Effect of growing watershed imperviousness on hydrograph parameters and peak discharge
An increasing impervious area is quickly extending over the Wu‐Tu watershed due to the endless demands of the people. Generally, impervious paving is a major result of urbanization and more recently has had the potential to produce more enormous flood disasters than those of the past. In this study,...
Uložené v:
| Vydané v: | Hydrological processes Ročník 22; číslo 13; s. 2075 - 2085 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Chichester, UK
John Wiley & Sons, Ltd
30.06.2008
Wiley |
| Predmet: | |
| ISSN: | 0885-6087, 1099-1085 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | An increasing impervious area is quickly extending over the Wu‐Tu watershed due to the endless demands of the people. Generally, impervious paving is a major result of urbanization and more recently has had the potential to produce more enormous flood disasters than those of the past. In this study, 40 available rainfall–runoff events were chosen to calibrate the applicable parameters of the models and to determine the relationships between the impervious surfaces and the calibrated parameters. Model inputs came from the outcomes of the block kriging method and the non‐linear programming method. In the optimal process, the shuffled complex evolution method and three criteria were applied to compare the observed and simulated hydrographs. The tendencies of the variations of the parameters with their corresponding imperviousness were established through regression analysis. Ten cases were used to examine the established equations of the parameters and impervious covers. Finally, the design flood routines of various return periods were furnished through use of approaches containing a design storm, block kriging, the SCS model, and a rainfall‐runoff model with established functional relationships. These simulated flood hydrographs were used to compare and understand the past, present, and future hydrological conditions of the watershed studied. In the research results, the time to peak of flood hydrographs for various storms was diminished approximately from 11 h to 6 h in different decrements, whereas peak flow increased respectively from 127 m3 s−1 to 629 m3 s−1 for different storm intensities. In addition, this study provides a design diagram for the peak flow ratio to help engineers and designers to construct hydraulic structures efficiently and prevent possible damage to human life and property. Copyright © 2007 John Wiley & Sons, Ltd. |
|---|---|
| AbstractList | An increasing impervious area is quickly extending over the Wu‐Tu watershed due to the endless demands of the people. Generally, impervious paving is a major result of urbanization and more recently has had the potential to produce more enormous flood disasters than those of the past. In this study, 40 available rainfall–runoff events were chosen to calibrate the applicable parameters of the models and to determine the relationships between the impervious surfaces and the calibrated parameters. Model inputs came from the outcomes of the block kriging method and the non‐linear programming method. In the optimal process, the shuffled complex evolution method and three criteria were applied to compare the observed and simulated hydrographs. The tendencies of the variations of the parameters with their corresponding imperviousness were established through regression analysis. Ten cases were used to examine the established equations of the parameters and impervious covers. Finally, the design flood routines of various return periods were furnished through use of approaches containing a design storm, block kriging, the SCS model, and a rainfall‐runoff model with established functional relationships. These simulated flood hydrographs were used to compare and understand the past, present, and future hydrological conditions of the watershed studied. In the research results, the time to peak of flood hydrographs for various storms was diminished approximately from 11 h to 6 h in different decrements, whereas peak flow increased respectively from 127 m3 s−1 to 629 m3 s−1 for different storm intensities. In addition, this study provides a design diagram for the peak flow ratio to help engineers and designers to construct hydraulic structures efficiently and prevent possible damage to human life and property. Copyright © 2007 John Wiley & Sons, Ltd. An increasing impervious area is quickly extending over the Wu-Tu watershed due to the endless demands of the people. Generally, impervious paving is a major result of urbanization and more recently has had the potential to produce more enormous flood disasters than those of the past. In this study, 40 available rainfall-runoff events were chosen to calibrate the applicable parameters of the models and to determine the relationships between the impervious surfaces and the calibrated parameters. Model inputs came from the outcomes of the block kriging method and the non-linear programming method. In the optimal process, the shuffled complex evolution method and three criteria were applied to compare the observed and simulated hydrographs. The tendencies of the variations of the parameters with their corresponding imperviousness were established through regression analysis. Ten cases were used to examine the established equations of the parameters and impervious covers. Finally, the design flood routines of various return periods were furnished through use of approaches containing a design storm, block kriging, the SCS model, and a rainfall-runoff model with established functional relationships. These simulated flood hydrographs were used to compare and understand the past, present, and future hydrological conditions of the watershed studied. In the research results, the time to peak of flood hydrographs for various storms was diminished approximately from 11 h to 6 h in different decrements, whereas peak flow increased respectively from 127 m3 s-1 to 629 m3 s-1 for different storm intensities. In addition, this study provides a design diagram for the peak flow ratio to help engineers and designers to construct hydraulic structures efficiently and prevent possible damage to human life and property. An increasing impervious area is quickly extending over the Wu-Tu watershed due to the endless demands of the people. Generally, impervious paving is a major result of urbanization and more recently has had the potential to produce more enormous flood disasters than those of the past. In this study, 40 available rainfall-runoff events were chosen to calibrate the applicable parameters of the models and to determine the relationships between the impervious surfaces and the calibrated parameters. Model inputs came from the outcomes of the block kriging method and the non-linear programming method. In the optimal process, the shuffled complex evolution method and three criteria were applied to compare the observed and simulated hydrographs. The tendencies of the variations of the parameters with their corresponding imperviousness were established through regression analysis. Ten cases were used to examine the established equations of the parameters and impervious covers. Finally, the design flood routines of various return periods were furnished through use of approaches containing a design storm, block kriging, the SCS model, and a rainfall-runoff model with established functional relationships. These simulated flood hydrographs were used to compare and understand the past, present, and future hydrological conditions of the watershed studied. In the research results, the time to peak of flood hydrographs for various storms was diminished approximately from 11 h to 6 h in different decrements, whereas peak flow increased respectively from 127 m³ s⁻¹ to 629 m³ s⁻¹ for different storm intensities. In addition, this study provides a design diagram for the peak flow ratio to help engineers and designers to construct hydraulic structures efficiently and prevent possible damage to human life and property. An increasing impervious area is quickly extending over the Wu‐Tu watershed due to the endless demands of the people. Generally, impervious paving is a major result of urbanization and more recently has had the potential to produce more enormous flood disasters than those of the past. In this study, 40 available rainfall–runoff events were chosen to calibrate the applicable parameters of the models and to determine the relationships between the impervious surfaces and the calibrated parameters. Model inputs came from the outcomes of the block kriging method and the non‐linear programming method. In the optimal process, the shuffled complex evolution method and three criteria were applied to compare the observed and simulated hydrographs. The tendencies of the variations of the parameters with their corresponding imperviousness were established through regression analysis. Ten cases were used to examine the established equations of the parameters and impervious covers. Finally, the design flood routines of various return periods were furnished through use of approaches containing a design storm, block kriging, the SCS model, and a rainfall‐runoff model with established functional relationships. These simulated flood hydrographs were used to compare and understand the past, present, and future hydrological conditions of the watershed studied. In the research results, the time to peak of flood hydrographs for various storms was diminished approximately from 11 h to 6 h in different decrements, whereas peak flow increased respectively from 127 m 3 s −1 to 629 m 3 s −1 for different storm intensities. In addition, this study provides a design diagram for the peak flow ratio to help engineers and designers to construct hydraulic structures efficiently and prevent possible damage to human life and property. Copyright © 2007 John Wiley & Sons, Ltd. |
| Author | Cheng, Shin-jen Lee, Ju-huang Huang, Huang-jia Wen, Jet-chau |
| Author_xml | – sequence: 1 givenname: Huang-jia surname: Huang fullname: Huang, Huang-jia organization: Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology, Yunlin, Taiwan, ROC – sequence: 2 givenname: Shin-jen surname: Cheng fullname: Cheng, Shin-jen email: sjcheng@mail.dwu.edu.tw. organization: Department of Environment and Resources Engineering, Diwan University, Tainan, Taiwan, ROC – sequence: 3 givenname: Jet-chau surname: Wen fullname: Wen, Jet-chau organization: Department of Safety Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, Taiwan, ROC – sequence: 4 givenname: Ju-huang surname: Lee fullname: Lee, Ju-huang organization: Water Resources Agency, Ministry of Economic Affairs, Taipei, Taiwan, ROC |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20410847$$DView record in Pascal Francis |
| BookMark | eNqF0VtrFDEUB_AgFdxWwY-QF8WXWU8uM8k8Sq1tafGC96eQZJKd2Nlkmkxd99s7y1ZBUQoHzsvvHA7nf4gOYooOoccElgSAPu-347KRIO6hBYG2rQjI-gAtQMq6akCKB-iwlG8AwEHCAn068d7ZCSePVzltQlzhjZ5cLr3rcFiPLn8P6aZEVwpOEffbLqdV1mOPR5312u0o1rHDo9NXuAvF9jqv3EN03-uhuEe3_Qh9fHXy4fisunxzen784rKynDaiokYa3gnGraAGPBO18y233piGatMRZhgY27Ja-qbxrQHZUmKEJlw6z4GwI_R0v3fM6frGlUmt5xPcMOjo5rMVF40gQNs7IWN1Q-e6E1ICQkAtZvjkFupi9eCzjjYUNeaw1nmrKPD59XznlntncyolO69smPQUUpyyDoMioHbBqTk4tQtuHnj218Cvnf-g1Z5uwuC2_3Xq7OvbP30ok_vx2-t8pRoxf199fn2qBH35hb-X79QF-wldLrjG |
| CODEN | HYPRE3 |
| CitedBy_id | crossref_primary_10_1007_s11069_010_9589_3 crossref_primary_10_2166_nh_2017_249 crossref_primary_10_1111_1752_1688_13073 crossref_primary_10_1007_s11269_011_9898_7 crossref_primary_10_3390_hydrology8020093 crossref_primary_10_1016_j_jhydrol_2014_01_066 crossref_primary_10_1016_j_scitotenv_2018_06_211 crossref_primary_10_2166_ws_2019_064 crossref_primary_10_1016_j_jag_2014_01_002 crossref_primary_10_3390_land12122163 crossref_primary_10_3390_rs14236129 crossref_primary_10_1061__ASCE_WR_1943_5452_0001144 crossref_primary_10_1016_j_jhydrol_2020_125051 crossref_primary_10_1007_s11368_016_1386_5 crossref_primary_10_1016_j_jclepro_2022_130992 crossref_primary_10_1007_s00704_023_04703_x crossref_primary_10_1061__ASCE_HE_1943_5584_0000675 crossref_primary_10_3390_w12061572 crossref_primary_10_1007_s12517_018_3569_4 crossref_primary_10_1016_j_ancene_2023_100371 crossref_primary_10_1002_hyp_9819 crossref_primary_10_3390_w11061273 crossref_primary_10_5194_hess_22_417_2018 crossref_primary_10_1016_j_jhydrol_2012_12_040 crossref_primary_10_1007_s12040_020_01532_8 crossref_primary_10_1016_j_jhydrol_2017_09_002 crossref_primary_10_1080_02626667_2012_685171 crossref_primary_10_1007_s00267_020_01339_9 crossref_primary_10_1016_j_jhydrol_2008_09_002 crossref_primary_10_1080_1573062X_2013_857420 crossref_primary_10_1016_j_jhydrol_2009_12_043 crossref_primary_10_1080_1573062X_2018_1508597 crossref_primary_10_1007_s11269_015_1014_y crossref_primary_10_5194_hess_21_1991_2017 crossref_primary_10_3390_w12051386 crossref_primary_10_1007_s10346_019_01167_x crossref_primary_10_1016_j_jhydrol_2018_07_033 crossref_primary_10_1080_02626667_2011_637044 crossref_primary_10_3390_land9010017 crossref_primary_10_3390_w15010166 crossref_primary_10_1016_j_jhydrol_2018_02_064 crossref_primary_10_1111_j_1752_1688_2010_00484_x crossref_primary_10_1016_j_advwatres_2012_09_001 crossref_primary_10_1016_j_scitotenv_2016_04_135 crossref_primary_10_1007_s11269_010_9621_0 crossref_primary_10_1002_hyp_13141 crossref_primary_10_1007_s00267_012_0004_6 crossref_primary_10_1016_j_jhydrol_2014_04_011 crossref_primary_10_1016_j_catena_2017_05_002 crossref_primary_10_3390_w12071958 crossref_primary_10_3390_w15173068 crossref_primary_10_1016_j_jhydrol_2014_04_019 crossref_primary_10_1007_s12517_018_3952_1 crossref_primary_10_1002_wwp2_12186 crossref_primary_10_1016_j_ecohyd_2023_06_001 crossref_primary_10_1016_j_jhydrol_2015_07_020 crossref_primary_10_1007_s11069_014_1220_6 crossref_primary_10_3390_w12071870 crossref_primary_10_1007_s13201_021_01547_6 crossref_primary_10_1016_j_jhydrol_2012_06_057 crossref_primary_10_1007_s11069_022_05250_w crossref_primary_10_2980_15_2_3054 crossref_primary_10_1016_j_jhydrol_2014_12_008 crossref_primary_10_1007_s11269_009_9471_9 crossref_primary_10_1007_s40808_024_01998_1 crossref_primary_10_1007_s11069_010_9596_4 crossref_primary_10_3390_w12051280 crossref_primary_10_1002_hyp_10974 crossref_primary_10_1002_hyp_7699 crossref_primary_10_1088_1755_1315_945_1_012046 crossref_primary_10_1016_j_envpol_2022_120200 crossref_primary_10_1111_jfr3_12651 crossref_primary_10_5004_dwt_2019_24359 crossref_primary_10_1061__ASCE_WR_1943_5452_0000859 crossref_primary_10_1080_02626667_2014_910305 crossref_primary_10_3390_land12112072 crossref_primary_10_1002_hyp_10057 crossref_primary_10_1111_j_1752_1688_2010_00487_x crossref_primary_10_3390_w12082205 crossref_primary_10_1002_hyp_10290 crossref_primary_10_1080_1573062X_2022_2044495 crossref_primary_10_1080_21683565_2018_1437497 crossref_primary_10_1080_1573062X_2020_1811881 crossref_primary_10_3390_infrastructures4030048 crossref_primary_10_2166_wcc_2016_017 crossref_primary_10_1155_2018_6241892 |
| Cites_doi | 10.1029/WR023i011p02123 10.1007/978-3-662-03550-4 10.1002/hyp.1266 10.1111/j.1752-1688.1990.tb01374.x 10.1016/0022-1694(89)90101-7 10.1111/j.1752-1688.1997.tb04114.x 10.1007/s11269-005-7998-y 10.1016/S0022-1694(00)00144-X 10.1002/(SICI)1099-1085(19980430)12:5<769::AID-HYP624>3.0.CO;2-K 10.1002/(SICI)1099-1085(19981030)12:13/14<1983::AID-HYP713>3.0.CO;2-M 10.1016/0022-1694(89)90017-6 10.1029/1998WR900018 10.1016/j.catena.2005.08.013 10.1002/hyp.5634 10.1002/(SICI)1099-1085(19990615)13:8<1247::AID-HYP807>3.0.CO;2-W 10.1016/0341-8162(91)90014-O 10.1007/BF00939380 10.1016/S0022-1694(99)00185-7 10.1016/S0022-1694(01)00364-X 10.1002/(SICI)1099-1085(19981030)12:13/14<2043::AID-HYP718>3.0.CO;2-0 10.1016/0022-1694(73)90089-9 10.1002/(SICI)1099-1085(199802)12:2<351::AID-HYP569>3.0.CO;2-O 10.1111/j.1752-1688.1996.tb03499.x 10.1002/hyp.5553 10.1016/0022-1694(70)90255-6 10.1029/91WR02577 10.1029/WR020i007p00857 10.1002/1099-1085(20000615)14:8<1485::AID-HYP988>3.0.CO;2-1 10.1002/hyp.350 10.1111/j.1752-1688.1997.tb03553.x 10.1029/WR011i003p00431 10.1016/S0022-1694(03)00246-4 10.1002/(SICI)1099-1085(19990815)13:11<1629::AID-HYP833>3.0.CO;2-S 10.1016/0341-8162(92)90009-Z 10.1016/S0022-1694(96)80018-7 10.1080/02626660209492904 10.1016/S0022-1694(02)00311-6 10.1111/j.1752-1688.1997.tb04093.x 10.1002/9780470316993 10.1016/0022-1694(85)90196-9 10.2166/wst.1994.0645 10.1002/hyp.1303 10.1111/j.1752-1688.1982.tb00075.x 10.1111/j.1752-1688.1996.tb03471.x |
| ContentType | Journal Article |
| Copyright | Copyright © 2007 John Wiley & Sons, Ltd. 2008 INIST-CNRS |
| Copyright_xml | – notice: Copyright © 2007 John Wiley & Sons, Ltd. – notice: 2008 INIST-CNRS |
| DBID | BSCLL AAYXX CITATION IQODW 7ST 7TG 7U6 7UA C1K F1W H96 KL. L.G SOI 8FD FR3 KR7 7S9 L.6 |
| DOI | 10.1002/hyp.6807 |
| DatabaseName | Istex CrossRef Pascal-Francis Environment Abstracts Meteorological & Geoastrophysical Abstracts Sustainability Science Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Sustainability Science Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management Technology Research Database Civil Engineering Abstracts Engineering Research Database AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA Technology Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1099-1085 |
| EndPage | 2085 |
| ExternalDocumentID | 20410847 10_1002_hyp_6807 HYP6807 ark_67375_WNG_72DX4S8Q_K |
| Genre | article |
| GeographicLocations | Far East Asia Taiwan |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~KM ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALUQN RWI WRC WWD AAYXX CITATION O8X ABEML ACSCC AGHNM AI. DDYGU HF~ IQODW M62 RIWAO RJQFR SAMSI VH1 ZY4 7ST 7TG 7U6 7UA C1K F1W H96 KL. L.G SOI 8FD FR3 KR7 7S9 L.6 |
| ID | FETCH-LOGICAL-c4267-2b8b4d734c72b0f375ef94cfbb62abd13b30bc9358f66f9b08921b7a148ef4013 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 86 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000257090200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-6087 |
| IngestDate | Thu Oct 02 11:11:00 EDT 2025 Fri Jul 11 16:41:47 EDT 2025 Tue Oct 07 10:00:20 EDT 2025 Mon Jul 21 09:15:45 EDT 2025 Tue Nov 18 22:32:19 EST 2025 Sat Nov 29 03:25:04 EST 2025 Wed Jan 22 16:33:10 EST 2025 Tue Nov 11 03:32:24 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Keywords | floods damage SCS peak flow urban environment kriging regression analysis rain water linear programming block kriging drainage basins hydraulics NLP discharge flow models rainfall river discharge runoff urban areas urbanization surface water flood modelling time to peak hydrographs storms |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4267-2b8b4d734c72b0f375ef94cfbb62abd13b30bc9358f66f9b08921b7a148ef4013 |
| Notes | ark:/67375/WNG-72DX4S8Q-K istex:AF578B55D8C3557BD2A98C57657A5278049F788F ArticleID:HYP6807 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| PQID | 21077057 |
| PQPubID | 23462 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_47671029 proquest_miscellaneous_33562562 proquest_miscellaneous_21077057 pascalfrancis_primary_20410847 crossref_citationtrail_10_1002_hyp_6807 crossref_primary_10_1002_hyp_6807 wiley_primary_10_1002_hyp_6807_HYP6807 istex_primary_ark_67375_WNG_72DX4S8Q_K |
| PublicationCentury | 2000 |
| PublicationDate | 30 June 2008 |
| PublicationDateYYYYMMDD | 2008-06-30 |
| PublicationDate_xml | – month: 06 year: 2008 text: 30 June 2008 day: 30 |
| PublicationDecade | 2000 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: Chichester |
| PublicationTitle | Hydrological processes |
| PublicationTitleAlternate | Hydrol. Process |
| PublicationYear | 2008 |
| Publisher | John Wiley & Sons, Ltd Wiley |
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley |
| References | Chow VT, Maidment DR, Mays LW. 1988. Applied Hydrology. McGraw-Hill: New York. Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual models: 1. A discussion of principles. Journal of Hydrology 10: 282-290. Simmons DL, Reynolds RJ. 1982. Effects of urbanization on base flow of selected south-shore streams, Long Island, New York. Water Resources Bulletin 18: 797-805. Kang IS, Park JI, Singh VP. 1998. Effect of urbanization on runoff characteristics of the On-Cheon Stream watershed in Pusan, Korea. Hydrological Processes 12: 351-363. Clarke RT. 1973. A review of some mathematical models used in hydrology, with observations on their calibration and use. Journal of Hydrology 19: 1-20. Yue S, Hashino M. 2000. Unit hydrographs to model quick and slow runoff components of streamflow. Journal of Hydrology 227: 195-206. Legates DR, McCabe Jr GJ. 1999. Evaluating the use of 'goodness-of-fit' measures in hydrologic and hydroclimatic model validation. Water Resource Research 35: 233-241. Syed KH, Goodrich DC, Myers DE, Sorooshian S. 2003. Spatial characteristics of thunderstorm rainfall fields and their relation to runoff. Journal of Hydrology 271: 1-21. Goovaerts P. 2000. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology 228: 113-129. Mather AS, Needle CL, Fairbairn J. 1998. The human derivers of global land cover change: the case of forests. Hydrological Processes 12: 1983-1994. Wackernagel H. 1998. Multivariate Geostatistics. Springer-Verlag: Berlin. Rodriguez F, Andrieu H, Creutin J-D. 2003. Surface runoff in urban catchments: morphological identification of unit hydrographs from urban databanks. Journal of Hydrology 283: 146-168. Beven K. 1989. Changing ideals in hydrology: the case of physically-based models. Journal of Hydrology 105: 157-172. Agirre U, Goñi M, López JJ, Gimena FN. 2005. Application of a unit hydrograph based on subwatershed division and comparison with Nash's instantaneous unit hydrograph. Catena 64: 321-332. Franchini M, O'Connell PE. 1996. An analysis of the dynamic component of the geomorphologic instantaneous unit hydrograph. Journal of Hydrology 175: 407-428. Lee YH, Singh VP. 2005. Tank model for sediment yield. Water Resources Management 19: 349-362. Moscrip AL, Montgomery DR. 1997. Urbanization, flood frequency, and salmon abundance in Puget lowland streams. Journal of the American Water Resources Association 33: 1289-1297. Cheng S-J, Wang R-Y. 2002. An approach for evaluating the hydrological effects of urbanization and its application. Hydrological Processes 16: 1403-1418. Hollis GE. 1975. The effect of urbanization on floods of different recurrence interval. Water Resources Research 11: 431-435. Changnon D, Fox D, Bork S. 1996. Differences in warm-season, rainstorm-generated stormflows for northeastern Illinois urbanized basins. Water Resources Bulletin 32: 1307-1317. Lazaro TR. 1979. Urban Hydrology. Ann Arbor Science Publishers: Ann Arbor, MI. Singh RB. 1998. Land use/cover changes, extreme events and ecohydrological response in the Himalayan region. Hydrological Processes 12: 2043-2055. Hannah DM, Gurnell AM. 2001. A Conceptual, linear reservoir runoff model to investigate melt season changes in cirque glacier hydrology. Journal of Hydrology 246: 123-141. Hsieh L-S, Wang R-Y. 1999. A semi-distributed parallel-type linear reservoir rainfall-runoff model and its application in Taiwan. Hydrological Processes 13: 1247-1268. Marsalek J, Sztruhar D. 1994. Urban drainage: review of contemporary approaches. Water Science and Technology 29: 1-10. Moramarco T, Melone F, Singh VP. 2005. Assessment of flooding in urbanized ungauged basins: a case study in the upper Tiber area, Italy. Hydrological Processes 19: 1909-1924. Driver NE, Troutman BM. 1989. Regression models for estimating urban storm-runoff quality and quantity in the United States. Journal of Hydrology 109: 221-236. Krug WR. 1996. Simulation of temporal changes in rainfall-runoff characteristics, Coon Creek basin, Wisconsin. Water Resources Bulletin 32: 745-752. Lebel T, Bastin G. 1985. Variogram identification by the mean squared interpolation error method with application to hydrologic field. Journal of Hydrology 77: 31-56. Wong TSW, Li Y. 1999. Theoretical assessment of changes in design flood peak of an overland plane for two opposing urbanization sequences. Hydrological Processes 13: 1629-1647. Chen RS, Pi LC, Huang YH. 2003. Analysis of rainfall-runoff relation in paddy fields by diffusive tank model. Hydrological Processes 17: 2541-2553. Jin CX. 1992. A deterministic gamma-type geomorphologic instantaneous unit hydrograph based on path types. Water Resources Research 28: 479-486. Sala M, Inbar M. 1992. Some hydrologic effects of urbanization in Catalan rivers. Catena 19: 363-378. Wilk J, Hughes DA. 2002. Simulating the impacts of land-use and climate change on water resource availability for a large south Indian catchment. Hydrological Sciences 47: 19-30. Melone F, Corradini C, Singh VP. 1998. Simulation of the direct runoff hydrograph at basin outlet. Hydrological Processes 12: 769-779. Nayak PC, Sudheer KP, Ramasastri KS. 2005. Fuzzy computing based rainfall-runoff model for real time flood forecasting. Hydrological Processes 19: 955-968. Leopold LB. 1991. Lag times for small drainage basins. Catena 18: 157-171. Gremillion P, Gonyeau A, Wanielista M. 2000. Application of alternative hydrograph separation models to detect changes in flow paths in a watershed undergoing urban development. Hydrological Processes 14: 1485-1501. Bonta JV, Amerman CR, Harlukowicz TJ, Dick WA. 1997. Impact of coal surface mining on three Ohio watersheds-surface-water hydrology. Journal of the American Water Resources Association 33: 907-917. Moon J, Kim J-H, Yoo C. 2004. Storm-coverage effect on dynamic flood-frequency analysis: empirical data analysis. Hydrological Processes 18: 159-178. Loganathan GV, Delleur JW. 1984. Effects of urbanization on frequencies of overflows and pollutant loading from storm sewer overflows: a derived distribution approach. Water Resources Research 20: 857-865. Ferguson BK, Suckling PW. 1990. Changing rainfall-runoff relationships in the urbanizing Peachtree Creek watershed, Atlanta, Georgia. Water Resources Bulletin 26: 313-322. Tsihrintzis VA, Hamid R. 1997. Urban stormwater quantity/quality modeling using the SCS method and empirical equations. Journal of the American Water Resources Association 33: 163-176. Chiles JP, Delfiner P. 1999. Geostatistics: Modeling Spatial Uncertainty. Wiley: New York. Duan Q, Gupta VK, Sorooshian S. 1993. Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory Application 76: 501-521. Lebel T, Bastin G, Obled C, Creutin JD. 1987. On the accuracy of areal rainfall estimation: a case study. Water Resources Research 23: 2123-2134. 2002; 16 1991; 18 1984; 20 1982; 18 1973; 19 1998 2003; 271 2005; 64 1970; 10 1992; 19 2003; 17 1971 1975; 11 1994; 29 1996; 32 1958 2001; 246 1979 1999 1989; 109 2002; 47 1987; 23 1989; 105 2005; 19 1997; 33 1990; 26 2000; 14 2004; 18 2000; 227 1993; 76 2000; 228 1999; 13 1992; 28 1999; 35 2003; 283 1996; 175 1985; 77 1998; 12 1988 Nash JE (e_1_2_1_37_1) 1958 Marsalek J (e_1_2_1_30_1) 1994; 29 e_1_2_1_42_1 e_1_2_1_20_1 e_1_2_1_41_1 e_1_2_1_40_1 e_1_2_1_46_1 e_1_2_1_24_1 e_1_2_1_45_1 e_1_2_1_21_1 e_1_2_1_44_1 e_1_2_1_22_1 e_1_2_1_43_1 e_1_2_1_27_1 e_1_2_1_28_1 e_1_2_1_49_1 e_1_2_1_25_1 e_1_2_1_48_1 e_1_2_1_26_1 e_1_2_1_47_1 Chow VT (e_1_2_1_9_1) 1988 e_1_2_1_29_1 Lazaro TR (e_1_2_1_23_1) 1979 e_1_2_1_7_1 e_1_2_1_31_1 e_1_2_1_8_1 e_1_2_1_5_1 e_1_2_1_6_1 e_1_2_1_3_1 e_1_2_1_12_1 e_1_2_1_35_1 e_1_2_1_4_1 e_1_2_1_13_1 e_1_2_1_34_1 e_1_2_1_10_1 e_1_2_1_33_1 e_1_2_1_2_1 e_1_2_1_11_1 e_1_2_1_32_1 e_1_2_1_16_1 e_1_2_1_39_1 e_1_2_1_17_1 e_1_2_1_38_1 e_1_2_1_14_1 e_1_2_1_15_1 e_1_2_1_36_1 e_1_2_1_18_1 e_1_2_1_19_1 |
| References_xml | – reference: Gremillion P, Gonyeau A, Wanielista M. 2000. Application of alternative hydrograph separation models to detect changes in flow paths in a watershed undergoing urban development. Hydrological Processes 14: 1485-1501. – reference: Syed KH, Goodrich DC, Myers DE, Sorooshian S. 2003. Spatial characteristics of thunderstorm rainfall fields and their relation to runoff. Journal of Hydrology 271: 1-21. – reference: Moramarco T, Melone F, Singh VP. 2005. Assessment of flooding in urbanized ungauged basins: a case study in the upper Tiber area, Italy. Hydrological Processes 19: 1909-1924. – reference: Driver NE, Troutman BM. 1989. Regression models for estimating urban storm-runoff quality and quantity in the United States. Journal of Hydrology 109: 221-236. – reference: Moscrip AL, Montgomery DR. 1997. Urbanization, flood frequency, and salmon abundance in Puget lowland streams. Journal of the American Water Resources Association 33: 1289-1297. – reference: Clarke RT. 1973. A review of some mathematical models used in hydrology, with observations on their calibration and use. Journal of Hydrology 19: 1-20. – reference: Goovaerts P. 2000. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology 228: 113-129. – reference: Loganathan GV, Delleur JW. 1984. Effects of urbanization on frequencies of overflows and pollutant loading from storm sewer overflows: a derived distribution approach. Water Resources Research 20: 857-865. – reference: Yue S, Hashino M. 2000. Unit hydrographs to model quick and slow runoff components of streamflow. Journal of Hydrology 227: 195-206. – reference: Moon J, Kim J-H, Yoo C. 2004. Storm-coverage effect on dynamic flood-frequency analysis: empirical data analysis. Hydrological Processes 18: 159-178. – reference: Jin CX. 1992. A deterministic gamma-type geomorphologic instantaneous unit hydrograph based on path types. Water Resources Research 28: 479-486. – reference: Lebel T, Bastin G, Obled C, Creutin JD. 1987. On the accuracy of areal rainfall estimation: a case study. Water Resources Research 23: 2123-2134. – reference: Wackernagel H. 1998. Multivariate Geostatistics. Springer-Verlag: Berlin. – reference: Nayak PC, Sudheer KP, Ramasastri KS. 2005. Fuzzy computing based rainfall-runoff model for real time flood forecasting. Hydrological Processes 19: 955-968. – reference: Marsalek J, Sztruhar D. 1994. Urban drainage: review of contemporary approaches. Water Science and Technology 29: 1-10. – reference: Chow VT, Maidment DR, Mays LW. 1988. Applied Hydrology. McGraw-Hill: New York. – reference: Lebel T, Bastin G. 1985. Variogram identification by the mean squared interpolation error method with application to hydrologic field. Journal of Hydrology 77: 31-56. – reference: Legates DR, McCabe Jr GJ. 1999. Evaluating the use of 'goodness-of-fit' measures in hydrologic and hydroclimatic model validation. Water Resource Research 35: 233-241. – reference: Lazaro TR. 1979. Urban Hydrology. Ann Arbor Science Publishers: Ann Arbor, MI. – reference: Wilk J, Hughes DA. 2002. Simulating the impacts of land-use and climate change on water resource availability for a large south Indian catchment. Hydrological Sciences 47: 19-30. – reference: Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual models: 1. A discussion of principles. Journal of Hydrology 10: 282-290. – reference: Cheng S-J, Wang R-Y. 2002. An approach for evaluating the hydrological effects of urbanization and its application. Hydrological Processes 16: 1403-1418. – reference: Hannah DM, Gurnell AM. 2001. A Conceptual, linear reservoir runoff model to investigate melt season changes in cirque glacier hydrology. Journal of Hydrology 246: 123-141. – reference: Kang IS, Park JI, Singh VP. 1998. Effect of urbanization on runoff characteristics of the On-Cheon Stream watershed in Pusan, Korea. Hydrological Processes 12: 351-363. – reference: Melone F, Corradini C, Singh VP. 1998. Simulation of the direct runoff hydrograph at basin outlet. Hydrological Processes 12: 769-779. – reference: Agirre U, Goñi M, López JJ, Gimena FN. 2005. Application of a unit hydrograph based on subwatershed division and comparison with Nash's instantaneous unit hydrograph. Catena 64: 321-332. – reference: Simmons DL, Reynolds RJ. 1982. Effects of urbanization on base flow of selected south-shore streams, Long Island, New York. Water Resources Bulletin 18: 797-805. – reference: Singh RB. 1998. Land use/cover changes, extreme events and ecohydrological response in the Himalayan region. Hydrological Processes 12: 2043-2055. – reference: Bonta JV, Amerman CR, Harlukowicz TJ, Dick WA. 1997. Impact of coal surface mining on three Ohio watersheds-surface-water hydrology. Journal of the American Water Resources Association 33: 907-917. – reference: Changnon D, Fox D, Bork S. 1996. Differences in warm-season, rainstorm-generated stormflows for northeastern Illinois urbanized basins. Water Resources Bulletin 32: 1307-1317. – reference: Chen RS, Pi LC, Huang YH. 2003. Analysis of rainfall-runoff relation in paddy fields by diffusive tank model. Hydrological Processes 17: 2541-2553. – reference: Ferguson BK, Suckling PW. 1990. Changing rainfall-runoff relationships in the urbanizing Peachtree Creek watershed, Atlanta, Georgia. Water Resources Bulletin 26: 313-322. – reference: Rodriguez F, Andrieu H, Creutin J-D. 2003. Surface runoff in urban catchments: morphological identification of unit hydrographs from urban databanks. Journal of Hydrology 283: 146-168. – reference: Sala M, Inbar M. 1992. Some hydrologic effects of urbanization in Catalan rivers. Catena 19: 363-378. – reference: Hsieh L-S, Wang R-Y. 1999. A semi-distributed parallel-type linear reservoir rainfall-runoff model and its application in Taiwan. Hydrological Processes 13: 1247-1268. – reference: Beven K. 1989. Changing ideals in hydrology: the case of physically-based models. Journal of Hydrology 105: 157-172. – reference: Leopold LB. 1991. Lag times for small drainage basins. Catena 18: 157-171. – reference: Franchini M, O'Connell PE. 1996. An analysis of the dynamic component of the geomorphologic instantaneous unit hydrograph. Journal of Hydrology 175: 407-428. – reference: Lee YH, Singh VP. 2005. Tank model for sediment yield. Water Resources Management 19: 349-362. – reference: Krug WR. 1996. Simulation of temporal changes in rainfall-runoff characteristics, Coon Creek basin, Wisconsin. Water Resources Bulletin 32: 745-752. – reference: Wong TSW, Li Y. 1999. Theoretical assessment of changes in design flood peak of an overland plane for two opposing urbanization sequences. Hydrological Processes 13: 1629-1647. – reference: Chiles JP, Delfiner P. 1999. Geostatistics: Modeling Spatial Uncertainty. Wiley: New York. – reference: Tsihrintzis VA, Hamid R. 1997. Urban stormwater quantity/quality modeling using the SCS method and empirical equations. Journal of the American Water Resources Association 33: 163-176. – reference: Hollis GE. 1975. The effect of urbanization on floods of different recurrence interval. Water Resources Research 11: 431-435. – reference: Mather AS, Needle CL, Fairbairn J. 1998. The human derivers of global land cover change: the case of forests. Hydrological Processes 12: 1983-1994. – reference: Duan Q, Gupta VK, Sorooshian S. 1993. Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory Application 76: 501-521. – volume: 12 start-page: 2043 year: 1998 end-page: 2055 article-title: Land use/cover changes, extreme events and ecohydrological response in the Himalayan region publication-title: Hydrological Processes – volume: 33 start-page: 907 year: 1997 end-page: 917 article-title: Impact of coal surface mining on three Ohio watersheds—surface‐water hydrology publication-title: Journal of the American Water Resources Association – volume: 19 start-page: 1 year: 1973 end-page: 20 article-title: A review of some mathematical models used in hydrology, with observations on their calibration and use publication-title: Journal of Hydrology – start-page: 114 year: 1958 end-page: 121 – volume: 271 start-page: 1 year: 2003 end-page: 21 article-title: Spatial characteristics of thunderstorm rainfall fields and their relation to runoff publication-title: Journal of Hydrology – volume: 11 start-page: 431 year: 1975 end-page: 435 article-title: The effect of urbanization on floods of different recurrence interval publication-title: Water Resources Research – volume: 19 start-page: 363 year: 1992 end-page: 378 article-title: Some hydrologic effects of urbanization in Catalan rivers publication-title: Catena – volume: 47 start-page: 19 year: 2002 end-page: 30 article-title: Simulating the impacts of land‐use and climate change on water resource availability for a large south Indian catchment publication-title: Hydrological Sciences – volume: 227 start-page: 195 year: 2000 end-page: 206 article-title: Unit hydrographs to model quick and slow runoff components of streamflow publication-title: Journal of Hydrology – volume: 175 start-page: 407 year: 1996 end-page: 428 article-title: An analysis of the dynamic component of the geomorphologic instantaneous unit hydrograph publication-title: Journal of Hydrology – volume: 23 start-page: 2123 year: 1987 end-page: 2134 article-title: On the accuracy of areal rainfall estimation: a case study publication-title: Water Resources Research – volume: 77 start-page: 31 year: 1985 end-page: 56 article-title: Variogram identification by the mean squared interpolation error method with application to hydrologic field publication-title: Journal of Hydrology – volume: 32 start-page: 1307 year: 1996 end-page: 1317 article-title: Differences in warm‐season, rainstorm‐generated stormflows for northeastern Illinois urbanized basins publication-title: Water Resources Bulletin – volume: 29 start-page: 1 year: 1994 end-page: 10 article-title: Urban drainage: review of contemporary approaches publication-title: Water Science and Technology – volume: 33 start-page: 1289 year: 1997 end-page: 1297 article-title: Urbanization, flood frequency, and salmon abundance in Puget lowland streams publication-title: Journal of the American Water Resources Association – volume: 105 start-page: 157 year: 1989 end-page: 172 article-title: Changing ideals in hydrology: the case of physically‐based models publication-title: Journal of Hydrology – volume: 18 start-page: 797 year: 1982 end-page: 805 article-title: Effects of urbanization on base flow of selected south‐shore streams, Long Island, New York publication-title: Water Resources Bulletin – volume: 13 start-page: 1629 year: 1999 end-page: 1647 article-title: Theoretical assessment of changes in design flood peak of an overland plane for two opposing urbanization sequences publication-title: Hydrological Processes – year: 1971 – year: 1979 – volume: 10 start-page: 282 year: 1970 end-page: 290 article-title: River flow forecasting through conceptual models: 1. A discussion of principles publication-title: Journal of Hydrology – volume: 228 start-page: 113 year: 2000 end-page: 129 article-title: Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall publication-title: Journal of Hydrology – year: 1998 – volume: 32 start-page: 745 year: 1996 end-page: 752 article-title: Simulation of temporal changes in rainfall‐runoff characteristics, Coon Creek basin, Wisconsin publication-title: Water Resources Bulletin – volume: 19 start-page: 1909 year: 2005 end-page: 1924 article-title: Assessment of flooding in urbanized ungauged basins: a case study in the upper Tiber area, Italy publication-title: Hydrological Processes – volume: 17 start-page: 2541 year: 2003 end-page: 2553 article-title: Analysis of rainfall–runoff relation in paddy fields by diffusive tank model publication-title: Hydrological Processes – volume: 283 start-page: 146 year: 2003 end-page: 168 article-title: Surface runoff in urban catchments: morphological identification of unit hydrographs from urban databanks publication-title: Journal of Hydrology – volume: 28 start-page: 479 year: 1992 end-page: 486 article-title: A deterministic gamma‐type geomorphologic instantaneous unit hydrograph based on path types publication-title: Water Resources Research – year: 1988 – volume: 26 start-page: 313 year: 1990 end-page: 322 article-title: Changing rainfall–runoff relationships in the urbanizing Peachtree Creek watershed, Atlanta, Georgia publication-title: Water Resources Bulletin – volume: 109 start-page: 221 year: 1989 end-page: 236 article-title: Regression models for estimating urban storm‐runoff quality and quantity in the United States publication-title: Journal of Hydrology – volume: 13 start-page: 1247 year: 1999 end-page: 1268 article-title: A semi‐distributed parallel‐type linear reservoir rainfall–runoff model and its application in Taiwan publication-title: Hydrological Processes – volume: 20 start-page: 857 year: 1984 end-page: 865 article-title: Effects of urbanization on frequencies of overflows and pollutant loading from storm sewer overflows: a derived distribution approach publication-title: Water Resources Research – volume: 16 start-page: 1403 year: 2002 end-page: 1418 article-title: An approach for evaluating the hydrological effects of urbanization and its application publication-title: Hydrological Processes – volume: 12 start-page: 769 year: 1998 end-page: 779 article-title: Simulation of the direct runoff hydrograph at basin outlet publication-title: Hydrological Processes – volume: 64 start-page: 321 year: 2005 end-page: 332 article-title: Application of a unit hydrograph based on subwatershed division and comparison with Nash's instantaneous unit hydrograph publication-title: Catena – volume: 14 start-page: 1485 year: 2000 end-page: 1501 article-title: Application of alternative hydrograph separation models to detect changes in flow paths in a watershed undergoing urban development publication-title: Hydrological Processes – volume: 18 start-page: 157 year: 1991 end-page: 171 article-title: Lag times for small drainage basins publication-title: Catena – volume: 76 start-page: 501 year: 1993 end-page: 521 article-title: Shuffled complex evolution approach for effective and efficient global minimization publication-title: Journal of Optimization Theory Application – volume: 19 start-page: 349 year: 2005 end-page: 362 article-title: Tank model for sediment yield publication-title: Water Resources Management – volume: 12 start-page: 351 year: 1998 end-page: 363 article-title: Effect of urbanization on runoff characteristics of the On‐Cheon Stream watershed in Pusan, Korea publication-title: Hydrological Processes – volume: 35 start-page: 233 year: 1999 end-page: 241 article-title: Evaluating the use of ‘goodness‐of‐fit’ measures in hydrologic and hydroclimatic model validation publication-title: Water Resource Research – volume: 12 start-page: 1983 year: 1998 end-page: 1994 article-title: The human derivers of global land cover change: the case of forests publication-title: Hydrological Processes – volume: 246 start-page: 123 year: 2001 end-page: 141 article-title: A Conceptual, linear reservoir runoff model to investigate melt season changes in cirque glacier hydrology publication-title: Journal of Hydrology – volume: 33 start-page: 163 year: 1997 end-page: 176 article-title: Urban stormwater quantity/quality modeling using the SCS method and empirical equations publication-title: Journal of the American Water Resources Association – year: 1999 – volume: 18 start-page: 159 year: 2004 end-page: 178 article-title: Storm‐coverage effect on dynamic flood‐frequency analysis: empirical data analysis publication-title: Hydrological Processes – volume: 19 start-page: 955 year: 2005 end-page: 968 article-title: Fuzzy computing based rainfall–runoff model for real time flood forecasting publication-title: Hydrological Processes – ident: e_1_2_1_25_1 doi: 10.1029/WR023i011p02123 – ident: e_1_2_1_46_1 doi: 10.1007/978-3-662-03550-4 – ident: e_1_2_1_32_1 – ident: e_1_2_1_6_1 doi: 10.1002/hyp.1266 – ident: e_1_2_1_13_1 doi: 10.1111/j.1752-1688.1990.tb01374.x – ident: e_1_2_1_3_1 doi: 10.1016/0022-1694(89)90101-7 – ident: e_1_2_1_4_1 doi: 10.1111/j.1752-1688.1997.tb04114.x – ident: e_1_2_1_26_1 doi: 10.1007/s11269-005-7998-y – volume-title: Applied Hydrology year: 1988 ident: e_1_2_1_9_1 – ident: e_1_2_1_15_1 doi: 10.1016/S0022-1694(00)00144-X – ident: e_1_2_1_33_1 doi: 10.1002/(SICI)1099-1085(19980430)12:5<769::AID-HYP624>3.0.CO;2-K – ident: e_1_2_1_31_1 doi: 10.1002/(SICI)1099-1085(19981030)12:13/14<1983::AID-HYP713>3.0.CO;2-M – ident: e_1_2_1_11_1 doi: 10.1016/0022-1694(89)90017-6 – ident: e_1_2_1_27_1 doi: 10.1029/1998WR900018 – ident: e_1_2_1_2_1 doi: 10.1016/j.catena.2005.08.013 – ident: e_1_2_1_35_1 doi: 10.1002/hyp.5634 – ident: e_1_2_1_19_1 doi: 10.1002/(SICI)1099-1085(19990615)13:8<1247::AID-HYP807>3.0.CO;2-W – ident: e_1_2_1_28_1 doi: 10.1016/0341-8162(91)90014-O – ident: e_1_2_1_12_1 doi: 10.1007/BF00939380 – ident: e_1_2_1_49_1 doi: 10.1016/S0022-1694(99)00185-7 – ident: e_1_2_1_17_1 doi: 10.1016/S0022-1694(01)00364-X – ident: e_1_2_1_43_1 doi: 10.1002/(SICI)1099-1085(19981030)12:13/14<2043::AID-HYP718>3.0.CO;2-0 – ident: e_1_2_1_10_1 doi: 10.1016/0022-1694(73)90089-9 – ident: e_1_2_1_21_1 doi: 10.1002/(SICI)1099-1085(199802)12:2<351::AID-HYP569>3.0.CO;2-O – ident: e_1_2_1_5_1 doi: 10.1111/j.1752-1688.1996.tb03499.x – ident: e_1_2_1_39_1 doi: 10.1002/hyp.5553 – ident: e_1_2_1_38_1 doi: 10.1016/0022-1694(70)90255-6 – ident: e_1_2_1_20_1 doi: 10.1029/91WR02577 – ident: e_1_2_1_29_1 doi: 10.1029/WR020i007p00857 – ident: e_1_2_1_16_1 doi: 10.1002/1099-1085(20000615)14:8<1485::AID-HYP988>3.0.CO;2-1 – ident: e_1_2_1_7_1 doi: 10.1002/hyp.350 – ident: e_1_2_1_36_1 doi: 10.1111/j.1752-1688.1997.tb03553.x – ident: e_1_2_1_18_1 doi: 10.1029/WR011i003p00431 – ident: e_1_2_1_40_1 doi: 10.1016/S0022-1694(03)00246-4 – ident: e_1_2_1_48_1 doi: 10.1002/(SICI)1099-1085(19990815)13:11<1629::AID-HYP833>3.0.CO;2-S – start-page: 114 volume-title: General Assembly of Toronto, 3–14 September 1957, Volume III, Surface Water, Prevision, Evaporation year: 1958 ident: e_1_2_1_37_1 – ident: e_1_2_1_41_1 doi: 10.1016/0341-8162(92)90009-Z – ident: e_1_2_1_14_1 doi: 10.1016/S0022-1694(96)80018-7 – ident: e_1_2_1_47_1 doi: 10.1080/02626660209492904 – ident: e_1_2_1_44_1 doi: 10.1016/S0022-1694(02)00311-6 – ident: e_1_2_1_45_1 doi: 10.1111/j.1752-1688.1997.tb04093.x – ident: e_1_2_1_8_1 doi: 10.1002/9780470316993 – volume-title: Urban Hydrology year: 1979 ident: e_1_2_1_23_1 – ident: e_1_2_1_24_1 doi: 10.1016/0022-1694(85)90196-9 – volume: 29 start-page: 1 year: 1994 ident: e_1_2_1_30_1 article-title: Urban drainage: review of contemporary approaches publication-title: Water Science and Technology doi: 10.2166/wst.1994.0645 – ident: e_1_2_1_34_1 doi: 10.1002/hyp.1303 – ident: e_1_2_1_42_1 doi: 10.1111/j.1752-1688.1982.tb00075.x – ident: e_1_2_1_22_1 doi: 10.1111/j.1752-1688.1996.tb03471.x |
| SSID | ssj0004080 |
| Score | 2.2205734 |
| Snippet | An increasing impervious area is quickly extending over the Wu‐Tu watershed due to the endless demands of the people. Generally, impervious paving is a major... An increasing impervious area is quickly extending over the Wu-Tu watershed due to the endless demands of the people. Generally, impervious paving is a major... |
| SourceID | proquest pascalfrancis crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2075 |
| SubjectTerms | block kriging Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics engineers equations Exact sciences and technology flood modelling floods Freshwater hydraulic structures Hydrology Hydrology. Hydrogeology kriging Natural hazards: prediction, damages, etc NLP peak flow regression analysis SCS storms time to peak urbanization watersheds |
| Title | Effect of growing watershed imperviousness on hydrograph parameters and peak discharge |
| URI | https://api.istex.fr/ark:/67375/WNG-72DX4S8Q-K/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.6807 https://www.proquest.com/docview/21077057 https://www.proquest.com/docview/33562562 https://www.proquest.com/docview/47671029 |
| Volume | 22 |
| WOSCitedRecordID | wos000257090200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-1085 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004080 issn: 0885-6087 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-hFgle-BigdRvDkxA8hTmOGyeP07ZuEqgaG4PyZNmJTadBWjUtW__73SVpRyUqIfGUPJwl5873Fd_9DuBtzo3BMMMFeDpsgAYvDAwPPb5JG4ZOGJuYatiE6veTwSA9a6oqqRemxodY_nAjzajsNSm4seX-PWjocD7-ECfUSN4WeGxlC9pH573LT_ddkbyam4Zq1A1inqgF9CwX-4u1K86oTXy9peJIUyJ_fD3YYiXy_DN-rRxQ7-n_bP0ZPGnCTnZQn5Pn8MAVG_ComYA-nL-ArzWMMRt59gMzc3Ro7MYQ8ubQ5ewKY2s0KaNZSYaRjQo2nOeTei0j8PBfVFRTMlPkbOzMNaNeX4Jgci_hsnf85fA0aGYuBBn6ahUIm1iZq0hmSljuI9V1PpWZtzZGueVhZCNuM7o89XHsU8uTVIRWGcyqnKdc7RW0ilHhNoFJb7LQ55JbJVHwnuyudypLUooafd6B9wvm66wBJKe5GD91DaUsNPJJE586sLekHNcgHH-heVfJb0lgJtdUtKa6-lv_RCtxNJAXyWf9sQO7KwJeLhBchhyddQfeLCSuUdfoAsUUDlmsMT1WCgPc9RRRRAllLNZTSBVTUJfifqsjsvaD9On3M3pu_SvhNjyui1momHEHWtPJzL2Gh9nv6VU52W204w6e0xV6 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9NLdJ4gfElymAzEoKnMMdx40Q8IUZXtFIN2KA8WXZi02ksrdoN6H-_u3x0q0QlJJ6Sh7Pk3PfF598BvMi5MZhmuAC1wwbo8MLA8NDjm7Rh6ISxiSmHTajhMBmN0qMNeNPchanwIZY_3MgySn9NBk4_pPeuUUPHi-nrOKGb5G2JWtRtQXv_c-9kcH0tkpeD09COukHME9Vgz3Kx16xdiUZtYuwf6o40c2SQryZbrKSeNxPYMgL17v7X3rfgTp14sreVptyDDVfch816Bvp48QC-VkDGbOLZD6zNMaSx34awN8cuZ6eYXaNTmVzOyTWyScHGi3xWrWUEH35ObTVzZoqcTZ05Y3Tbl0CY3EM46b0_ftcP6qkLQYbRWgXCJlbmKpKZEpb7SHWdT2XmrY1RcnkY2YjbjI5PfRz71PIkFaFVBusq56laewStYlK4x8CkN1noc8mtkih6T57XO5UlKeWNPu_Aq4b7OqshyWkyxk9dgSkLjXzSxKcOPF9STisYjr_QvCwFuCQwszNqW1Nd_W14oJXYH8kvySd92IGdFQkvFwguQ47hugO7jcg1WhsdoZjCIYs1FshKYYq7niKKqKSMxXoKqWJK61Lcb6kjaz9I978f0fPJvxLuwmb_-ONADz4MD7fhdtXaQq2NT6F1Mbt0z-BW9uvidD7bqU3lCiYIGWo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5VDQIuvBHh0RoJwWmp1-usd8UJEUJRqyg8CuFk2Wu7qVo2UdIC-ffM7CMlEpGQOO0expJ3xvNaz3wD8MxxYzDM8BGeDhuhwYsjw-OAb9LGsRfGZqYaNqGGw2w8zkdb8KrthanxIVY_3EgzKntNCu5nLuxdooZOlrOXaUad5B3Zy1PUyk7_4-Do8LItkleD01CPelHKM9Viz3Kx165d80YdYuwvqo40C2RQqCdbrIWefwawlQca3Pyvvd-CG03gyV7XJ-U2bPnyDlxrZqBPlnfhSw1kzKaBHWNuji6N_TSEvTnxjp1gdI1GZXqxINPIpiWbLN28XssIPvw7ldUsmCkdm3lzyqjbl0CY_D04Grz9_GY_aqYuRAV6axUJm1npVCILJSwPier5kMsiWJui5Fyc2ITbgq5PQ5qG3PIsF7FVBvMqHyhbuw_b5bT0D4DJYIo4OMmtkij6QJY3eFVkOcWNwXXhRct9XTSQ5DQZ40zXYMpCI5808akLT1eUsxqG4y80zysBrgjM_JTK1lRPfx2-00r0x_JT9kEfdGFnTcKrBYLLmKO77sJuK3KN2kZXKKb0yGKNCbJSGOJupkgSSilTsZlCqpTCuhz3W52RjR-k97-N6PnwXwl34eqoP9CH74cHj-B6XdlClY2PYft8fuGfwJXix_nJYr7TaMpvjmsY5Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+growing+watershed+imperviousness+on+hydrograph+parameters+and+peak+discharge&rft.jtitle=Hydrological+processes&rft.au=Huang%2C+Huang%E2%80%90jia&rft.au=Cheng%2C+Shin%E2%80%90jen&rft.au=Wen%2C+Jet%E2%80%90chau&rft.au=Lee%2C+Ju%E2%80%90huang&rft.date=2008-06-30&rft.issn=0885-6087&rft.eissn=1099-1085&rft.volume=22&rft.issue=13&rft.spage=2075&rft.epage=2085&rft_id=info:doi/10.1002%2Fhyp.6807&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hyp_6807 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon |