gdI1GZXqxINPIpiWbLN28XssIPvw7ldUsmCkdm3lzyqjbl0CY_D04Grz9_GY_aqYuRAV6axUJm1npVCILJSwPier5kMsiWJui5Fyc2ITbgq5PQ5qG3PIsF7FVBvMqHyhbuw_b5bT0D4DJYIo4OMmtkij6QJY3eFVkOcWNwXXhRct9XTSQ5DQZ40zXYMpCI5808akLT1eUsxqG4y80zysBrgjM_JTK1lRPfx2-00r0x_JT9kEfdGFnTcKrBYLLmKO77sJuK3KN2kZXKKb0yGKNCbJSGOJupkgSSilTsZlCqpTCuhz3W52RjR-k97-N6PnwXwl34eqoP9CH74cHj-B6XdlClY2PYft8fuGfwJXix_nJYr7TaMpvjmsY5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+growing+watershed+imperviousness+on+hydrograph+parameters+and+peak+discharge&rft.jtitle=Hydrological+processes&rft.au=Huang%2C+Huang%E2%80%90jia&rft.au=Cheng%2C+Shin%E2%80%90jen&rft.au=Wen%2C+Jet%E2%80%90chau&rft.au=Lee%2C+Ju%E2%80%90huang&rft.date=2008-06-30&rft.issn=0885-6087&rft.eissn=1099-1085&rft.volume=22&rft.issue=13&rft.spage=2075&rft.epage=2085&rft_id=info:doi/10.1002%2Fhyp.6807&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hyp_6807
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon