Consensus + Innovations Approach for Distributed Multiagent Coordination in a Microgrid
Distributed energy resources and demand-side management are expected to become more prevalent in the future electric power system. Coordinating the increased number of grid participants in an efficient and reliable way is going to be a major challenge. A potential solution is the employment of a dis...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on smart grid Jg. 6; H. 4; S. 1893 - 1903 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.07.2015
|
| Schlagworte: | |
| ISSN: | 1949-3053, 1949-3061 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Distributed energy resources and demand-side management are expected to become more prevalent in the future electric power system. Coordinating the increased number of grid participants in an efficient and reliable way is going to be a major challenge. A potential solution is the employment of a distributed energy management approach, which uses intelligence distributed over the grid to balance supply and demand. In this paper, we specifically consider the situation in which distributed resources and loads form microgrids within the bulk power system in which the load is supplied by local generation. A distributed energy management approach based on the consensus + innovations method is presented and used to coordinate local generation, flexible load, and storage devices within the microgrid. The approach takes advantage of the fact that, at the optimal allocation settings, the marginal costs given as a function of the power output/consumption need to be equal for all nonbinding network resources. Solutions for single time step, as well as multitime step optimization including intertemporal constraints, are presented. |
|---|---|
| AbstractList | Distributed energy resources and demand-side management are expected to become more prevalent in the future electric power system. Coordinating the increased number of grid participants in an efficient and reliable way is going to be a major challenge. A potential solution is the employment of a distributed energy management approach, which uses intelligence distributed over the grid to balance supply and demand. In this paper, we specifically consider the situation in which distributed resources and loads form microgrids within the bulk power system in which the load is supplied by local generation. A distributed energy management approach based on the consensus + innovations method is presented and used to coordinate local generation, flexible load, and storage devices within the microgrid. The approach takes advantage of the fact that, at the optimal allocation settings, the marginal costs given as a function of the power output/consumption need to be equal for all nonbinding network resources. Solutions for single time step, as well as multitime step optimization including intertemporal constraints, are presented. |
| Author | Chenye Wu Kar, Soummya Hug, Gabriela |
| Author_xml | – sequence: 1 givenname: Gabriela surname: Hug fullname: Hug, Gabriela email: ghug@ece.cmu.edu organization: Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA – sequence: 2 givenname: Soummya surname: Kar fullname: Kar, Soummya organization: Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA – sequence: 3 surname: Chenye Wu fullname: Chenye Wu organization: Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA |
| BookMark | eNp9kE1LAzEQhoNUsNbeBS-5y9Zkk2w2x7JqLVg8WPG4JNmkRmpSklTw37v9oAcPzmWGgWde5rkEAx-8AeAaownGSNwtX2eTEmE2KSkSiJEzMMSCioKgCg9OMyMXYJzSJ-qLEFKVYgjem-CT8Wmb4C2cex--ZXb9Ck43mxik_oA2RHjvUo5ObbPp4GK7zk6ujM-wCSF2zu8J6DyUcOF0DKvouitwbuU6mfGxj8Db48OyeSqeX2bzZvpcaFpWpFCMYl0zzXjHFOJG2criDtVcMIZUXUomaqGEri0XlCNFqSYMK6s6KbnhhIwAOtztc1OKxrab6L5k_Gkxandu2t5Nu3PTHt30SPUH0S7vf8hRuvV_4M0BdMaYUw5HoqYlJ7-hK3OI |
| CODEN | ITSGBQ |
| CitedBy_id | crossref_primary_10_1109_TSTE_2023_3275160 crossref_primary_10_1016_j_epsr_2024_110562 crossref_primary_10_1016_j_rser_2019_01_036 crossref_primary_10_1016_j_energy_2022_123996 crossref_primary_10_1109_TSG_2017_2699084 crossref_primary_10_1016_j_epsr_2016_05_014 crossref_primary_10_1109_TSG_2020_2989929 crossref_primary_10_1016_j_apenergy_2024_123916 crossref_primary_10_1109_TSG_2016_2587741 crossref_primary_10_1016_j_ijepes_2019_05_051 crossref_primary_10_1016_j_ijepes_2020_106023 crossref_primary_10_1016_j_apenergy_2021_117979 crossref_primary_10_1109_JIOT_2021_3067951 crossref_primary_10_1016_j_segan_2021_100471 crossref_primary_10_3390_en10071017 crossref_primary_10_1109_TASE_2016_2627006 crossref_primary_10_1109_TII_2024_3383523 crossref_primary_10_3390_en14113110 crossref_primary_10_1016_j_conengprac_2018_08_018 crossref_primary_10_1016_j_arcontrol_2019_05_006 crossref_primary_10_1016_j_ijepes_2021_107171 crossref_primary_10_1049_cth2_12720 crossref_primary_10_1109_TIE_2019_2931229 crossref_primary_10_1016_j_egyr_2021_10_113 crossref_primary_10_1049_iet_gtd_2019_0796 crossref_primary_10_1109_TCYB_2019_2921475 crossref_primary_10_1109_TPWRS_2018_2870153 crossref_primary_10_1109_TPWRS_2020_3041193 crossref_primary_10_1109_TSTE_2016_2581167 crossref_primary_10_1016_j_neucom_2021_03_126 crossref_primary_10_1109_TCNS_2019_2921284 crossref_primary_10_1109_TNNLS_2023_3234049 crossref_primary_10_1016_j_enbuild_2024_114544 crossref_primary_10_1080_00207721_2017_1322640 crossref_primary_10_1109_TCYB_2023_3270185 crossref_primary_10_1109_TPWRS_2017_2779540 crossref_primary_10_3390_electricity5030023 crossref_primary_10_1016_j_apenergy_2018_08_026 crossref_primary_10_1016_j_energy_2023_130120 crossref_primary_10_1109_TIA_2017_2691298 crossref_primary_10_1016_j_epsr_2024_110676 crossref_primary_10_1109_TSG_2018_2856524 crossref_primary_10_1109_TPWRS_2021_3068620 crossref_primary_10_1016_j_egyr_2021_03_035 crossref_primary_10_1016_j_apenergy_2022_118907 crossref_primary_10_1016_j_scs_2024_105392 crossref_primary_10_1109_TII_2019_2952254 crossref_primary_10_1109_TPWRS_2020_3025391 crossref_primary_10_1016_j_apenergy_2021_117075 crossref_primary_10_1016_j_gloei_2021_09_009 crossref_primary_10_1016_j_apenergy_2022_119556 crossref_primary_10_1016_j_ijepes_2020_106240 crossref_primary_10_1109_TSG_2020_3018622 crossref_primary_10_1016_j_energy_2021_122713 crossref_primary_10_1109_ACCESS_2021_3071830 crossref_primary_10_1016_j_ijepes_2020_106610 crossref_primary_10_1109_TSG_2019_2938553 crossref_primary_10_1109_TSTE_2018_2889643 crossref_primary_10_1016_j_ijepes_2024_110283 crossref_primary_10_1515_auto_2018_0040 crossref_primary_10_1146_annurev_control_042820_011148 crossref_primary_10_1016_j_segan_2023_101075 crossref_primary_10_1016_j_rser_2022_112908 crossref_primary_10_1109_TCSI_2022_3185398 crossref_primary_10_1109_ACCESS_2022_3151922 crossref_primary_10_3390_electronics13081437 crossref_primary_10_1016_j_egyr_2019_09_064 crossref_primary_10_1016_j_rser_2023_113161 crossref_primary_10_1007_s40565_019_0510_0 crossref_primary_10_1109_TSG_2017_2786668 crossref_primary_10_1109_TSG_2020_3026930 crossref_primary_10_1109_TIE_2017_2698425 crossref_primary_10_1109_TIE_2020_2992015 crossref_primary_10_1016_j_energy_2022_123567 crossref_primary_10_1080_00207217_2022_2158494 crossref_primary_10_1016_j_ijepes_2020_106060 crossref_primary_10_1051_e3sconf_202018501024 crossref_primary_10_1109_ACCESS_2022_3211926 crossref_primary_10_1109_TII_2023_3348816 crossref_primary_10_1049_stg2_12067 crossref_primary_10_3390_en12224276 crossref_primary_10_1016_j_ijepes_2021_107204 crossref_primary_10_1109_TSG_2021_3067172 crossref_primary_10_1049_iet_rpg_2018_5858 crossref_primary_10_1109_TSG_2020_3048397 crossref_primary_10_1016_j_ijepes_2023_109669 crossref_primary_10_1016_j_epsr_2025_111910 crossref_primary_10_1016_j_ijepes_2022_108015 crossref_primary_10_1016_j_apenergy_2021_117448 crossref_primary_10_1109_TSG_2023_3279415 crossref_primary_10_1109_TVT_2024_3396212 crossref_primary_10_3390_en16237898 crossref_primary_10_1109_TPWRS_2018_2808961 crossref_primary_10_1109_TSG_2016_2637958 crossref_primary_10_1109_TSG_2022_3189665 crossref_primary_10_1016_j_segan_2023_101055 crossref_primary_10_1109_ACCESS_2020_3032378 crossref_primary_10_3390_en12193701 crossref_primary_10_1016_j_jfranklin_2019_07_007 crossref_primary_10_1049_gtd2_12206 crossref_primary_10_1016_j_ijepes_2021_107437 crossref_primary_10_3390_electricity6020035 crossref_primary_10_1007_s10462_019_09695_7 crossref_primary_10_1016_j_ijepes_2019_105794 crossref_primary_10_1109_TSG_2022_3189534 crossref_primary_10_1016_j_jfranklin_2025_107672 crossref_primary_10_1016_j_epsr_2022_108088 crossref_primary_10_1016_j_jfranklin_2023_12_033 crossref_primary_10_1049_iet_rpg_2019_1085 crossref_primary_10_1109_TAC_2021_3092561 crossref_primary_10_1109_ACCESS_2025_3576593 crossref_primary_10_1016_j_apenergy_2022_119125 crossref_primary_10_1109_TPWRS_2023_3263242 crossref_primary_10_1016_j_apenergy_2021_118310 crossref_primary_10_1109_ACCESS_2019_2927303 crossref_primary_10_1109_TAC_2019_2922191 crossref_primary_10_1016_j_epsr_2022_108197 crossref_primary_10_1016_j_energy_2017_05_114 crossref_primary_10_1109_TCNS_2024_3431730 crossref_primary_10_32604_ee_2024_043159 crossref_primary_10_1109_TSG_2018_2820748 crossref_primary_10_3390_app9030457 crossref_primary_10_1109_TSG_2017_2684426 crossref_primary_10_1109_TSG_2016_2631600 crossref_primary_10_3390_sym15091699 crossref_primary_10_1016_j_ijepes_2022_108289 crossref_primary_10_1109_TSG_2024_3453502 crossref_primary_10_3390_electronics7120418 crossref_primary_10_1016_j_rser_2023_113211 crossref_primary_10_1002_oca_3076 crossref_primary_10_1016_j_ijepes_2020_106759 crossref_primary_10_1109_TIE_2016_2631133 crossref_primary_10_1109_JSYST_2023_3293808 crossref_primary_10_1088_1742_6596_2703_1_012022 crossref_primary_10_1109_TSG_2020_3028825 crossref_primary_10_1109_ACCESS_2021_3061995 crossref_primary_10_1016_j_heliyon_2024_e32646 crossref_primary_10_1109_TII_2019_2950460 crossref_primary_10_1016_j_ijepes_2021_107482 crossref_primary_10_1109_TII_2023_3321027 crossref_primary_10_1049_rpg2_12794 crossref_primary_10_1016_j_ijepes_2023_109067 crossref_primary_10_1109_TSG_2021_3070783 crossref_primary_10_3390_en11092236 crossref_primary_10_1109_TNSE_2020_3036604 crossref_primary_10_3390_electronics8050569 crossref_primary_10_1016_j_apenergy_2022_119838 crossref_primary_10_1109_JETCAS_2017_2708900 crossref_primary_10_1016_j_scs_2018_04_008 crossref_primary_10_1002_oca_2534 crossref_primary_10_1016_j_epsr_2024_111003 crossref_primary_10_1049_iet_gtd_2019_1233 crossref_primary_10_1109_TIE_2018_2826476 crossref_primary_10_1109_ACCESS_2021_3125031 crossref_primary_10_1109_TII_2020_3003669 crossref_primary_10_1109_TPWRS_2024_3447089 crossref_primary_10_1016_j_epsr_2017_05_002 crossref_primary_10_1049_rpg2_70075 crossref_primary_10_1049_joe_2018_8821 crossref_primary_10_1088_1742_6596_2774_1_012036 crossref_primary_10_1109_TPWRS_2018_2834472 crossref_primary_10_1109_ACCESS_2019_2940751 crossref_primary_10_3390_en10070903 crossref_primary_10_1109_JSYST_2023_3310270 crossref_primary_10_1109_JSYST_2020_3022712 crossref_primary_10_1109_TSG_2018_2835657 crossref_primary_10_1016_j_ijepes_2023_108997 crossref_primary_10_3390_en14154665 crossref_primary_10_1016_j_ifacol_2017_08_1546 crossref_primary_10_1016_j_apenergy_2023_120685 crossref_primary_10_1109_TSG_2016_2633416 crossref_primary_10_1109_TCYB_2019_2933003 crossref_primary_10_1016_j_ijepes_2018_12_043 crossref_primary_10_1016_j_ijepes_2022_108198 crossref_primary_10_1109_TAC_2017_2688452 crossref_primary_10_1109_TSG_2016_2607801 crossref_primary_10_1109_TII_2018_2815719 crossref_primary_10_1109_JAS_2023_124122 crossref_primary_10_1109_ACCESS_2022_3144930 crossref_primary_10_3390_en9070562 crossref_primary_10_1016_j_apenergy_2021_116722 crossref_primary_10_1049_iet_cta_2018_6102 crossref_primary_10_1109_TPWRS_2021_3065097 crossref_primary_10_1002_tee_22639 crossref_primary_10_1049_cth2_12526 crossref_primary_10_1016_j_segan_2023_101122 crossref_primary_10_1109_ACCESS_2019_2950372 crossref_primary_10_1016_j_ijepes_2021_107373 crossref_primary_10_1109_TPWRS_2020_2985995 crossref_primary_10_1049_iet_gtd_2015_0159 crossref_primary_10_1016_j_segan_2019_100193 crossref_primary_10_1109_ACCESS_2021_3139075 crossref_primary_10_1109_JETCAS_2017_2669340 crossref_primary_10_1109_TNNLS_2018_2801880 crossref_primary_10_1109_TSG_2020_2969657 crossref_primary_10_1016_j_rser_2018_08_003 crossref_primary_10_1109_TPWRS_2019_2896654 crossref_primary_10_1109_TSG_2019_2906573 crossref_primary_10_3390_en14217234 crossref_primary_10_1109_TCYB_2017_2669041 crossref_primary_10_1109_TSG_2018_2833108 crossref_primary_10_1016_j_ijepes_2019_03_024 crossref_primary_10_1109_TSG_2018_2848282 crossref_primary_10_1109_LCSYS_2022_3188743 crossref_primary_10_1109_TIA_2021_3114135 crossref_primary_10_1109_TPWRS_2018_2872880 crossref_primary_10_1109_TPWRS_2018_2889989 crossref_primary_10_1016_j_epsr_2019_106180 crossref_primary_10_1109_TSG_2016_2550422 crossref_primary_10_1016_j_ijepes_2017_08_009 crossref_primary_10_1109_TCYB_2025_3562390 crossref_primary_10_1016_j_ijepes_2023_109014 crossref_primary_10_1049_iet_gtd_2018_5309 crossref_primary_10_1016_j_apenergy_2021_117036 |
| Cites_doi | 10.1109/TPWRS.2012.2188912 10.1109/TAC.2014.2298140 10.1109/ISAP.2005.1599297 10.1109/IECON.2011.6119743 10.1109/JPROC.2010.2052531 10.1109/PESGM.2012.6345156 10.1109/TCST.2008.919414 10.1109/NAPS.2011.6025103 10.1109/JSAC.2012.120711 10.1109/CDC.2005.1582861 10.1109/TIT.2012.2191450 10.1109/PESC.2004.1354758 10.1109/JPROC.2006.887293 10.1109/PES.2011.6039422 10.1109/MPE.2008.918702 10.1109/TEC.2007.914686 10.1561/2200000016 10.1109/TPWRD.2012.2194514 10.1109/PESW.2002.985003 10.1109/SmartGridComm.2012.6486046 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TSG.2015.2409053 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore: IEL CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore: IEL url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1949-3061 |
| EndPage | 1903 |
| ExternalDocumentID | 10_1109_TSG_2015_2409053 7098427 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Pennsylvania Infrastructure Technology Alliance – fundername: Carnegie Mellon University Scott Institute, by the National Science Foundation grantid: ECCS 1408222 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION |
| ID | FETCH-LOGICAL-c4263-b541c85c57d5b07ebf6f1d0879550b82a5989b9c8f79470b44c351bfbdaa7e733 |
| IEDL.DBID | RIE |
| ISSN | 1949-3053 |
| IngestDate | Tue Nov 18 22:04:50 EST 2025 Sat Nov 29 03:45:47 EST 2025 Tue Aug 26 16:41:28 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | multistep optimization distributed optimization economic dispatch Consensus + innovations algorithm |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4263-b541c85c57d5b07ebf6f1d0879550b82a5989b9c8f79470b44c351bfbdaa7e733 |
| OpenAccessLink | https://figshare.com/articles/journal_contribution/Consensus_Innovations_Approach_for_Distributed_Multi-Agent_Coordination_in_a_Microgrid/6468551 |
| PageCount | 11 |
| ParticipantIDs | ieee_primary_7098427 crossref_citationtrail_10_1109_TSG_2015_2409053 crossref_primary_10_1109_TSG_2015_2409053 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-07-01 |
| PublicationDateYYYYMMDD | 2015-07-01 |
| PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE transactions on smart grid |
| PublicationTitleAbbrev | TSG |
| PublicationYear | 2015 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref24 ref12 ref23 ref15 ref14 ref20 ref11 ref22 bergen (ref21) 1999 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 colson (ref6) 2011 ref9 ref4 ref3 kraning (ref13) 2013; 1 ref5 conejo (ref10) 2006 |
| References_xml | – ident: ref17 doi: 10.1109/TPWRS.2012.2188912 – ident: ref20 doi: 10.1109/TAC.2014.2298140 – ident: ref7 doi: 10.1109/ISAP.2005.1599297 – ident: ref16 doi: 10.1109/IECON.2011.6119743 – ident: ref23 doi: 10.1109/JPROC.2010.2052531 – year: 1999 ident: ref21 publication-title: Power Systems Analysis – ident: ref9 doi: 10.1109/PESGM.2012.6345156 – ident: ref11 doi: 10.1109/TCST.2008.919414 – ident: ref14 doi: 10.1109/NAPS.2011.6025103 – ident: ref18 doi: 10.1109/JSAC.2012.120711 – ident: ref12 doi: 10.1109/CDC.2005.1582861 – start-page: 1 year: 2011 ident: ref6 article-title: Algorithms for distributed decision-making for multi-agent microgrid power management publication-title: Proc IEEE Power Energy Soc Gen Meeting – ident: ref8 doi: 10.1109/TIT.2012.2191450 – ident: ref2 doi: 10.1109/PESC.2004.1354758 – ident: ref22 doi: 10.1109/JPROC.2006.887293 – ident: ref15 doi: 10.1109/PES.2011.6039422 – ident: ref3 doi: 10.1109/MPE.2008.918702 – ident: ref4 doi: 10.1109/TEC.2007.914686 – ident: ref24 doi: 10.1561/2200000016 – volume: 1 start-page: 70 year: 2013 ident: ref13 article-title: Dynamic network energy management via proximal message passing publication-title: Found Trends Optim – year: 2006 ident: ref10 publication-title: Decomposition Techniques in Mathematical Programming – ident: ref5 doi: 10.1109/TPWRD.2012.2194514 – ident: ref1 doi: 10.1109/PESW.2002.985003 – ident: ref19 doi: 10.1109/SmartGridComm.2012.6486046 |
| SSID | ssj0000333629 |
| Score | 2.5918036 |
| Snippet | Distributed energy resources and demand-side management are expected to become more prevalent in the future electric power system. Coordinating the increased... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1893 |
| SubjectTerms | Consensus + innovations algorithm Cost function Distributed algorithms distributed optimization economic dispatch Generators Microgrids multistep optimization Technological innovation |
| Title | Consensus + Innovations Approach for Distributed Multiagent Coordination in a Microgrid |
| URI | https://ieeexplore.ieee.org/document/7098427 |
| Volume | 6 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore: IEL customDbUrl: eissn: 1949-3061 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000333629 issn: 1949-3053 databaseCode: RIE dateStart: 20100101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5t8aAHX1WsL3LwIrpttkma5FiqVUGLYMXelrxWCtJKH_5-M7vbpYII3pYlsyzfPmYmM_N9CF0Iq41gWkXMKhexjmOR8h0dESdjLaVnwmbs-o9iMJCjkXquoOtyFsZ7nzWf-SYcZrV8N7VL2CprCaIka4sqqgoh8lmtcj-FUBr-xSorIjMo53O6qkoS1Rq-3EEbF28GB6YIpz-80JqsSuZV-jv_u59dtF1Ej7ibP-49VPGTfbS1xilYR28gwQn6FXN8hR9KzdM57hbs4TiEqfgG-HJB6so7nM3gahixwr1pyEXH-QYhHk-wxk_QsPc-G7sD9Nq_Hfbuo0I9IbJAwh4ZzmIrueXCcUOEN2knjR0BcXFOjGxrrqQyyso0fJKCGMYs5bFJjdNaeEHpIapNphN_hHAIIYOvS9OYhvQLjGnb64CGp51wAScbqLVCM7EFtTgoXHwkWYpBVBLwTwD_pMC_gS5Li8-cVuOPtXWAvlxXoH78--kTtAnGeUftKaotZkt_hjbs12I8n51n78w3ajW-3w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gXrwLb7NwYtod9NNskmO4hvXRXBFbyWvyoLsyq76-820tSiI4K2UJJQvbWcmM_N9AAfSGSu50Ql32ie87XmiQ9sk1KvUKBW4dAW7fkd2u-rpSd9NwHHdCxNCKIrPQgMvi1y-H7p3PCprSqoVb8lJmBact9KyW6s-UaGMxb-xLtLIHBP6gn3lJalu9u4vsZBLNKIJ01SwH3bom7BKYVcuFv_3REuwUPmP5KTc8GWYCIMVmP_GKrgKjyjCiQoWY3JErmvV0zE5qfjDSXRUyRky5qLYVfCk6MI12GRFTocxGu2XR4SkPyCG3GLJ3vOo79fg4eK8d3qVVPoJiUMa9sQKnjolnJBeWCqDzdt56inKiwtqVcsIrbTVTuXxo5TUcu6YSG1uvTEySMbWYWowHIQNINGJjNYuz1MWAzCczFrBRDQCa8cFvNqE5heamavIxVHj4iUrggyqs4h_hvhnFf6bcFjPeC2JNf4Yu4rQ1-Mq1Ld-v70Ps1e9207Wue7ebMMcLlTW1-7A1NvoPezCjPt4649He8X78wmE1cIm |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Consensus+%2B+Innovations+Approach+for+Distributed+Multiagent+Coordination+in+a+Microgrid&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Hug%2C+Gabriela&rft.au=Kar%2C+Soummya&rft.au=Wu%2C+Chenye&rft.date=2015-07-01&rft.issn=1949-3053&rft.eissn=1949-3061&rft.volume=6&rft.issue=4&rft.spage=1893&rft.epage=1903&rft_id=info:doi/10.1109%2FTSG.2015.2409053&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSG_2015_2409053 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon |