A compound decision approach to covariance matrix estimation

Covariance matrix estimation is a fundamental statistical task in many applications, but the sample covariance matrix is suboptimal when the sample size is comparable to or less than the number of features. Such high‐dimensional settings are common in modern genomics, where covariance matrix estimat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Biometrics Ročník 79; číslo 2; s. 1201 - 1212
Hlavní autori: Xin, Huiqin, Zhao, Sihai Dave
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Blackwell Publishing Ltd 01.06.2023
Predmet:
ISSN:0006-341X, 1541-0420, 1541-0420
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Covariance matrix estimation is a fundamental statistical task in many applications, but the sample covariance matrix is suboptimal when the sample size is comparable to or less than the number of features. Such high‐dimensional settings are common in modern genomics, where covariance matrix estimation is frequently employed as a method for inferring gene networks. To achieve estimation accuracy in these settings, existing methods typically either assume that the population covariance matrix has some particular structure, for example, sparsity, or apply shrinkage to better estimate the population eigenvalues. In this paper, we study a new approach to estimating high‐dimensional covariance matrices. We first frame covariance matrix estimation as a compound decision problem. This motivates defining a class of decision rules and using a nonparametric empirical Bayes g‐modeling approach to estimate the optimal rule in the class. Simulation results and gene network inference in an RNA‐seq experiment in mouse show that our approach is comparable to or can outperform a number of state‐of‐the‐art proposals.
AbstractList Covariance matrix estimation is a fundamental statistical task in many applications, but the sample covariance matrix is suboptimal when the sample size is comparable to or less than the number of features. Such high-dimensional settings are common in modern genomics, where covariance matrix estimation is frequently employed as a method for inferring gene networks. To achieve estimation accuracy in these settings, existing methods typically either assume that the population covariance matrix has some particular structure, for example, sparsity, or apply shrinkage to better estimate the population eigenvalues. In this paper, we study a new approach to estimating high-dimensional covariance matrices. We first frame covariance matrix estimation as a compound decision problem. This motivates defining a class of decision rules and using a nonparametric empirical Bayes g-modeling approach to estimate the optimal rule in the class. Simulation results and gene network inference in an RNA-seq experiment in mouse show that our approach is comparable to or can outperform a number of state-of-the-art proposals.Covariance matrix estimation is a fundamental statistical task in many applications, but the sample covariance matrix is suboptimal when the sample size is comparable to or less than the number of features. Such high-dimensional settings are common in modern genomics, where covariance matrix estimation is frequently employed as a method for inferring gene networks. To achieve estimation accuracy in these settings, existing methods typically either assume that the population covariance matrix has some particular structure, for example, sparsity, or apply shrinkage to better estimate the population eigenvalues. In this paper, we study a new approach to estimating high-dimensional covariance matrices. We first frame covariance matrix estimation as a compound decision problem. This motivates defining a class of decision rules and using a nonparametric empirical Bayes g-modeling approach to estimate the optimal rule in the class. Simulation results and gene network inference in an RNA-seq experiment in mouse show that our approach is comparable to or can outperform a number of state-of-the-art proposals.
Covariance matrix estimation is a fundamental statistical task in many applications, but the sample covariance matrix is suboptimal when the sample size is comparable to or less than the number of features. Such high‐dimensional settings are common in modern genomics, where covariance matrix estimation is frequently employed as a method for inferring gene networks. To achieve estimation accuracy in these settings, existing methods typically either assume that the population covariance matrix has some particular structure, for example, sparsity, or apply shrinkage to better estimate the population eigenvalues. In this paper, we study a new approach to estimating high‐dimensional covariance matrices. We first frame covariance matrix estimation as a compound decision problem. This motivates defining a class of decision rules and using a nonparametric empirical Bayes g‐modeling approach to estimate the optimal rule in the class. Simulation results and gene network inference in an RNA‐seq experiment in mouse show that our approach is comparable to or can outperform a number of state‐of‐the‐art proposals.
Covariance matrix estimation is a fundamental statistical task in many applications, but the sample covariance matrix is suboptimal when the sample size is comparable to or less than the number of features. Such high‐dimensional settings are common in modern genomics, where covariance matrix estimation is frequently employed as a method for inferring gene networks. To achieve estimation accuracy in these settings, existing methods typically either assume that the population covariance matrix has some particular structure, for example, sparsity, or apply shrinkage to better estimate the population eigenvalues. In this paper, we study a new approach to estimating high‐dimensional covariance matrices. We first frame covariance matrix estimation as a compound decision problem. This motivates defining a class of decision rules and using a nonparametric empirical Bayes g‐modeling approach to estimate the optimal rule in the class. Simulation results and gene network inference in an RNA‐seq experiment in mouse show that our approach is comparable to or can outperform a number of state‐of‐the‐art proposals.
Author Xin, Huiqin
Zhao, Sihai Dave
Author_xml – sequence: 1
  givenname: Huiqin
  orcidid: 0000-0002-2363-9283
  surname: Xin
  fullname: Xin, Huiqin
  email: huiqinx2@illinois.edu
  organization: University of Illinois at Urbana‐Champaign
– sequence: 2
  givenname: Sihai Dave
  surname: Zhao
  fullname: Zhao, Sihai Dave
  organization: University of Illinois at Urbana‐Champaign
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35499364$$D View this record in MEDLINE/PubMed
BookMark eNqFkV9LwzAUxYNM3Ka--AGk4IsInUmapin4Mod_BhNfFHwLbXqLGW0zk1bdtzdb54uI5iUJ-d1zc88Zo0FjGkDohOAJ8esy16aekIgLvodGJGYkxIziARphjHkYMfIyRGPnlv6axpgeoGEUszSNOBuhq2mgTL0yXVMEBSjttGmCbLWyJlOvQWv863tmddYoCOqstfozANdqf_TgEdovs8rB8W4_RM-3N0-z-3DxeDefTRehYpTzsBBJATQXLOcMEkwxwZxDDmVEEl5AmpOclWmJc0JLkjIqKOZMlaBAAGNRFB2i817Xf-ut8_1lrZ2CqsoaMJ2TVLBUCEI4_R_lseAspph59OwHujSdbfwgXpAm3kKabHqf7qgur6GQK-uHt2v5baEHcA8oa5yzUEql2609rc10JQmWm5TkJiW5TcmXXPwo-Vb9FSY9_KErWP9Byuv540Nf8wVQxaAz
CitedBy_id crossref_primary_10_1080_24754269_2025_2484979
crossref_primary_10_1177_21582440231174777
Cites_doi 10.1214/13-STS455
10.1214/aos/1176346059
10.1007/978-3-030-02185-6
10.1214/aos/1051027872
10.1214/08-AOS630
10.1186/1471-2105-9-559
10.2202/1544-6115.1175
10.1214/aoms/1177728066
10.1198/jasa.2009.0101
10.1080/01621459.1978.10480103
10.1016/0024-3795(88)90223-6
10.1214/08-AOS638
10.2139/ssrn.3486378
10.2202/1544-6115.1128
10.1214/19-AOS1817
10.1016/j.jmva.2017.03.001
10.1016/j.csda.2018.01.006
10.1016/j.jeconom.2008.09.017
10.1214/15-AOS1393
10.1109/TSP.2008.929662
10.1109/TIT.2016.2616132
10.1101/368316
10.1007/BF01085007
10.1080/01621459.1995.10476626
10.1525/9780520411586-011
10.1080/01621459.2013.869224
10.1016/S0047-259X(03)00096-4
10.1198/jasa.2011.tm10560
10.1214/ss/1177012274
10.1101/gr.214221.116
10.1080/01621459.2012.725386
10.1186/1471-2105-8-S6-S5
10.1214/12-AOS989
ContentType Journal Article
Copyright 2022 The Authors. published by Wiley Periodicals LLC on behalf of International Biometric Society.
2022 The Authors. Biometrics published by Wiley Periodicals LLC on behalf of International Biometric Society.
2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Wiley Periodicals LLC on behalf of International Biometric Society.
– notice: 2022 The Authors. Biometrics published by Wiley Periodicals LLC on behalf of International Biometric Society.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
7S9
L.6
DOI 10.1111/biom.13686
DatabaseName Wiley-Blackwell Open Access Titles
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
AGRICOLA
ProQuest Computer Science Collection
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 1212
ExternalDocumentID 35499364
10_1111_biom_13686
BIOM13686
Genre article
Journal Article
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
24P
2AX
2QV
3-9
31~
33P
36B
3SF
3V.
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AANHP
AANLZ
AAONW
AASGY
AAUAY
AAXRX
AAYCA
AAZKR
AAZSN
ABBHK
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABJCF
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABTAH
ABUWG
ABXSQ
ABXVV
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNMO
ADODI
ADOZA
ADULT
ADVOB
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELPN
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFBPY
AFDVO
AFEBI
AFFTP
AFGKR
AFKRA
AFPWT
AFVYC
AFWVQ
AFZJQ
AGTJU
AHMBA
AIAGR
AIBGX
AIURR
AIWBW
AJAOE
AJBDE
AJXKR
ALAGY
ALEEW
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMYDB
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K48
K6V
K7-
KOP
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
NU-
O66
O9-
OIG
OJZSN
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
ROX
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
VQA
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WYISQ
X6Y
XBAML
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
ABGNP
ADNBA
AEFGJ
AEOTA
AGXDD
AIDQK
AIDYY
AJNCP
CITATION
H13
O8X
AAWIL
ABAWQ
ACHJO
AGLNM
AGORE
AGQPQ
AHGBF
AIHAF
AJBYB
CGR
CUY
CVF
ECM
EIF
NPM
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
ESTFP
JQ2
7X8
7S9
L.6
ID FETCH-LOGICAL-c4266-d87de2b84b64e70201066ebef3176de9b1b4f9f0b12f194282064cfece8e44333
IEDL.DBID 24P
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000799422000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0006-341X
1541-0420
IngestDate Thu Oct 02 23:52:19 EDT 2025
Sun Sep 28 08:19:30 EDT 2025
Mon Nov 10 02:54:17 EST 2025
Mon Jul 21 05:51:28 EDT 2025
Sat Nov 29 02:10:10 EST 2025
Tue Nov 18 21:03:44 EST 2025
Wed Jan 22 16:19:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords g-modeling
separable decision rule
nonparametric maximum likelihood
compound decision theory
Language English
License Attribution-NonCommercial-NoDerivs
http://creativecommons.org/licenses/by-nc-nd/4.0
2022 The Authors. Biometrics published by Wiley Periodicals LLC on behalf of International Biometric Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4266-d87de2b84b64e70201066ebef3176de9b1b4f9f0b12f194282064cfece8e44333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2363-9283
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.13686
PMID 35499364
PQID 2827420273
PQPubID 35366
PageCount 12
ParticipantIDs proquest_miscellaneous_2849881162
proquest_miscellaneous_2658645204
proquest_journals_2827420273
pubmed_primary_35499364
crossref_citationtrail_10_1111_biom_13686
crossref_primary_10_1111_biom_13686
wiley_primary_10_1111_biom_13686_BIOM13686
PublicationCentury 2000
PublicationDate June 2023
2023-06-01
2023-Jun
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2023
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2004; 88
2018; 122
1995; 90
2017; 81
2017; 27
1986; 34
2019; 34
1978; 73
1988; 103
2008; 9
1975
2008; 56
1951
2014; 29
2008; 147
2017; 157
2012; 107
2003; 31
1983; 11
1955
2014; 109
2011; 106
1961; 1
2007; 8
2019
2005; 4
2018
1956; 27
2020; 48
2016; 62
2017
2011; 21
1962; 24
2009; 37
2009; 104
1990; 5
2016; 44
2012; 40
Li (2024011411372650800_biom13686-bib-0024) 2017
Jiang (2024011411372650800_biom13686-bib-0014) 2009; 37
Langfelder (2024011411372650800_biom13686-bib-0020) 2008; 9
Mestre (2024011411372650800_biom13686-bib-0029) 2008; 56
Robbins (2024011411372650800_biom13686-bib-0030) 1951
Stein (2024011411372650800_biom13686-bib-0037) 1986; 34
Zhang (2024011411372650800_biom13686-bib-0041) 2003; 31
Schäfer (2024011411372650800_biom13686-bib-0035) 2005; 4
Laird (2024011411372650800_biom13686-bib-0018) 1978; 73
Donoho (2024011411372650800_biom13686-bib-0005) 1995; 90
Feng (2024011411372650800_biom13686-bib-0009) 2018; 122
Fan (2024011411372650800_biom13686-bib-0008) 2008; 147
Huang (2024011411372650800_biom13686-bib-0012) 2017; 157
Lindley (2024011411372650800_biom13686-bib-0025) 1962; 24
Liu (2024011411372650800_biom13686-bib-0027) 2017; 81
Dey (2024011411372650800_biom13686-bib-0004) 2018
Stein (2024011411372650800_biom13686-bib-0036) 1975
Saul (2024011411372650800_biom13686-bib-0034) 2017; 27
Lindsay (2024011411372650800_biom13686-bib-0026) 1983; 11
Efron (2024011411372650800_biom13686-bib-0006) 2014; 29
Rothman (2024011411372650800_biom13686-bib-0032) 2009; 104
Johnstone (2024011411372650800_biom13686-bib-0015) 2017
Varin (2024011411372650800_biom13686-bib-0039) 2011; 21
Cai (2024011411372650800_biom13686-bib-0003) 2011; 106
Robbins (2024011411372650800_biom13686-bib-0031) 1955
Efron (2024011411372650800_biom13686-bib-0007) 2019; 34
Stigler (2024011411372650800_biom13686-bib-0038) 1990; 5
Zhang (2024011411372650800_biom13686-bib-0042) 2005; 4
Bun (2024011411372650800_biom13686-bib-0002) 2016; 62
Lam (2024011411372650800_biom13686-bib-0019) 2016; 44
Markowetz (2024011411372650800_biom13686-bib-0028) 2007; 8
Saha (2024011411372650800_biom13686-bib-0033) 2020; 48
Fourdrinier (2024011411372650800_biom13686-bib-0010) 2018
James (2024011411372650800_biom13686-bib-0013) 1961
Brown (2024011411372650800_biom13686-bib-0001) 2009; 37
Ledoit (2024011411372650800_biom13686-bib-0021) 2004; 88
Xue (2024011411372650800_biom13686-bib-0040) 2012; 107
Koenker (2024011411372650800_biom13686-bib-0017) 2014; 109
Ledoit (2024011411372650800_biom13686-bib-0022) 2019
Higham (2024011411372650800_biom13686-bib-0011) 1988; 103
Kiefer (2024011411372650800_biom13686-bib-0016) 1956; 27
Ledoit (2024011411372650800_biom13686-bib-0023) 2012; 40
References_xml – volume: 62
  start-page: 7475
  year: 2016
  end-page: 7490
  article-title: Rotational invariant estimator for general noisy matrices
  publication-title: IEEE Transactions on Information Theory
– volume: 122
  start-page: 80
  year: 2018
  end-page: 91
  article-title: Approximate nonparametric maximum likelihood for mixture models: a convex optimization approach to fitting arbitrary multivariate mixing distributions
  publication-title: Computational Statistics & Data Analysis
– volume: 27
  start-page: 887
  year: 1956
  end-page: 906
  article-title: Consistency of the maximum likelihood estimator in the presence of infinitely many incidental parameters
  publication-title: The Annals of Mathematical Statistics
– volume: 104
  start-page: 177
  year: 2009
  end-page: 186
  article-title: Generalized thresholding of large covariance matrices
  publication-title: Journal of the American Statistical Association
– volume: 11
  start-page: 86
  year: 1983
  end-page: 94
  article-title: The geometry of mixture likelihoods: a general theory
  publication-title: The Annals of Statistics
– volume: 34
  start-page: 1373
  year: 1986
  end-page: 1403
  article-title: Lectures on the theory of estimation of many parameters
  publication-title: Journal of Soviet Mathematics
– volume: 40
  start-page: 1024
  year: 2012
  end-page: 1060
  article-title: Nonlinear shrinkage estimation of large‐dimensional covariance matrices
  publication-title: The Annals of Statistics
– volume: 44
  start-page: 928
  year: 2016
  end-page: 953
  article-title: Nonparametric eigenvalue‐regularized precision or covariance matrix estimator
  publication-title: The Annals of Statistics
– start-page: 157
  year: 1955
  end-page: 164
  article-title: An empirical Bayes approach to statistics
– volume: 106
  start-page: 672
  year: 2011
  end-page: 684
  article-title: Adaptive thresholding for sparse covariance matrix estimation
  publication-title: Journal of the American Statistical Association
– volume: 103
  start-page: 103
  year: 1988
  end-page: 118
  article-title: Computing a nearest symmetric positive semidefinite matrix
  publication-title: Linear Algebra and its Applications
– volume: 88
  start-page: 365
  year: 2004
  end-page: 411
  article-title: A well‐conditioned estimator for large‐dimensional covariance matrices
  publication-title: Journal of Multivariate Analysis
– volume: 37
  start-page: 1647
  year: 2009
  end-page: 1684
  article-title: General maximum likelihood empirical Bayes estimation of normal means
  publication-title: The Annals of Statistics
– volume: 109
  start-page: 674
  year: 2014
  end-page: 685
  article-title: Convex optimization, shape constraints, compound decisions, and empirical Bayes rules
  publication-title: Journal of the American Statistical Association
– volume: 9
  start-page: 1
  year: 2008
  end-page: 13
  article-title: WGCNA: an R package for weighted correlation network analysis
  publication-title: BMC Bioinformatics
– year: 2018
– volume: 21
  start-page: 5
  year: 2011
  end-page: 42
  article-title: An overview of composite likelihood methods
  publication-title: Statistica Sinica
– volume: 4
  year: 2005
  article-title: A general framework for weighted gene co‐expression network analysis
  publication-title: Statistical Applications in Genetics and Molecular Biology
– volume: 34
  start-page: 177
  year: 2019
  end-page: 201
  article-title: Bayes, Oracle Bayes and empirical Bayes
  publication-title: Statistical Science
– volume: 48
  start-page: 738
  year: 2020
  end-page: 762
  article-title: On the nonparametric maximum likelihood estimator for Gaussian location mixture densities with application to Gaussian denoising
  publication-title: Annals of Statistics
– volume: 157
  start-page: 45
  year: 2017
  end-page: 52
  article-title: A calibration method for non‐positive definite covariance matrix in multivariate data analysis
  publication-title: Journal of Multivariate Analysis
– volume: 81
  start-page: 50
  year: 2017
  end-page: 55
  article-title: A covariance matrix shrinkage method with Toeplitz rectified target for DOA estimation under the uniform linear array
  publication-title: AEU‐International Journal of Electronics and Communications
– volume: 73
  start-page: 805
  year: 1978
  end-page: 811
  article-title: Nonparametric maximum likelihood estimation of a mixing distribution
  publication-title: Journal of the American Statistical Association
– volume: 90
  start-page: 1200
  year: 1995
  end-page: 1224
  article-title: Adapting to unknown smoothness via wavelet shrinkage
  publication-title: Journal of the American Statistical Association
– volume: 147
  start-page: 186
  year: 2008
  end-page: 197
  article-title: High dimensional covariance matrix estimation using a factor model
  publication-title: Journal of Econometrics
– volume: 56
  start-page: 5353
  year: 2008
  end-page: 5368
  article-title: On the asymptotic behavior of the sample estimates of eigenvalues and eigenvectors of covariance matrices
  publication-title: IEEE Transactions on Signal Processing
– volume: 29
  start-page: 285
  year: 2014
  end-page: 301
  article-title: Two modeling strategies for empirical Bayes estimation
  publication-title: Statistical Science
– volume: 5
  start-page: 147
  year: 1990
  end-page: 155
  article-title: The 1988 Neyman memorial lecture: a Galtonian perspective on shrinkage estimators
  publication-title: Statistical Science
– volume: 31
  start-page: 379
  year: 2003
  end-page: 390
  article-title: Compound decision theory and empirical Bayes methods
  publication-title: The Annals of Statistics
– start-page: 1
  year: 2017
  end-page: 8
  article-title: Estimation of high dimensional covariance matrices by shrinkage algorithms
– year: 1951
  article-title: Asymptotically subminimax solutions of compound statistical decision problems
– volume: 37
  start-page: 1685
  year: 2009
  end-page: 1704
  article-title: Nonparametric empirical Bayes and compound decision approaches to estimation of a high‐dimensional vector of normal means
  publication-title: The Annals of Statistics
– volume: 4
  year: 2005
  article-title: A shrinkage approach to large‐scale covariance matrix estimation and implications for functional genomics
  publication-title: Statistical Applications in Genetics and Molecular Biology
– volume: 24
  start-page: 265
  year: 1962
  end-page: 296
  article-title: Discussion on Professor Stein's paper
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
– year: 2017
– volume: 107
  start-page: 1480
  year: 2012
  end-page: 1491
  article-title: Positive‐definite ‐penalized estimation of large covariance matrices
  publication-title: Journal of the American Statistical Association
– volume: 1
  start-page: 367
  year: 1961
  end-page: 379
  article-title: Estimation with quadratic loss
– volume: 27
  start-page: 959
  year: 2017
  end-page: 972
  article-title: Transcriptional regulatory dynamics drive coordinated metabolic and neural response to social challenge in mice
  publication-title: Genome Research
– volume: 8
  start-page: S5
  year: 2007
  article-title: Inferring cellular networks – a review
  publication-title: BMC Bioinformatics
– year: 1975
  article-title: Estimation of a covariance matrix
– year: 2019
– volume: 29
  start-page: 285
  year: 2014
  ident: 2024011411372650800_biom13686-bib-0006
  article-title: Two modeling strategies for empirical Bayes estimation
  publication-title: Statistical Science
  doi: 10.1214/13-STS455
– volume: 11
  start-page: 86
  year: 1983
  ident: 2024011411372650800_biom13686-bib-0026
  article-title: The geometry of mixture likelihoods: a general theory
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176346059
– volume-title: Shrinkage estimation
  year: 2018
  ident: 2024011411372650800_biom13686-bib-0010
  doi: 10.1007/978-3-030-02185-6
– volume: 31
  start-page: 379
  year: 2003
  ident: 2024011411372650800_biom13686-bib-0041
  article-title: Compound decision theory and empirical Bayes methods
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1051027872
– volume: 37
  start-page: 1685
  year: 2009
  ident: 2024011411372650800_biom13686-bib-0001
  article-title: Nonparametric empirical Bayes and compound decision approaches to estimation of a high-dimensional vector of normal means
  publication-title: The Annals of Statistics
  doi: 10.1214/08-AOS630
– volume: 9
  start-page: 1
  year: 2008
  ident: 2024011411372650800_biom13686-bib-0020
  article-title: WGCNA: an R package for weighted correlation network analysis
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-559
– volume: 4
  year: 2005
  ident: 2024011411372650800_biom13686-bib-0035
  article-title: A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics
  publication-title: Statistical Applications in Genetics and Molecular Biology
  doi: 10.2202/1544-6115.1175
– volume: 27
  start-page: 887
  year: 1956
  ident: 2024011411372650800_biom13686-bib-0016
  article-title: Consistency of the maximum likelihood estimator in the presence of infinitely many incidental parameters
  publication-title: The Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177728066
– volume: 104
  start-page: 177
  year: 2009
  ident: 2024011411372650800_biom13686-bib-0032
  article-title: Generalized thresholding of large covariance matrices
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/jasa.2009.0101
– volume: 73
  start-page: 805
  year: 1978
  ident: 2024011411372650800_biom13686-bib-0018
  article-title: Nonparametric maximum likelihood estimation of a mixing distribution
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1978.10480103
– volume: 103
  start-page: 103
  year: 1988
  ident: 2024011411372650800_biom13686-bib-0011
  article-title: Computing a nearest symmetric positive semidefinite matrix
  publication-title: Linear Algebra and its Applications
  doi: 10.1016/0024-3795(88)90223-6
– volume: 37
  start-page: 1647
  year: 2009
  ident: 2024011411372650800_biom13686-bib-0014
  article-title: General maximum likelihood empirical Bayes estimation of normal means
  publication-title: The Annals of Statistics
  doi: 10.1214/08-AOS638
– start-page: 367
  volume-title: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability
  year: 1961
  ident: 2024011411372650800_biom13686-bib-0013
  article-title: Estimation with quadratic loss
– volume-title: Quadratic shrinkage for large covariance matrices
  year: 2019
  ident: 2024011411372650800_biom13686-bib-0022
  doi: 10.2139/ssrn.3486378
– volume: 4
  year: 2005
  ident: 2024011411372650800_biom13686-bib-0042
  article-title: A general framework for weighted gene co-expression network analysis
  publication-title: Statistical Applications in Genetics and Molecular Biology
  doi: 10.2202/1544-6115.1128
– volume: 48
  start-page: 738
  year: 2020
  ident: 2024011411372650800_biom13686-bib-0033
  article-title: On the nonparametric maximum likelihood estimator for Gaussian location mixture densities with application to Gaussian denoising
  publication-title: Annals of Statistics
  doi: 10.1214/19-AOS1817
– volume-title: Gaussian estimation: sequence and wavelet models
  year: 2017
  ident: 2024011411372650800_biom13686-bib-0015
– volume: 157
  start-page: 45
  year: 2017
  ident: 2024011411372650800_biom13686-bib-0012
  article-title: A calibration method for non-positive definite covariance matrix in multivariate data analysis
  publication-title: Journal of Multivariate Analysis
  doi: 10.1016/j.jmva.2017.03.001
– volume-title: 39th Annual Meeting IMS, Atlanta, GA, 1975
  year: 1975
  ident: 2024011411372650800_biom13686-bib-0036
  article-title: Estimation of a covariance matrix
– volume: 122
  start-page: 80
  year: 2018
  ident: 2024011411372650800_biom13686-bib-0009
  article-title: Approximate nonparametric maximum likelihood for mixture models: a convex optimization approach to fitting arbitrary multivariate mixing distributions
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2018.01.006
– volume: 81
  start-page: 50
  year: 2017
  ident: 2024011411372650800_biom13686-bib-0027
  article-title: A covariance matrix shrinkage method with Toeplitz rectified target for DOA estimation under the uniform linear array
  publication-title: AEU-International Journal of Electronics and Communications
– volume: 147
  start-page: 186
  year: 2008
  ident: 2024011411372650800_biom13686-bib-0008
  article-title: High dimensional covariance matrix estimation using a factor model
  publication-title: Journal of Econometrics
  doi: 10.1016/j.jeconom.2008.09.017
– volume: 34
  start-page: 177
  year: 2019
  ident: 2024011411372650800_biom13686-bib-0007
  article-title: Bayes, Oracle Bayes and empirical Bayes
  publication-title: Statistical Science
– start-page: 1
  volume-title: 2017 20th International Conference on Information Fusion (Fusion)
  year: 2017
  ident: 2024011411372650800_biom13686-bib-0024
  article-title: Estimation of high dimensional covariance matrices by shrinkage algorithms
– start-page: 157
  volume-title: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability
  year: 1955
  ident: 2024011411372650800_biom13686-bib-0031
  article-title: An empirical Bayes approach to statistics
– volume: 44
  start-page: 928
  year: 2016
  ident: 2024011411372650800_biom13686-bib-0019
  article-title: Nonparametric eigenvalue-regularized precision or covariance matrix estimator
  publication-title: The Annals of Statistics
  doi: 10.1214/15-AOS1393
– volume: 24
  start-page: 265
  year: 1962
  ident: 2024011411372650800_biom13686-bib-0025
  article-title: Discussion on Professor Stein's paper
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
– volume: 56
  start-page: 5353
  year: 2008
  ident: 2024011411372650800_biom13686-bib-0029
  article-title: On the asymptotic behavior of the sample estimates of eigenvalues and eigenvectors of covariance matrices
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2008.929662
– volume: 62
  start-page: 7475
  year: 2016
  ident: 2024011411372650800_biom13686-bib-0002
  article-title: Rotational invariant estimator for general noisy matrices
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2016.2616132
– volume-title: bioRxiv
  year: 2018
  ident: 2024011411372650800_biom13686-bib-0004
  article-title: Corshrink: empirical bayes shrinkage estimation of correlations, with applications
  doi: 10.1101/368316
– volume: 34
  start-page: 1373
  year: 1986
  ident: 2024011411372650800_biom13686-bib-0037
  article-title: Lectures on the theory of estimation of many parameters
  publication-title: Journal of Soviet Mathematics
  doi: 10.1007/BF01085007
– volume: 21
  start-page: 5
  year: 2011
  ident: 2024011411372650800_biom13686-bib-0039
  article-title: An overview of composite likelihood methods
  publication-title: Statistica Sinica
– volume: 90
  start-page: 1200
  year: 1995
  ident: 2024011411372650800_biom13686-bib-0005
  article-title: Adapting to unknown smoothness via wavelet shrinkage
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1995.10476626
– volume-title: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability
  year: 1951
  ident: 2024011411372650800_biom13686-bib-0030
  article-title: Asymptotically subminimax solutions of compound statistical decision problems
  doi: 10.1525/9780520411586-011
– volume: 109
  start-page: 674
  year: 2014
  ident: 2024011411372650800_biom13686-bib-0017
  article-title: Convex optimization, shape constraints, compound decisions, and empirical Bayes rules
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2013.869224
– volume: 88
  start-page: 365
  year: 2004
  ident: 2024011411372650800_biom13686-bib-0021
  article-title: A well-conditioned estimator for large-dimensional covariance matrices
  publication-title: Journal of Multivariate Analysis
  doi: 10.1016/S0047-259X(03)00096-4
– volume: 106
  start-page: 672
  year: 2011
  ident: 2024011411372650800_biom13686-bib-0003
  article-title: Adaptive thresholding for sparse covariance matrix estimation
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/jasa.2011.tm10560
– volume: 5
  start-page: 147
  year: 1990
  ident: 2024011411372650800_biom13686-bib-0038
  article-title: The 1988 Neyman memorial lecture: a Galtonian perspective on shrinkage estimators
  publication-title: Statistical Science
  doi: 10.1214/ss/1177012274
– volume: 27
  start-page: 959
  year: 2017
  ident: 2024011411372650800_biom13686-bib-0034
  article-title: Transcriptional regulatory dynamics drive coordinated metabolic and neural response to social challenge in mice
  publication-title: Genome Research
  doi: 10.1101/gr.214221.116
– volume: 107
  start-page: 1480
  year: 2012
  ident: 2024011411372650800_biom13686-bib-0040
  article-title: Positive-definite l1-penalized estimation of large covariance matrices
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2012.725386
– volume: 8
  start-page: S5
  year: 2007
  ident: 2024011411372650800_biom13686-bib-0028
  article-title: Inferring cellular networks – a review
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-S6-S5
– volume: 40
  start-page: 1024
  year: 2012
  ident: 2024011411372650800_biom13686-bib-0023
  article-title: Nonlinear shrinkage estimation of large-dimensional covariance matrices
  publication-title: The Annals of Statistics
  doi: 10.1214/12-AOS989
SSID ssj0009502
Score 2.4030504
Snippet Covariance matrix estimation is a fundamental statistical task in many applications, but the sample covariance matrix is suboptimal when the sample size is...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1201
SubjectTerms Analysis of covariance
Animals
Bayes Theorem
Biostatistics
compound decision theory
Computer Simulation
Covariance matrix
Data analysis
Eigenvalues
Estimation
Gene Regulatory Networks
genes
Genomics
g‐modeling
Mice
nonparametric maximum likelihood
Nonparametric statistics
Research methodology
Sample Size
separable decision rule
sequence analysis
shrinkage
variance covariance matrix
Title A compound decision approach to covariance matrix estimation
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.13686
https://www.ncbi.nlm.nih.gov/pubmed/35499364
https://www.proquest.com/docview/2827420273
https://www.proquest.com/docview/2658645204
https://www.proquest.com/docview/2849881162
Volume 79
WOSCitedRecordID wos000799422000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1541-0420
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009502
  issn: 0006-341X
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB48QR881ms9loq-KBR6ZNMUfFmPRUFXEZV9K02TPOmuuLui_96Zpq0uiiC-lEImkCYzyTedyTcA-02dejIS2jWeCl3mB8qVmcTN0BivmYVxGuTZFg-XUacjut34ZgKOyrswlh-i-uFGlpHv12TgqRx8MXK6nk5JWoJPwrTvhxHpdMBuvlDuepYrnLK7mN8tyEkpj-ez7_hx9A1jjkPW_MxpL_5vtEuwUGBNp2WVYxkmdK8Gs7b65HsN5q8qytZBDeYIdlrW5hU4ajmUa04llxxVVOFxSvpxZ9jH1ld0skljnCci-X9ziK3DXoNchfv22d3JuVvUWXAzOp9dJSKlAymY5ExHHsXHOcfFNYgtuNKx9CUzsfGkHxg_Rn8lQByTGZ1poRkLw3ANpnr9nt4Ah2ujRaSbFN1hXqZEjHBLNVODXTmPVB0OyulOsoKEnGphPCalM0ITleQTVYe9SvbZUm_8KLVdrlpSmN8gwSGiy09UPXXYrZrRcCgakvZ0f4QyiL0oquuxX2QEi4XAjwnqsG41ohpKSJ51yLH3Yb7wv4wxOb64vsrfNv8ivAVzVNzeJqZtw9TwZaR3YCZ7RW14aeTKjs-oKxowfXrbvr_8ACI7AwU
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSwMxEB60KuqDR73quaIvCgt7ZLNZ8KUepWJbRVT6tnQ3yZO2Yg_03zuz2a6KIohvC5lANplJvslMvgE4DFTHSUKhbO1I32auJ-0kTXAz1NoJUj_qeFm2xUMjbLVEux3d5Lk59BbG8EMUF25kGdl-TQZOF9KfrJzep1OWluCTMMVQj4ISTJ3f1u4bn1h3HUMXTglezG3n_KSUyvPR--uJ9A1mfkWt2bFTW_zngJdgIcebVtUoyDJMqG4ZZkwFyrcyzDcL2tZ-GeYIehrm5hU4qVqUb05llyyZV-KxxhTk1qCHrSN0tElrrCci-n-1iLHDPIVchfvaxd1Z3c5rLdgpndG2FKFUXiJYwpkKHYqRc44LrBFfcKmixE2YjrSTuJ52I_RZPMQyqVapEoox3_fXoNTtddUGWFxpJUIVUISHOakUEUIuGXQ0duU8lBU4Gs93nOZE5FQP4zEeOyQ0UXE2URU4KGSfDf3Gj1Lb42WLcxPsxzhEdPuJrqcC-0UzGg9FRDpd1RuiDOIviuw67BcZwSIh8Ge8CqwblSiG4pN37XPsfZyt_C9jjE8vr5vZ1-ZfhPdgtn7XbMSNy9bVFsxRsXuTqLYNpcHLUO3AdDpCzXjZzXX_HQeyBfo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgPDQOPMarPIvgAlKlPtI0lbjwmkCwsQOg3aq1SU6wobEh-PfYTVeGQEiIW6U6kpvYyefa-QxwEKqOm0ZCOdqVgcM8XzppluJmqLUbZkHc8fNqi4ebqNkU7XbcKmpz6C6M4Ycof7iRZ-T7NTm4epZ6zMvpfjpVaQk-CVMsxE2WiJ1Za4xz1zVk4VTexbx2wU5KhTyfY7-eR99A5lfMmh869YV_qrsI8wXatE-MeSzBhOrWYMb0n3yvwVyjJG19qUGVgKfhbV6G4xObqs2p6ZItiz489oiA3B708O0rhtlkM_YT0fy_2cTXYS5CrsB9_eLu7NIpOi04GZ3QjhSRVH4qWMqZilzKkHOOy6sRXXCp4tRLmY61m3q-9mKMWHxEMplWmRKKsSAIVqHS7XXVOthcaSUiFVJ-h7mZFDECLhl2NA7lPJIWHI7mO8kKGnLqhvGYjMIRmqgknygL9kvZZ0O-8aPU1mjZksIBXxJUEYN-IuuxYK98ja5D-ZBOV_WGKIPoi_K6LvtFRrBYCPwY34I1YxKlKgHF1gHH0Uf5yv-iY3J6ddvInzb-IrwLs63zenJz1bzehCp1ujdValtQGfSHahums1c0jP5Obvgf4QID4w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+compound+decision+approach+to+covariance+matrix+estimation&rft.jtitle=Biometrics&rft.au=Xin%2C+Huiqin&rft.au=Zhao%2C+Sihai+Dave&rft.date=2023-06-01&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=79&rft.issue=2&rft.spage=1201&rft.epage=1212&rft_id=info:doi/10.1111%2Fbiom.13686&rft.externalDBID=10.1111%252Fbiom.13686&rft.externalDocID=BIOM13686
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon