Telomere length as a marker of cellular aging is associated with prevalence and progression of metabolic syndrome
Metabolic syndrome (MetS) clusters risk factors for age-related conditions including cardiovascular disease and diabetes. Shorter telomere length (TL), a cellular marker for biological age, may predict an individual's deteriorating metabolic condition. We examined whether shorter baseline TL is...
Uloženo v:
| Vydáno v: | The journal of clinical endocrinology and metabolism Ročník 99; číslo 12; s. 4607 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
01.12.2014
|
| Témata: | |
| ISSN: | 1945-7197, 1945-7197 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Metabolic syndrome (MetS) clusters risk factors for age-related conditions including cardiovascular disease and diabetes. Shorter telomere length (TL), a cellular marker for biological age, may predict an individual's deteriorating metabolic condition.
We examined whether shorter baseline TL is associated with a worse metabolic profile and with less favorable trajectories of MetS components over a 6-year follow-up.
PARTICIPANTS were part of The Netherlands Study of Depression and Anxiety, an ongoing prospective cohort study with 6-year follow-up.
This study included 2848 participants age 18-65 years.
Baseline TL from leukocytes was determined using qPCR and MetS components (waist circumference, triglycerides, high-density lipoprotein [HDL] cholesterol, systolic blood pressure, and fasting glucose) were determined at baseline, and after 2 and 6 years. Cross-sectional and longitudinal analyses were adjusted for relevant sociodemographic, lifestyle, and health factors.
Shorter baseline TL was cross-sectionally associated with HDL (β = -0.016, SE = 0.008, P = .05), waist circumference (β = 0.647, SE = 0.238, P = .007), triglycerides (β = 0.038, SE = 0.009, P < .001), and fasting glucose (β = 0.011, SE = 0.003, P < .001), as well as with the total number of MetS components (β = 0.075, SE = 0.023, P = .001) and the presence of MetS (OR = 1.19; 95% CI, 1.07-1.33; P = .002). Although baseline differences progressively reduced over time, shorter baseline TL was still significantly associated with unfavorable scores of most MetS components at the 2- or 6-year follow-up.
Cellular aging, as assessed by TL, is associated with a higher metabolic risk profile, which remains unfavorable even after a period of 6 years. These findings suggest that cellular aging might play a role in the onset of various aging-related somatic diseases via its effect on metabolic alterations. |
|---|---|
| AbstractList | Metabolic syndrome (MetS) clusters risk factors for age-related conditions including cardiovascular disease and diabetes. Shorter telomere length (TL), a cellular marker for biological age, may predict an individual's deteriorating metabolic condition.
We examined whether shorter baseline TL is associated with a worse metabolic profile and with less favorable trajectories of MetS components over a 6-year follow-up.
PARTICIPANTS were part of The Netherlands Study of Depression and Anxiety, an ongoing prospective cohort study with 6-year follow-up.
This study included 2848 participants age 18-65 years.
Baseline TL from leukocytes was determined using qPCR and MetS components (waist circumference, triglycerides, high-density lipoprotein [HDL] cholesterol, systolic blood pressure, and fasting glucose) were determined at baseline, and after 2 and 6 years. Cross-sectional and longitudinal analyses were adjusted for relevant sociodemographic, lifestyle, and health factors.
Shorter baseline TL was cross-sectionally associated with HDL (β = -0.016, SE = 0.008, P = .05), waist circumference (β = 0.647, SE = 0.238, P = .007), triglycerides (β = 0.038, SE = 0.009, P < .001), and fasting glucose (β = 0.011, SE = 0.003, P < .001), as well as with the total number of MetS components (β = 0.075, SE = 0.023, P = .001) and the presence of MetS (OR = 1.19; 95% CI, 1.07-1.33; P = .002). Although baseline differences progressively reduced over time, shorter baseline TL was still significantly associated with unfavorable scores of most MetS components at the 2- or 6-year follow-up.
Cellular aging, as assessed by TL, is associated with a higher metabolic risk profile, which remains unfavorable even after a period of 6 years. These findings suggest that cellular aging might play a role in the onset of various aging-related somatic diseases via its effect on metabolic alterations. Metabolic syndrome (MetS) clusters risk factors for age-related conditions including cardiovascular disease and diabetes. Shorter telomere length (TL), a cellular marker for biological age, may predict an individual's deteriorating metabolic condition.CONTEXTMetabolic syndrome (MetS) clusters risk factors for age-related conditions including cardiovascular disease and diabetes. Shorter telomere length (TL), a cellular marker for biological age, may predict an individual's deteriorating metabolic condition.We examined whether shorter baseline TL is associated with a worse metabolic profile and with less favorable trajectories of MetS components over a 6-year follow-up.OBJECTIVEWe examined whether shorter baseline TL is associated with a worse metabolic profile and with less favorable trajectories of MetS components over a 6-year follow-up.PARTICIPANTS were part of The Netherlands Study of Depression and Anxiety, an ongoing prospective cohort study with 6-year follow-up.DESIGN AND SETTINGPARTICIPANTS were part of The Netherlands Study of Depression and Anxiety, an ongoing prospective cohort study with 6-year follow-up.This study included 2848 participants age 18-65 years.PARTICIPANTSThis study included 2848 participants age 18-65 years.Baseline TL from leukocytes was determined using qPCR and MetS components (waist circumference, triglycerides, high-density lipoprotein [HDL] cholesterol, systolic blood pressure, and fasting glucose) were determined at baseline, and after 2 and 6 years. Cross-sectional and longitudinal analyses were adjusted for relevant sociodemographic, lifestyle, and health factors.MAIN OUTCOME MEASURESBaseline TL from leukocytes was determined using qPCR and MetS components (waist circumference, triglycerides, high-density lipoprotein [HDL] cholesterol, systolic blood pressure, and fasting glucose) were determined at baseline, and after 2 and 6 years. Cross-sectional and longitudinal analyses were adjusted for relevant sociodemographic, lifestyle, and health factors.Shorter baseline TL was cross-sectionally associated with HDL (β = -0.016, SE = 0.008, P = .05), waist circumference (β = 0.647, SE = 0.238, P = .007), triglycerides (β = 0.038, SE = 0.009, P < .001), and fasting glucose (β = 0.011, SE = 0.003, P < .001), as well as with the total number of MetS components (β = 0.075, SE = 0.023, P = .001) and the presence of MetS (OR = 1.19; 95% CI, 1.07-1.33; P = .002). Although baseline differences progressively reduced over time, shorter baseline TL was still significantly associated with unfavorable scores of most MetS components at the 2- or 6-year follow-up.RESULTSShorter baseline TL was cross-sectionally associated with HDL (β = -0.016, SE = 0.008, P = .05), waist circumference (β = 0.647, SE = 0.238, P = .007), triglycerides (β = 0.038, SE = 0.009, P < .001), and fasting glucose (β = 0.011, SE = 0.003, P < .001), as well as with the total number of MetS components (β = 0.075, SE = 0.023, P = .001) and the presence of MetS (OR = 1.19; 95% CI, 1.07-1.33; P = .002). Although baseline differences progressively reduced over time, shorter baseline TL was still significantly associated with unfavorable scores of most MetS components at the 2- or 6-year follow-up.Cellular aging, as assessed by TL, is associated with a higher metabolic risk profile, which remains unfavorable even after a period of 6 years. These findings suggest that cellular aging might play a role in the onset of various aging-related somatic diseases via its effect on metabolic alterations.CONCLUSIONSCellular aging, as assessed by TL, is associated with a higher metabolic risk profile, which remains unfavorable even after a period of 6 years. These findings suggest that cellular aging might play a role in the onset of various aging-related somatic diseases via its effect on metabolic alterations. |
| Author | Révész, Dóra Verhoeven, Josine E Penninx, Brenda W J H Milaneschi, Yuri |
| Author_xml | – sequence: 1 givenname: Dóra surname: Révész fullname: Révész, Dóra organization: Department of Psychiatry, EMGO Institute for Health and Care Institute, VU University Medical Center, 1081 HL Amsterdam, The Netherlands – sequence: 2 givenname: Yuri surname: Milaneschi fullname: Milaneschi, Yuri – sequence: 3 givenname: Josine E surname: Verhoeven fullname: Verhoeven, Josine E – sequence: 4 givenname: Brenda W J H surname: Penninx fullname: Penninx, Brenda W J H |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25188715$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNUD1PwzAQtVARLYWNGXlkSbEdJ05GVPElVWIpc3R1ziElsVs7AfXf44oiMd3Xe-_u3iWZWGeRkBvOFlxwdr_VC8G4THiR8TMy46XMEsVLNfmXT8llCFsWYTJLL8hUZLwoFM9mZL_GzvXokXZom-GDQqBAe_Cf6KkzVGPXjR14Ck1rG9rGaQhOtzBgTb_bSNh5_IJI1kjB1rF0jccQWmeP_B4H2Liu1TQcbO3jqitybqALeH2Kc_L-9LheviSrt-fX5cMq0VLkIpGoSql1WaSpFLWCNK-FKhWUypjY13ltcmkMw1SkghnGWC5BcjC5TgVwEHNy96sbL9qPGIaqb8PxHbDoxlDxPAorlWYqQm9P0HHTY13tfBsdOFR_NokftFZsLQ |
| CitedBy_id | crossref_primary_10_1016_j_hrthm_2015_07_032 crossref_primary_10_1016_j_jpsychires_2017_02_007 crossref_primary_10_3390_nu15204373 crossref_primary_10_7554_eLife_59479 crossref_primary_10_1038_srep33147 crossref_primary_10_1007_s40520_025_03034_3 crossref_primary_10_1038_s41598_020_68848_9 crossref_primary_10_1016_j_ijcard_2019_05_006 crossref_primary_10_1017_S0033291723003264 crossref_primary_10_17826_cumj_1238482 crossref_primary_10_1016_j_freeradbiomed_2018_09_039 crossref_primary_10_1016_j_psyneuen_2016_02_007 crossref_primary_10_1186_s13098_025_01784_8 crossref_primary_10_1111_jgh_15912 crossref_primary_10_1080_10408398_2022_2142196 crossref_primary_10_1371_journal_pone_0180687 crossref_primary_10_1007_s10578_021_01279_3 crossref_primary_10_1007_s11356_023_28017_7 crossref_primary_10_1017_S0033291716000891 crossref_primary_10_1017_S0954579416000900 crossref_primary_10_1155_2021_5530293 crossref_primary_10_3390_biochem1010001 crossref_primary_10_1016_j_taap_2015_05_005 crossref_primary_10_1093_cdn_nzab084 crossref_primary_10_1002_ajhb_23596 crossref_primary_10_1097_EDE_0000000000000812 crossref_primary_10_1016_j_bpsgos_2021_11_007 crossref_primary_10_1038_s41598_021_91987_6 crossref_primary_10_1186_s12967_018_1414_x crossref_primary_10_1186_s12940_024_01088_w crossref_primary_10_1002_da_22620 crossref_primary_10_1093_eurheartj_ehy527 crossref_primary_10_1098_rstb_2017_0151 crossref_primary_10_1002_oby_23810 crossref_primary_10_3389_fgene_2024_1390198 crossref_primary_10_1016_j_jpsychires_2018_05_014 crossref_primary_10_3109_07853890_2015_1074718 crossref_primary_10_1038_s41598_023_44715_1 crossref_primary_10_1007_s00438_016_1191_2 crossref_primary_10_1186_s13098_023_01206_7 crossref_primary_10_1016_j_psyneuen_2025_107431 crossref_primary_10_1111_acel_13445 crossref_primary_10_1007_s11357_021_00347_9 crossref_primary_10_1016_j_exger_2020_111212 crossref_primary_10_3389_fendo_2022_978747 crossref_primary_10_3390_biology10040253 crossref_primary_10_1007_s40200_024_01513_4 crossref_primary_10_1016_j_sjbs_2023_103897 crossref_primary_10_1089_met_2017_0134 crossref_primary_10_1002_hbm_24487 crossref_primary_10_3389_fphys_2019_00444 crossref_primary_10_1093_sleep_zsz139 crossref_primary_10_1016_j_urolonc_2023_10_010 crossref_primary_10_3945_ajcn_116_130468 crossref_primary_10_3390_nu13082682 crossref_primary_10_1016_j_atherosclerosis_2021_08_013 crossref_primary_10_1089_dna_2014_2746 crossref_primary_10_1038_nrendo_2014_182 crossref_primary_10_1002_da_22512 crossref_primary_10_1016_j_dld_2015_05_002 crossref_primary_10_1146_annurev_food_032217_020802 crossref_primary_10_1016_j_bcmd_2021_102563 crossref_primary_10_1097_XCE_0000000000000232 crossref_primary_10_1089_gtmb_2016_0176 crossref_primary_10_1097_MCO_0000000000000243 crossref_primary_10_1111_jdi_12555 crossref_primary_10_3390_ijms22126278 crossref_primary_10_1080_15622975_2021_2013091 crossref_primary_10_1371_journal_pone_0174945 crossref_primary_10_1007_s12403_024_00678_w crossref_primary_10_1097_EDE_0000000000001081 crossref_primary_10_1111_exd_12959 crossref_primary_10_4103_jrms_JRMS_793_20 crossref_primary_10_1007_s40618_016_0601_y crossref_primary_10_1016_j_exger_2021_111269 crossref_primary_10_1016_j_jad_2020_05_098 crossref_primary_10_1016_j_rbmo_2021_08_025 crossref_primary_10_1155_2017_8435178 crossref_primary_10_3389_fendo_2019_00128 crossref_primary_10_1155_2020_5384909 crossref_primary_10_1016_j_scitotenv_2024_173014 crossref_primary_10_1097_MD_0000000000007565 crossref_primary_10_1007_s11357_023_00871_w crossref_primary_10_1016_j_jad_2015_06_034 crossref_primary_10_5534_wjmh_200189 crossref_primary_10_3389_fcvm_2022_1012615 crossref_primary_10_1186_s13148_019_0767_1 crossref_primary_10_1016_j_archger_2025_105854 crossref_primary_10_1016_j_pscychresns_2018_10_002 crossref_primary_10_1210_jc_2017_01625 crossref_primary_10_1289_ehp_1510187 crossref_primary_10_1016_j_envpol_2018_09_090 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1210/jc.2014-1851 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1945-7197 |
| ExternalDocumentID | 25188715 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X .55 .GJ .XZ 08P 0R~ 18M 1TH 29K 2WC 34G 354 39C 3O- 4.4 48X 53G 5GY 5RS 5YH 7X7 88E 8F7 8FI 8FJ AABZA AACZT AAIMJ AAJQQ AAKAS AAPGJ AAPQZ AAPXW AAQQT AARHZ AAUAY AAUQX AAVAP AAWDT AAWTL AAYJJ ABBLC ABDFA ABDPE ABEJV ABGNP ABJNI ABLJU ABMNT ABNHQ ABOCM ABPMR ABPPZ ABPQP ABPTD ABQNK ABUWG ABVGC ABWST ABXVV ABXZS ACFRR ACGFO ACGFS ACPRK ACUTJ ACVCV ACYHN ACZBC ADBBV ADGKP ADGZP ADHKW ADMTO ADNBA ADQBN ADRTK ADVEK ADZCM AELWJ AEMDU AEMQT AENEX AENZO AEOTA AERZD AETBJ AEWNT AFCHL AFFNX AFFQV AFFZL AFGWE AFKRA AFOFC AFRAH AFXAL AFYAG AGINJ AGKRT AGMDO AGORE AGQXC AGUTN AHGBF AHMBA AHMMS AI. AJBYB AJDVS AJEEA ALMA_UNASSIGNED_HOLDINGS ALXQX APIBT APJGH AQDSO AQKUS ARIXL ASPBG ATGXG AVNTJ AVWKF AZFZN BAWUL BAYMD BCRHZ BENPR BEYMZ BPHCQ BSWAC BTRTY BVXVI C45 CCPQU CDBKE CGR CS3 CUY CVF D-I DAKXR DIK E3Z EBS ECM EIF EIHJH EJD EMOBN ENERS F5P FECEO FEDTE FHSFR FLUFQ FOEOM FOTVD FQBLK FYUFA GAUVT GJXCC GX1 H13 HMCUK HVGLF HZ~ H~9 IAO IHR INH ITC J5H KBUDW KOP KSI KSN L7B M1P M5~ MBLQV MHKGH MJL N4W N9A NLBLG NOMLY NOYVH NPM NU- NVLIB O9- OAUYM OBFPC OBH OCB ODMLO OFXIZ OGEVE OHH OJZSN OK1 OPAEJ OVD OVIDX P2P P6G PHGZM PHGZT PJZUB PPXIY PQQKQ PROAC PSQYO REU ROX ROZ TEORI TJX TLC TMA TR2 TWZ UKHRP VH1 VVN W8F WHG WOQ X52 X7M YBU YFH YHG YOC YSK ZGI ZXP ZY1 ~02 ~H1 7X8 AEHZK |
| ID | FETCH-LOGICAL-c4262-4e794cc983342d7a36d2797a97ff4ccc6df64ff0e32320f00064a41af6c32a1a2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 107 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=00004678-201412000-00032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1945-7197 |
| IngestDate | Thu Oct 02 09:43:40 EDT 2025 Mon Jul 21 05:39:46 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4262-4e794cc983342d7a36d2797a97ff4ccc6df64ff0e32320f00064a41af6c32a1a2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 25188715 |
| PQID | 1634277357 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1634277357 pubmed_primary_25188715 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-December |
| PublicationDateYYYYMMDD | 2014-12-01 |
| PublicationDate_xml | – month: 12 year: 2014 text: 2014-December |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | The journal of clinical endocrinology and metabolism |
| PublicationTitleAlternate | J Clin Endocrinol Metab |
| PublicationYear | 2014 |
| SSID | ssj0014453 |
| Score | 2.4783428 |
| Snippet | Metabolic syndrome (MetS) clusters risk factors for age-related conditions including cardiovascular disease and diabetes. Shorter telomere length (TL), a... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 4607 |
| SubjectTerms | Adolescent Adult Aged Biomarkers Cellular Senescence Cholesterol, HDL - blood Cohort Studies Cross-Sectional Studies Female Follow-Up Studies Humans Longitudinal Studies Male Metabolic Syndrome - epidemiology Metabolic Syndrome - pathology Middle Aged Netherlands - epidemiology Prevalence Prospective Studies Telomere Shortening Triglycerides - blood Waist Circumference Young Adult |
| Title | Telomere length as a marker of cellular aging is associated with prevalence and progression of metabolic syndrome |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/25188715 https://www.proquest.com/docview/1634277357 |
| Volume | 99 |
| WOSCitedRecordID | wos00004678-201412000-00032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAIsTC-1FeMhKrRWI7cTMhhKhYWnUoUrfI8UMUtUmbFH4_PsdVJyQklgyJLMW-89357vx9CD0oGalUmZgwzaQ7oJiMZFRQop2rT1OAUCukJ5sQw2FvMslGIeHWhLbKtU30hlpXCnLkjy5u4FQIloinxZIAaxRUVwOFxjbqMBfKgFaLyaaKwLlHoXTn9ISIOBOh8R1urXwCfGHMiXNX8e_BpXcy_cP__t4ROgjhJX5u9eEYbZnyBO0NQgH9FC3HZlbNTW0wMKisPrBssMRz6NGpcWUx5PGhMRV78iI8dV-D_IzGkLPFixoAwsEeYFlq7Pu7WmwPGD83K6dVs6nCayiEM_Tefx2_vJHAukAUoNMTbtwWVSrrMTcjLSRLNRWZkJmw1r1XqbYptzYyzAVjkfVBjeSxtKliVMaSnqOdsirNJcJFwqTo6SiRSvGCJgUvDDM0o0UB14NkF92vFzN3Wg1TlKWpvpp8s5xddNFKJF-08Bs5BQw5ESdXfxh9jfZbMUP_yQ3qWLenzS3aVd-raVPfeXVxz-Fo8APcZ8tS |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Telomere+length+as+a+marker+of+cellular+aging+is+associated+with+prevalence+and+progression+of+metabolic+syndrome&rft.jtitle=The+journal+of+clinical+endocrinology+and+metabolism&rft.au=R%C3%A9v%C3%A9sz%2C+D%C3%B3ra&rft.au=Milaneschi%2C+Yuri&rft.au=Verhoeven%2C+Josine+E&rft.au=Penninx%2C+Brenda+W+J+H&rft.date=2014-12-01&rft.eissn=1945-7197&rft.volume=99&rft.issue=12&rft.spage=4607&rft_id=info:doi/10.1210%2Fjc.2014-1851&rft_id=info%3Apmid%2F25188715&rft_id=info%3Apmid%2F25188715&rft.externalDocID=25188715 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1945-7197&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1945-7197&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1945-7197&client=summon |