A transformation‐free linear regression for compositional outcomes and predictors

Compositional data are common in many fields, both as outcomes and predictor variables. The inventory of models for the case when both the outcome and predictor variables are compositional is limited, and the existing models are often difficult to interpret in the compositional space, due to their u...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biometrics Ročník 78; číslo 3; s. 974 - 987
Hlavní autoři: Fiksel, Jacob, Zeger, Scott, Datta, Abhirup
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Blackwell Publishing Ltd 01.09.2022
Témata:
ISSN:0006-341X, 1541-0420, 1541-0420
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Compositional data are common in many fields, both as outcomes and predictor variables. The inventory of models for the case when both the outcome and predictor variables are compositional is limited, and the existing models are often difficult to interpret in the compositional space, due to their use of complex log‐ratio transformations. We develop a transformation‐free linear regression model where the expected value of the compositional outcome is expressed as a single Markov transition from the compositional predictor. Our approach is based on estimating equations thereby not requiring complete specification of data likelihood and is robust to different data‐generating mechanisms. Our model is simple to interpret, allows for 0s and 1s in both the compositional outcome and covariates, and subsumes several interesting subcases of interest. We also develop permutation tests for linear independence and equality of effect sizes of two components of the predictor. Finally, we show that despite its simplicity, our model accurately captures the relationship between compositional data using two datasets from education and medical research.
AbstractList Compositional data are common in many fields, both as outcomes and predictor variables. The inventory of models for the case when both the outcome and predictor variables are compositional is limited, and the existing models are often difficult to interpret in the compositional space, due to their use of complex log‐ratio transformations. We develop a transformation‐free linear regression model where the expected value of the compositional outcome is expressed as a single Markov transition from the compositional predictor. Our approach is based on estimating equations thereby not requiring complete specification of data likelihood and is robust to different data‐generating mechanisms. Our model is simple to interpret, allows for 0s and 1s in both the compositional outcome and covariates, and subsumes several interesting subcases of interest. We also develop permutation tests for linear independence and equality of effect sizes of two components of the predictor. Finally, we show that despite its simplicity, our model accurately captures the relationship between compositional data using two datasets from education and medical research.
Compositional data are common in many fields, both as outcomes and predictor variables. The inventory of models for the case when both the outcome and predictor variables are compositional is limited, and the existing models are often difficult to interpret in the compositional space, due to their use of complex log‐ratio transformations. We develop a transformation‐free linear regression model where the expected value of the compositional outcome is expressed as a single Markov transition from the compositional predictor. Our approach is based on estimating equations thereby not requiring complete specification of data likelihood and is robust to different data‐generating mechanisms. Our model is simple to interpret, allows for 0s and 1s in both the compositional outcome and covariates, and subsumes several interesting subcases of interest. We also develop permutation tests for linear independence and equality of effect sizes of two components of the predictor. Finally, we show that despite its simplicity, our model accurately captures the relationship between compositional data using two datasets from education and medical research.
Compositional data are common in many fields, both as outcomes and predictor variables. The inventory of models for the case when both the outcome and predictor variables are compositional is limited, and the existing models are often difficult to interpret in the compositional space, due to their use of complex log-ratio transformations. We develop a transformation-free linear regression model where the expected value of the compositional outcome is expressed as a single Markov transition from the compositional predictor. Our approach is based on estimating equations thereby not requiring complete specification of data likelihood and is robust to different data-generating mechanisms. Our model is simple to interpret, allows for 0s and 1s in both the compositional outcome and covariates, and subsumes several interesting subcases of interest. We also develop permutation tests for linear independence and equality of effect sizes of two components of the predictor. Finally, we show that despite its simplicity, our model accurately captures the relationship between compositional data using two datasets from education and medical research.Compositional data are common in many fields, both as outcomes and predictor variables. The inventory of models for the case when both the outcome and predictor variables are compositional is limited, and the existing models are often difficult to interpret in the compositional space, due to their use of complex log-ratio transformations. We develop a transformation-free linear regression model where the expected value of the compositional outcome is expressed as a single Markov transition from the compositional predictor. Our approach is based on estimating equations thereby not requiring complete specification of data likelihood and is robust to different data-generating mechanisms. Our model is simple to interpret, allows for 0s and 1s in both the compositional outcome and covariates, and subsumes several interesting subcases of interest. We also develop permutation tests for linear independence and equality of effect sizes of two components of the predictor. Finally, we show that despite its simplicity, our model accurately captures the relationship between compositional data using two datasets from education and medical research.
Author Fiksel, Jacob
Zeger, Scott
Datta, Abhirup
Author_xml – sequence: 1
  givenname: Jacob
  orcidid: 0000-0001-7067-1334
  surname: Fiksel
  fullname: Fiksel, Jacob
  email: jfiksel@gmail.com
  organization: Johns Hopkins University
– sequence: 2
  givenname: Scott
  surname: Zeger
  fullname: Zeger, Scott
  organization: Johns Hopkins University
– sequence: 3
  givenname: Abhirup
  surname: Datta
  fullname: Datta, Abhirup
  organization: Johns Hopkins University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33788259$$D View this record in MEDLINE/PubMed
BookMark eNqF0c1K5TAUB_Agil4_Nj6AFNwMQp2cnKYfSxVHBcXFKLgraXIqkba5Ji2Du3mEeUafZHK96kJEswlJfueQ5L_JVgc3EGO7wA8hjp-Ndf0hYJbLFTYDmUHKM8FX2YxznqeYwd0G2wzhIS4rycU620AsylLIasZ-HyWjV0None_VaN3w_Pdf64mSzg6kfOLp3lMI8SCJJNGun7tgF1B1iZvGuEEhUYNJ5p6M1aPzYZuttaoLtPM6b7HbX6c3J-fp5fXZxcnRZaozkcvUcJ0jz6sSWzCGl6gEqBIyRGygMA2SNJqyRiJxhFZU2ohWxYu3vFIGDW6xH8u-c-8eJwpj3dugqevUQG4KtSgBqkIAyu-p5EUhMoki0v0P9MFNPj43qgKqXArBq6j2XtXU9GTqube98k_1289GcLAE2rsQPLXvBHi9iK1exFa_xBYx_4C1HV_iiOHY7vMSWJb8sR09fdG8Pr64vlrW_AffyqqG
CitedBy_id crossref_primary_10_1080_03610926_2021_2014890
crossref_primary_10_1016_j_apm_2024_02_037
crossref_primary_10_1108_IJOA_09_2021_2970
crossref_primary_10_1007_s11222_024_10560_z
crossref_primary_10_1680_jenes_23_00110
crossref_primary_10_1007_s11222_024_10382_z
crossref_primary_10_1016_j_scitotenv_2023_164344
crossref_primary_10_1093_bioinformatics_btaf387
crossref_primary_10_1038_s41598_022_11044_8
crossref_primary_10_7717_peerj_11936
Cites_doi 10.6339/JDS.201901_17(1).0010
10.1080/02664763.2016.1157145
10.1177/0962280217710835
10.17713/ajs.v47i5.718
10.1002/9781119976462.ch25
10.1080/01621459.2021.1909599
10.1007/BF00891269
10.1177/0962280214560047
10.1111/j.1467-9876.2008.00627.x
10.1080/02664763.2011.644268
10.1016/j.apgeochem.2008.03.004
10.1111/j.2517-6161.1977.tb01600.x
10.1515/jem-2012-0006
10.1007/978-3-319-96422-5
10.2307/1913471
10.32614/RJ-2017-016
10.1198/016214501753381850
10.1111/j.2517-6161.1982.tb01195.x
10.1353/mpq.0.0030
10.1023/A:1023818214614
10.1093/biomet/71.2.323
10.1007/BF00048682
10.18637/jss.v087.c03
10.1093/biomet/asu031
10.1080/07474938.2013.806849
10.1007/978-3-642-36809-7
10.2307/1913295
10.1007/978-94-009-4109-0
10.1093/biomet/86.2.351
10.1002/(SICI)1099-1255(199611)11:6<619::AID-JAE418>3.0.CO;2-1
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley Periodicals LLC on behalf of International Biometric Society.
2021 The Authors. Biometrics published by Wiley Periodicals LLC on behalf of International Biometric Society.
2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Wiley Periodicals LLC on behalf of International Biometric Society.
– notice: 2021 The Authors. Biometrics published by Wiley Periodicals LLC on behalf of International Biometric Society.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
JQ2
7X8
7S9
L.6
DOI 10.1111/biom.13465
DatabaseName Open Access: Wiley-Blackwell Open Access Journals
CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

CrossRef
PubMed
MEDLINE - Academic
ProQuest Computer Science Collection
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
Education
EISSN 1541-0420
EndPage 987
ExternalDocumentID 33788259
10_1111_biom_13465
BIOM13465
Genre article
Journal Article
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
24P
2AX
2QV
3-9
31~
33P
36B
3SF
3V.
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AANHP
AANLZ
AAONW
AASGY
AAUAY
AAXRX
AAYCA
AAZKR
AAZSN
ABBHK
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABJCF
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABTAH
ABUWG
ABXSQ
ABXVV
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNMO
ADODI
ADOZA
ADULT
ADVOB
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELPN
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFBPY
AFDVO
AFEBI
AFFTP
AFGKR
AFKRA
AFPWT
AFVYC
AFWVQ
AFZJQ
AGTJU
AHMBA
AIAGR
AIBGX
AIURR
AIWBW
AJAOE
AJBDE
AJXKR
ALAGY
ALEEW
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMYDB
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K48
K6V
K7-
KOP
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
NU-
O66
O9-
OIG
OJZSN
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
ROX
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
VQA
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WYISQ
X6Y
XBAML
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAWIL
AAYXX
ABAWQ
ABGNP
ACHJO
ADNBA
AEFGJ
AEOTA
AFFHD
AGLNM
AGQPQ
AGXDD
AHGBF
AIDQK
AIDYY
AIHAF
AJBYB
AJNCP
CITATION
H13
O8X
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
AGORE
ESTFP
JQ2
7X8
7S9
L.6
ID FETCH-LOGICAL-c4265-d0c6306983f1dd083a21a814333b17db3e5dce4b53e031f29cd2fa788f09ad3d3
IEDL.DBID 24P
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000646722300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0006-341X
1541-0420
IngestDate Fri Oct 03 00:12:54 EDT 2025
Sat Sep 27 22:11:53 EDT 2025
Sat Sep 06 22:31:45 EDT 2025
Wed Feb 19 02:28:48 EST 2025
Sat Nov 29 02:10:09 EST 2025
Tue Nov 18 22:38:16 EST 2025
Wed Jan 22 16:21:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Kullback-Leibler distance loss function
compositional data
expectation-maximization algorithm
transformation-free
estimating equation
Language English
License Attribution-NonCommercial
2021 The Authors. Biometrics published by Wiley Periodicals LLC on behalf of International Biometric Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4265-d0c6306983f1dd083a21a814333b17db3e5dce4b53e031f29cd2fa788f09ad3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7067-1334
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.13465
PMID 33788259
PQID 2719652209
PQPubID 35366
PageCount 14
ParticipantIDs proquest_miscellaneous_2811972135
proquest_miscellaneous_2507724532
proquest_journals_2719652209
pubmed_primary_33788259
crossref_primary_10_1111_biom_13465
crossref_citationtrail_10_1111_biom_13465
wiley_primary_10_1111_biom_13465_BIOM13465
PublicationCentury 2000
PublicationDate September 2022
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2022
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2015; 4
2011
2017; 44
2019; 17
2003; 35
2013; 122
2008; 57
1999; 86
2005
2012; 39
2003
1977; 45
2018; 87
2018; 27
2017; 9
2016; 35
2018; 47
1996; 11
2009; 55
1984; 52
1984; 71
1977; 39
2021
2020
2020; 92
1982; 44
1986
2018
1970; 65
2008; 23
1992; 24
2015
2001; 1
2014
1992; 44
2016; 25
2001; 96
2014; 101
Aitchison J. (e_1_2_9_5_1) 2003
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_33_1
Maier M.J. (e_1_2_9_32_1) 2014
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
Lee T.‐C. (e_1_2_9_28_1) 1970
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
Du Y. (e_1_2_9_14_1) 2020; 92
e_1_2_9_7_1
Friedman J. (e_1_2_9_22_1) 2001
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Nguyen T.H.A. (e_1_2_9_36_1) 2018
Jones M.M.T. (e_1_2_9_27_1) 2005
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_29_1
References_xml – volume: 35
  start-page: 279
  year: 2003
  end-page: 300
  article-title: Isometric log ratio transformations for compositional data analysis
  publication-title: Mathematical Geology
– volume: 35
  start-page: 515
  year: 2016
  end-page: 552
  article-title: Regression analysis of multivariate fractional data
  publication-title: Econometric Reviews
– volume: 24
  start-page: 365
  year: 1992
  end-page: 379
  article-title: On criteria for measures of compositional difference
  publication-title: Mathematical Geology
– volume: 57
  start-page: 505
  year: 2008
  end-page: 520
  article-title: A latent Gaussian model for compositional data with zeros
  publication-title: Journal of the Royal Statistical Society: Series C (Applied Statistics)
– year: 2005
– volume: 39
  start-page: 1115
  year: 2012
  end-page: 1128
  article-title: Linear regression with compositional explanatory variables
  publication-title: Journal of Applied Statistics
– start-page: 341
  year: 2011
  end-page: 355
– year: 2003
– volume: 71
  start-page: 323
  year: 1984
  end-page: 330
  article-title: Log contrast models for experiments with mixtures
  publication-title: Biometrika
– volume: 9
  start-page: 421
  year: 2017
  end-page: 436
  article-title: pdp: an R package for constructing partial dependence plots
  publication-title: The R Journal
– volume: 96
  start-page: 1205
  year: 2001
  end-page: 1214
  article-title: Statistical interpretation of species composition
  publication-title: Journal of the American Statistical Association
– volume: 1
  year: 2001
– volume: 52
  start-page: 681
  year: 1984
  end-page: 700
  article-title: Pseudo maximum likelihood methods: theory
  publication-title: Econometrica
– volume: 44
  start-page: 139
  year: 1982
  end-page: 160
  article-title: The statistical analysis of compositional data
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
– volume: 25
  start-page: 3057
  year: 2016
  end-page: 3065
  article-title: Applying compositional data methodology to nutritional epidemiology
  publication-title: Statistical Methods in Medical Research
– volume: 101
  start-page: 785
  year: 2014
  end-page: 797
  article-title: Variable selection in regression with compositional covariates
  publication-title: Biometrika
– volume: 11
  start-page: 619
  year: 1996
  end-page: 632
  article-title: Econometric methods for fractional response variables with an application to 401 (k) plan participation rates
  publication-title: Journal of Applied Econometrics
– year: 2018
– year: 2014
– year: 2021
  article-title: Generalized bayes quantification learning under dataset shift
  publication-title: Journal of the American Statistical Association
– year: 1986
– volume: 65
  year: 1970
– volume: 92
  start-page: 1
  year: 2020
  end-page: 41
  article-title: SQUAREM: An R package for off‐the‐shelf acceleration of EM, MM and other EM‐like monotone algorithms
  publication-title: Journal of Statistical Software, Articles
– volume: 44
  start-page: 197
  year: 1992
  end-page: 200
  article-title: Multinomial logistic regression algorithm
  publication-title: Annals of the Institute of Statistical Mathematics
– volume: 27
  start-page: 3726
  year: 2018
  end-page: 3738
  article-title: Compositional data analysis for physical activity, sedentary time and sleep research
  publication-title: Statistical Methods in Medical Research
– volume: 47
  start-page: 1
  year: 2018
  end-page: 25
  article-title: Interpretation of explanatory variables impacts in compositional regression models
  publication-title: Austrian Journal of Statistics
– volume: 55
  start-page: 224
  year: 2009
  article-title: Long‐term effects of parents' education on children's educational and occupational success: Mediation by family interactions, child aggression, and teenage aspirations
  publication-title: Merrill‐Palmer Quarterly (Wayne State University. Press)
– volume: 86
  start-page: 351
  year: 1999
  end-page: 364
  article-title: Convex linear combinations of compositions
  publication-title: Biometrika
– volume: 23
  start-page: 2198
  year: 2008
  end-page: 2213
  article-title: Cluster analysis applied to regional geochemical data: problems and possibilities
  publication-title: Applied Geochemistry
– volume: 45
  start-page: 183
  year: 1977
  end-page: 198
  article-title: Estimation of time‐varying Markov processes with aggregate data
  publication-title: Econometrica
– year: 2020
– volume: 44
  start-page: 2270
  year: 2017
  end-page: 2285
  article-title: Multiple linear regression with compositional response and covariates
  publication-title: Journal of Applied Statistics
– volume: 122
  year: 2013
– volume: 39
  start-page: 1
  year: 1977
  end-page: 22
  article-title: Maximum likelihood from incomplete data via the em algorithm
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
– volume: 17
  start-page: 219
  year: 2019
  end-page: 237
  article-title: Regression for compositional data with compositional data as predictor variables with or without zero values
  publication-title: Journal of Data Science
– year: 2015
– volume: 87
  start-page: 1
  year: 2018
  end-page: 17
  article-title: ggtern: Ternary diagrams using ggplot2
  publication-title: Journal of Statistical Software, Code Snippets
– volume: 4
  start-page: 71
  year: 2015
  end-page: 100
  article-title: Multivariate fractional regression estimation of econometric share models
  publication-title: Journal of Econometric Methods
– ident: e_1_2_9_8_1
  doi: 10.6339/JDS.201901_17(1).0010
– ident: e_1_2_9_12_1
  doi: 10.1080/02664763.2016.1157145
– ident: e_1_2_9_16_1
  doi: 10.1177/0962280217710835
– ident: e_1_2_9_33_1
  doi: 10.17713/ajs.v47i5.718
– ident: e_1_2_9_39_1
  doi: 10.1002/9781119976462.ch25
– ident: e_1_2_9_20_1
  doi: 10.1080/01621459.2021.1909599
– ident: e_1_2_9_4_1
  doi: 10.1007/BF00891269
– ident: e_1_2_9_29_1
  doi: 10.1177/0962280214560047
– ident: e_1_2_9_11_1
  doi: 10.1111/j.1467-9876.2008.00627.x
– volume-title: The Statistical Analysis of Compositional Data
  year: 2003
  ident: e_1_2_9_5_1
– volume-title: Estimating Markov transition matrices using proportions data: an application to credit risk
  year: 2005
  ident: e_1_2_9_27_1
– ident: e_1_2_9_26_1
  doi: 10.1080/02664763.2011.644268
– ident: e_1_2_9_38_1
  doi: 10.1016/j.apgeochem.2008.03.004
– ident: e_1_2_9_13_1
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume-title: The Elements of Statistical Learning
  year: 2001
  ident: e_1_2_9_22_1
– ident: e_1_2_9_34_1
  doi: 10.1515/jem-2012-0006
– volume-title: Dirichletreg: Dirichlet regression for compositional data in R
  year: 2014
  ident: e_1_2_9_32_1
– ident: e_1_2_9_21_1
  doi: 10.1007/978-3-319-96422-5
– ident: e_1_2_9_23_1
  doi: 10.2307/1913471
– ident: e_1_2_9_19_1
– ident: e_1_2_9_24_1
  doi: 10.32614/RJ-2017-016
– ident: e_1_2_9_40_1
– ident: e_1_2_9_9_1
  doi: 10.1198/016214501753381850
– ident: e_1_2_9_2_1
  doi: 10.1111/j.2517-6161.1982.tb01195.x
– ident: e_1_2_9_15_1
  doi: 10.1353/mpq.0.0030
– volume-title: Analyzing the impacts of socio‐economic factors on French departmental elections with coda methods
  year: 2018
  ident: e_1_2_9_36_1
– volume: 92
  start-page: 1
  year: 2020
  ident: e_1_2_9_14_1
  article-title: SQUAREM: An R package for off‐the‐shelf acceleration of EM, MM and other EM‐like monotone algorithms
  publication-title: Journal of Statistical Software, Articles
– ident: e_1_2_9_17_1
  doi: 10.1023/A:1023818214614
– ident: e_1_2_9_6_1
  doi: 10.1093/biomet/71.2.323
– ident: e_1_2_9_10_1
  doi: 10.1007/BF00048682
– ident: e_1_2_9_25_1
  doi: 10.18637/jss.v087.c03
– ident: e_1_2_9_30_1
  doi: 10.1093/biomet/asu031
– ident: e_1_2_9_35_1
  doi: 10.1080/07474938.2013.806849
– ident: e_1_2_9_41_1
  doi: 10.1007/978-3-642-36809-7
– ident: e_1_2_9_18_1
– ident: e_1_2_9_31_1
  doi: 10.2307/1913295
– ident: e_1_2_9_3_1
  doi: 10.1007/978-94-009-4109-0
– ident: e_1_2_9_7_1
  doi: 10.1093/biomet/86.2.351
– ident: e_1_2_9_37_1
  doi: 10.1002/(SICI)1099-1255(199611)11:6<619::AID-JAE418>3.0.CO;2-1
– volume-title: Estimating the Parameters of the Markov Probability Model from Aggregate Time Series Data
  year: 1970
  ident: e_1_2_9_28_1
SSID ssj0009502
Score 2.4720151
Snippet Compositional data are common in many fields, both as outcomes and predictor variables. The inventory of models for the case when both the outcome and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 974
SubjectTerms biomedical research
compositional data
data collection
education
estimating equation
expectation‐maximization algorithm
Genetic transformation
inventories
Kullback–Leibler distance loss function
Medical research
Permutations
Regression analysis
Regression models
Transformations
transformation‐free
Title A transformation‐free linear regression for compositional outcomes and predictors
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.13465
https://www.ncbi.nlm.nih.gov/pubmed/33788259
https://www.proquest.com/docview/2719652209
https://www.proquest.com/docview/2507724532
https://www.proquest.com/docview/2811972135
Volume 78
WOSCitedRecordID wos000646722300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1541-0420
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009502
  issn: 0006-341X
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS9xAEB_s2YI-2Pasev5jS_uikJLdTW4T8MW2Hi2oFa1wb2Gzu_FFcpK7E3zzI_gZ-0k6s8mlJxWh9CEhJBN22N3J_iY78xuAj4kVJjFSB1YpFaD_5QJtcEDwENpyK9PC88weq9PTZDhMzxbgYJYLU_NDtD_cyDL895oMXOfjOSOn9PRPXEb9-AUsci4TKtwgorM5yt2w5gqn6K6IDxtyUorj-fPu4-XoL4z5GLL6NWfw-v-0fQMrDdZkh_XkeAsLruzCq7r65F0Xlk9aytZxF5YIdtaszatwccgmc4h2VP66fygq5xgpoitWuas6frZkKMIoLr0J_sL2RtMJ3nBjpkvLbiraCaKSPu_gcnD088u3oCm_EBhctuPAhqaPDkWayIJbi1BNC64TxFdS5lzZXLrYGhflsXT4ZShEaqwoNLrURZhqK61cg045Kt0GMKosaqgUVpgXkaLcWIEwVStXRLmyEe_B3mwUMtNwk1OJjOts5qNQ_2W-_3rwoZW9qRk5npTang1m1ljlOBOK-BOFCNMevG8foz3RJoku3WiKMgiQlYhiKZ6RSXy1Ni6xmfV6orSqSCLoR5-yB_t-PjyjY_b5-48Tf7X5L8JbsCQoB8MHum1DZ1JN3Q68NLc4SapdbwN4VsNkFxa_ng8uj38DlmoMjQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9wwDLcGGxo8sO1g2_FnC9peQCpqk5S0jzCBQLs7kGDSvVVpkvKCeqh3N4k3PsI-4z7J7LRXDjEhTXuoVLWuaiV2bCf2zwBfE8tNYoQOrFIqwPjLBdrghODFtY2sSAuPM9tTg0EyHKYXTW4O1cLU-BDthhtphl-vScFpQ3pOy6k-fT8S8iBegJcSzQyJOZcXc5i7YQ0WTuldMho26KSUyPPw7WN79MTJfOyzeqNz8uY_2X0Lq423yQ5r8XgHL1zZgaW6_-RdB1b6LWjruAPL5HjWuM1rcHnIJnM-7aj8ff-rqJxjxImuWOWu6wzakiEJo8z0Jv0L_zeaTvCBGzNdWnZb0VkQNfVZhx8nx1ffToOmAUNg0HDHgQ3NAYYUaSKKyFp01jSPdIIDLUQeKZsLF1vjZB4Lh2tDwVNjeaExqC7CVFthxXtYLEel-wiMeosaaoYV5oVUVB3L0VHVyhUyV1ZGXdidTUNmGnRyapJxk82iFBq_zI9fF760tLc1JsdfqbZms5k1ejnOuCIERc7DtAs77WvUKDom0aUbTZEGXWTFZSz4MzSJ79cWCfzNh1pSWlYEQfRjVNmFPS8Qz_CYHZ2d9_3dxr8Qf4bXp1f9XtY7G3zfhGVOFRk-7W0LFifV1G3DK_MTBab65BXiD9TQDfA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEB61gVZwaGkoEErLVuUCkpG9a7P2kUKjooaAWpBys9b700vlRE6CxI1H4Bl5EmZsxwQVIVU9WLLssXa0u7P7jXfmG4Cd2HAda6E8I6X00P-yntI4IHhxZQIjElfyzPZkvx8PBsl5HZtDuTAVP0Tzw40so1yvycDtyLg5K6f89P1AhAfRS1gIqYpMCxaOf3Yve3Osu35FF04BXmEwqPlJKZTn4evHO9JfMPMxai23ne7b_1R4Bd7UeJMdVhPkHbyweRteVRUor9uwfNrQto7bsETQs2JuXoVfh2wyh2qH-d3NrSusZaSJKlhhf1cxtDlDEUax6XUAGLY3nE7wgR0zlRs2Kug0iMr6vIfL7reLo-9eXYLB07h1R57x9QE6FUksXGAMwjXFAxUjxhIiC6TJhI2MtmEWCYurg-OJNtwpdKudnygjjFiDVj7M7QYwqi6qqRyWn7lQUn4sR6iqpHVhJk0YdGB3NgyprvnJqUzGn3Tmp1D_pWX_deBLIzuqWDmelNqajWZaW-Y45ZI4FDn3kw58bl6jTdFBicrtcIoyCJIlDyPBn5GJy4ptgcBm1quZ0qgiiKQf_coO7JUT4hkd068nZ6fl3ea_CG_D6_Pjbto76f_4AEucUjLKuLctaE2Kqf0Ii_oK50vxqbaIezWIDwY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+transformation%E2%80%90free+linear+regression+for+compositional+outcomes+and+predictors&rft.jtitle=Biometrics&rft.au=Fiksel%2C+Jacob&rft.au=Zeger%2C+Scott&rft.au=Datta%2C+Abhirup&rft.date=2022-09-01&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=78&rft.issue=3&rft.spage=974&rft.epage=987&rft_id=info:doi/10.1111%2Fbiom.13465&rft.externalDBID=10.1111%252Fbiom.13465&rft.externalDocID=BIOM13465
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon