Paths, trees and matchings under disjunctive constraints
We study the minimum spanning tree problem, the maximum matching problem and the shortest path problem subject to binary disjunctive constraints: A negative disjunctive constraint states that a certain pair of edges cannot be contained simultaneously in a feasible solution. It is convenient to repre...
Gespeichert in:
| Veröffentlicht in: | Discrete Applied Mathematics Jg. 159; H. 16; S. 1726 - 1735 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
Kidlington
Elsevier B.V
28.09.2011
Elsevier |
| Schlagworte: | |
| ISSN: | 0166-218X, 1872-6771 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We study the minimum spanning tree problem, the maximum matching problem and the shortest path problem subject to binary disjunctive constraints: A
negative disjunctive constraint states that a certain pair of edges cannot be contained simultaneously in a feasible solution. It is convenient to represent these negative disjunctive constraints in terms of a so-called
conflict graph whose vertices correspond to the edges of the underlying graph, and whose edges encode the constraints.
We prove that the minimum spanning tree problem is strongly
NP
-hard, even if every connected component of the conflict graph is a path of length two. On the positive side, this problem is polynomially solvable if every connected component is a single edge (that is, a path of length one). The maximum matching problem is
NP
-hard for conflict graphs where every connected component is a single edge.
Furthermore we will also investigate these graph problems under
positive disjunctive constraints: In this setting for certain pairs of edges, a feasible solution must contain at least one edge from every pair. We establish a number of complexity results for these variants including APX-hardness for the shortest path problem. |
|---|---|
| AbstractList | We study the minimum spanning tree problem, the maximum matching problem and the shortest path problem subject to binary disjunctive constraints: A negative disjunctive constraint states that a certain pair of edges cannot be contained simultaneously in a feasible solution. It is convenient to represent these negative disjunctive constraints in terms of a so-called conflict graph whose vertices correspond to the edges of the underlying graph, and whose edges encode the constraints. We prove that the minimum spanning tree problem is strongly [inline image][inline image]-hard, even if every connected component of the conflict graph is a path of length two. On the positive side, this problem is polynomially solvable if every connected component is a single edge (that is, a path of length one). The maximum matching problem is [inline image][inline image]-hard for conflict graphs where every connected component is a single edge. Furthermore we will also investigate these graph problems under positive disjunctive constraints: In this setting for certain pairs of edges, a feasible solution must contain at least one edge from every pair. We establish a number of complexity results for these variants including APX-hardness for the shortest path problem. We study the minimum spanning tree problem, the maximum matching problem and the shortest path problem subject to binary disjunctive constraints: A negative disjunctive constraint states that a certain pair of edges cannot be contained simultaneously in a feasible solution. It is convenient to represent these negative disjunctive constraints in terms of a so-called conflict graph whose vertices correspond to the edges of the underlying graph, and whose edges encode the constraints. We prove that the minimum spanning tree problem is strongly NP -hard, even if every connected component of the conflict graph is a path of length two. On the positive side, this problem is polynomially solvable if every connected component is a single edge (that is, a path of length one). The maximum matching problem is NP -hard for conflict graphs where every connected component is a single edge. Furthermore we will also investigate these graph problems under positive disjunctive constraints: In this setting for certain pairs of edges, a feasible solution must contain at least one edge from every pair. We establish a number of complexity results for these variants including APX-hardness for the shortest path problem. |
| Author | Schauer, Joachim Darmann, Andreas Woeginger, Gerhard J. Pferschy, Ulrich |
| Author_xml | – sequence: 1 givenname: Andreas surname: Darmann fullname: Darmann, Andreas email: andreas.darmann@uni-graz.at organization: University of Graz, Institute of Public Economics, Universitaetsstr. 15, A-8010 Graz, Austria – sequence: 2 givenname: Ulrich surname: Pferschy fullname: Pferschy, Ulrich email: pferschy@uni-graz.at organization: University of Graz, Department of Statistics and Operations Research, Universitaetsstr. 15, A-8010 Graz, Austria – sequence: 3 givenname: Joachim surname: Schauer fullname: Schauer, Joachim email: joachim.schauer@uni-graz.at organization: University of Graz, Department of Statistics and Operations Research, Universitaetsstr. 15, A-8010 Graz, Austria – sequence: 4 givenname: Gerhard J. surname: Woeginger fullname: Woeginger, Gerhard J. email: gwoegi@win.tue.nl organization: TU Eindhoven, Department of Mathematics and Computer Science, P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24532319$$DView record in Pascal Francis |
| BookMark | eNp9kE9rGzEQxUVxoI7TD9DbXkouWVej_SMtOYWQpAVDckihNyHPzjYya22ikQP59pGxe8khMDDM4_0ezDsVszAFEuI7yCVIaH9ulr3bLpXc32qZlS9iDkarstUaZmKelbZUYP5-FafMGykl5GsuzINLT3xRpEjEhQt9sXUJn3z4x8Uu9BSL3vNmFzD5VypwCpyi8yHxmTgZ3Mj07bgX4s_tzeP1r3J1f_f7-mpVYq2aVA5qkEpSB6ZuDTY9odQN1V2L0GrUpl5Do6UGA2siqFQ7kMGKmnXVKY1QVQtxfsh9jtPLjjjZrWekcXSBph3bDro8rTLZ-ePodIxuHKIL6Nk-R7918c2quqlUBV326YMP48QcabDok0t-CvvXRgvS7iu1G5srtftKLSiblUzCB_J_-GfM5YGhXNKrp2gZPQWk3kfCZPvJf0K_A01KjzI |
| CODEN | DAMADU |
| CitedBy_id | crossref_primary_10_1016_j_tcs_2018_01_014 crossref_primary_10_1016_j_ejor_2025_01_044 crossref_primary_10_1111_itor_12690 crossref_primary_10_1016_j_tcs_2025_115081 crossref_primary_10_1016_j_ejor_2025_02_006 crossref_primary_10_1002_net_21883 crossref_primary_10_1007_s00500_022_07602_x crossref_primary_10_1007_s00224_020_10022_9 crossref_primary_10_1002_net_22139 crossref_primary_10_15807_jorsj_60_15 crossref_primary_10_1002_net_21802 crossref_primary_10_1016_j_ejor_2022_04_009 crossref_primary_10_1016_j_cor_2022_106093 crossref_primary_10_1016_j_endm_2018_01_002 crossref_primary_10_1007_s10878_016_0035_7 crossref_primary_10_1016_j_cor_2019_07_001 crossref_primary_10_1007_s10479_018_2895_y crossref_primary_10_1002_net_22021 crossref_primary_10_1007_s10479_024_06123_0 crossref_primary_10_1007_s40314_023_02437_0 crossref_primary_10_1016_j_automatica_2022_110207 crossref_primary_10_1007_s00453_020_00681_y crossref_primary_10_1109_LRA_2019_2893879 crossref_primary_10_1007_s10878_011_9438_7 crossref_primary_10_1016_j_disopt_2017_09_003 crossref_primary_10_1016_j_ejor_2020_04_001 crossref_primary_10_1186_s13634_018_0548_6 crossref_primary_10_1016_j_asoc_2023_110205 crossref_primary_10_1016_j_cor_2012_10_022 crossref_primary_10_1016_j_cor_2024_106620 crossref_primary_10_3390_a18080526 crossref_primary_10_1007_s11590_022_01949_8 crossref_primary_10_1109_TMI_2017_2762963 crossref_primary_10_1016_j_ipl_2024_106503 crossref_primary_10_1007_s00453_022_01079_8 crossref_primary_10_1016_j_entcs_2019_08_062 crossref_primary_10_3390_a17050219 crossref_primary_10_1007_s10878_021_00740_2 crossref_primary_10_1007_s00224_019_09964_6 crossref_primary_10_1016_j_ipl_2014_07_013 crossref_primary_10_3390_math13162674 crossref_primary_10_1016_j_cagd_2017_02_012 crossref_primary_10_1016_j_disopt_2014_01_001 crossref_primary_10_1016_j_cor_2021_105621 crossref_primary_10_1016_j_endm_2018_01_026 crossref_primary_10_1007_s10458_024_09686_1 crossref_primary_10_3390_math12020230 crossref_primary_10_1007_s10479_018_3004_y crossref_primary_10_1007_s10878_017_0184_3 crossref_primary_10_1007_s11590_014_0750_x crossref_primary_10_1111_cgf_12710 crossref_primary_10_1002_net_22009 crossref_primary_10_1016_j_cie_2023_109585 |
| Cites_doi | 10.7155/jgaa.00186 10.1016/S0167-5060(08)70817-3 10.1006/inco.1996.2616 10.1023/A:1009871302966 |
| ContentType | Journal Article Conference Proceeding |
| Copyright | 2010 Elsevier B.V. 2015 INIST-CNRS |
| Copyright_xml | – notice: 2010 Elsevier B.V. – notice: 2015 INIST-CNRS |
| DBID | 6I. AAFTH AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.dam.2010.12.016 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Applied Sciences |
| EISSN | 1872-6771 |
| EndPage | 1735 |
| ExternalDocumentID | 24532319 10_1016_j_dam_2010_12_016 S0166218X1000435X |
| GrantInformation_xml | – fundername: BSIK grantid: 03018 – fundername: the Netherlands Organisation for Scientific Research (NWO) grantid: 639.033.403 |
| GroupedDBID | -~X 6I. AAFTH ADEZE AFTJW AI. ALMA_UNASSIGNED_HOLDINGS FA8 FDB OAUVE VH1 WUQ AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c425t-f2f020e918468c5dec075e496c167c784b15707181bee1326fe8c3e5b3927c133 |
| ISICitedReferencesCount | 64 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000295301000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0166-218X |
| IngestDate | Thu Jul 10 18:10:48 EDT 2025 Wed Apr 02 08:10:59 EDT 2025 Tue Nov 18 21:51:59 EST 2025 Sat Nov 29 02:59:30 EST 2025 Sat Apr 29 22:45:10 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Keywords | Matching Conflict graph Shortest path Minimal spanning tree Binary constraints Edge(graph) Graph path Computer theory Connected graph Optimization Complexity Maximum Spanning tree Combinatorics State constraint |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MeetingName | 8th Cologne/Twente Workshop on Graphs and Combinatorial Optimization (CTW 2009) |
| MergedId | FETCHMERGED-LOGICAL-c425t-f2f020e918468c5dec075e496c167c784b15707181bee1326fe8c3e5b3927c133 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.dam.2010.12.016 |
| PQID | 919919628 |
| PQPubID | 23500 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_919919628 pascalfrancis_primary_24532319 crossref_citationtrail_10_1016_j_dam_2010_12_016 crossref_primary_10_1016_j_dam_2010_12_016 elsevier_sciencedirect_doi_10_1016_j_dam_2010_12_016 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-09-28 |
| PublicationDateYYYYMMDD | 2011-09-28 |
| PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-28 day: 28 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Discrete Applied Mathematics |
| PublicationYear | 2011 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | P. Alimonti, G. Ausiello, L. Giovaniello, M. Protasi, On the complexity of approximating weighted satisfiability problems, Rapporto Tecnico RAP 38.97, Dipartimento di Informatica e Sistemistica, Università degli Studi di Roma La Sapienza, 1997. Welsh (br000065) 1976 Jansen (br000035) 1999; 3 Ausiello, Protasi, Marchetti-Spaccamela, Gambosi, Crescenzi, Kann (br000010) 1999 U. Pferschy, J. Schauer, The maximum flow problem with disjunctive constraints. Available at: Optimization Online 2010-01-2526, (2010) (submitted for publication). Edmonds (br000030) 1979; 4 Schrijver (br000060) 2003; vol. B Darmann, Pferschy, Schauer (br000025) 2009; vol. 5783 Jansen, Öhring (br000040) 1997; 132 Berman, Karpinski, Scott (br000015) 2003; 049 Bodlaender, Jansen (br000020) 1993 Pferschy, Schauer (br000050) 2009; 13 Kann (br000045) 1994; 1 Jansen (10.1016/j.dam.2010.12.016_br000040) 1997; 132 Jansen (10.1016/j.dam.2010.12.016_br000035) 1999; 3 Schrijver (10.1016/j.dam.2010.12.016_br000060) 2003; vol. B Ausiello (10.1016/j.dam.2010.12.016_br000010) 1999 Berman (10.1016/j.dam.2010.12.016_br000015) 2003; 049 Pferschy (10.1016/j.dam.2010.12.016_br000050) 2009; 13 10.1016/j.dam.2010.12.016_br000005 Welsh (10.1016/j.dam.2010.12.016_br000065) 1976 Bodlaender (10.1016/j.dam.2010.12.016_br000020) 1993 10.1016/j.dam.2010.12.016_br000055 Darmann (10.1016/j.dam.2010.12.016_br000025) 2009; vol. 5783 Edmonds (10.1016/j.dam.2010.12.016_br000030) 1979; 4 Kann (10.1016/j.dam.2010.12.016_br000045) 1994; 1 |
| References_xml | – reference: P. Alimonti, G. Ausiello, L. Giovaniello, M. Protasi, On the complexity of approximating weighted satisfiability problems, Rapporto Tecnico RAP 38.97, Dipartimento di Informatica e Sistemistica, Università degli Studi di Roma La Sapienza, 1997. – volume: 049 year: 2003 ident: br000015 article-title: Approximation hardness of short symmetric instances of max-3sat publication-title: Electronic Colloquium on Computational Complexity (ECCC) – start-page: 291 year: 1993 end-page: 300 ident: br000020 article-title: On the complexity of scheduling incompatible jobs with unit-times publication-title: MFCS’93: Proceedings of the 18th International Symposium on Mathematical Foundations of Computer Science – volume: vol. B year: 2003 ident: br000060 publication-title: Combinatorial Optimization, Polyhedra and Efficiency – reference: U. Pferschy, J. Schauer, The maximum flow problem with disjunctive constraints. Available at: Optimization Online 2010-01-2526, (2010) (submitted for publication). – volume: 132 start-page: 85 year: 1997 end-page: 108 ident: br000040 article-title: Approximation algorithms for time constrained scheduling publication-title: Information and Computation – year: 1976 ident: br000065 article-title: Matroid Theory – volume: 13 start-page: 233 year: 2009 end-page: 249 ident: br000050 article-title: The knapsack problem with conflict graphs publication-title: Journal of Graph Algorithms and Applications – volume: vol. 5783 start-page: 414 year: 2009 end-page: 423 ident: br000025 article-title: Determining a minimum spanning tree with disjunctive constraints publication-title: Algorithmic Decision Theory – year: 1999 ident: br000010 article-title: Complexity and Approximation: Combinatorial Optimization Problems and their Approximability Properties – volume: 1 start-page: 317 year: 1994 end-page: 331 ident: br000045 article-title: Polynomially bounded minimization problems that are hard to approximate publication-title: Nordic Journal of Computing – volume: 3 start-page: 363 year: 1999 end-page: 377 ident: br000035 article-title: An approximation scheme for bin packing with conflicts publication-title: Journal of Combinatorial Optimization – volume: 4 start-page: 39 year: 1979 end-page: 49 ident: br000030 article-title: Matroid intersection publication-title: Annals of Discrete Mathematics – volume: 13 start-page: 233 issue: 2 year: 2009 ident: 10.1016/j.dam.2010.12.016_br000050 article-title: The knapsack problem with conflict graphs publication-title: Journal of Graph Algorithms and Applications doi: 10.7155/jgaa.00186 – volume: vol. B year: 2003 ident: 10.1016/j.dam.2010.12.016_br000060 – start-page: 291 year: 1993 ident: 10.1016/j.dam.2010.12.016_br000020 article-title: On the complexity of scheduling incompatible jobs with unit-times – volume: 049 year: 2003 ident: 10.1016/j.dam.2010.12.016_br000015 article-title: Approximation hardness of short symmetric instances of max-3sat publication-title: Electronic Colloquium on Computational Complexity (ECCC) – year: 1976 ident: 10.1016/j.dam.2010.12.016_br000065 – volume: vol. 5783 start-page: 414 year: 2009 ident: 10.1016/j.dam.2010.12.016_br000025 article-title: Determining a minimum spanning tree with disjunctive constraints – year: 1999 ident: 10.1016/j.dam.2010.12.016_br000010 – volume: 1 start-page: 317 issue: 3 year: 1994 ident: 10.1016/j.dam.2010.12.016_br000045 article-title: Polynomially bounded minimization problems that are hard to approximate publication-title: Nordic Journal of Computing – volume: 4 start-page: 39 year: 1979 ident: 10.1016/j.dam.2010.12.016_br000030 article-title: Matroid intersection publication-title: Annals of Discrete Mathematics doi: 10.1016/S0167-5060(08)70817-3 – ident: 10.1016/j.dam.2010.12.016_br000005 – volume: 132 start-page: 85 issue: 2 year: 1997 ident: 10.1016/j.dam.2010.12.016_br000040 article-title: Approximation algorithms for time constrained scheduling publication-title: Information and Computation doi: 10.1006/inco.1996.2616 – ident: 10.1016/j.dam.2010.12.016_br000055 – volume: 3 start-page: 363 year: 1999 ident: 10.1016/j.dam.2010.12.016_br000035 article-title: An approximation scheme for bin packing with conflicts publication-title: Journal of Combinatorial Optimization doi: 10.1023/A:1009871302966 |
| SSID | ssj0001218 ssj0000186 ssj0006644 |
| Score | 2.3107502 |
| Snippet | We study the minimum spanning tree problem, the maximum matching problem and the shortest path problem subject to binary disjunctive constraints: A
negative... We study the minimum spanning tree problem, the maximum matching problem and the shortest path problem subject to binary disjunctive constraints: A negative... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1726 |
| SubjectTerms | Algorithmics. Computability. Computer arithmetics Applied sciences Binary constraints Combinatorics Combinatorics. Ordered structures Complexity Computer science; control theory; systems Conflict graph Exact sciences and technology Graph theory Graphs Information retrieval. Graph Matching Mathematical analysis Mathematics Minimal spanning tree Sciences and techniques of general use Shortest path Shortest-path problems Theoretical computing Trees |
| Title | Paths, trees and matchings under disjunctive constraints |
| URI | https://dx.doi.org/10.1016/j.dam.2010.12.016 https://www.proquest.com/docview/919919628 |
| Volume | 159 |
| WOSCitedRecordID | wos000295301000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1872-6771 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001218 issn: 0166-218X databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlkMRElBaER6VD5wAS_FrH8eopC0VDVFpUDhZzmYtJUrcKE6r_gB-ON_a67XblCIOXKxo_drsfJ75dnZmlpD3HcrTiRhPXEoj4YagBG4SSb2_iUhBCIJEFLlVP76yfp-PRmLQav2qcmGu5yzL-M2NWP5XUaMNwtaps_8gbvtQNOA3hI4jxI7jpuDvtT-fp9AFIMMfE0MxF7Y2a96EyADNhRj1ynRZqxkXyXInT51cttLrNzNYviK-SGoqqXeUWNeb0XfPz7r9vo2MTOyZwVHv_PvhyU99ajiHsrVuZ7R2h2X8xanO5pourGH41ju2sRnHaqUTwsyy1aR2tIoqz7twlhnL3vRdUuqCUYxuKV9TD9ygrKlLQa1owy57rKxrsqHzS_fDDD1ZlKF62r3r3VNf-47ds9GIfhgFoLniEdn2A8oxhd_ufumNThtlyHSNvZ3KcVevU4GvhaZ6fPnXqnXzIoLwTof-xHyeLpMc32NabqSywQkKonPxnOzVKaDOwILrBWmpbJc8M3MWx1iEfJc8Oaux9ZLwAlKfnAJQDgDlWEA5BaCcBqCcBqD2yPCod3F44pq9OVwJLb92Uz_FREMJD_yVy2iiJLinCgWVHmWS8XDsRQz0FbMipTzMEVLFZaCiMfg4k14Q7JOt7DJTr4jDKJVhJ2FS4AE0whSewVCMfd9LUp6yqE061bjF0hSu152bx1WE4izGUMd6qGPPj9HSJh_sLcuyastDF4eVMGJDO0s6GQNhD912cEtw9kUVnNrEqSQZQ2frhbgkU5dXeSx0vKGgPn_9t2e8ITv1t_WWbK1XV-odeSyv19N8dWBw-hvcgK9W |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Discrete+applied+mathematics&rft.atitle=Paths%2C+trees+and+matchings+under+disjunctive+constraints&rft.au=DARMANN%2C+Andreas&rft.au=PFERSCHY%2C+Ulrich&rft.au=SCHAUER%2C+Joachim&rft.au=WOEGINGER%2C+Gerhard+J&rft.date=2011-09-28&rft.pub=Elsevier&rft.issn=0166-218X&rft.volume=159&rft.issue=16&rft.spage=1726&rft.epage=1735&rft_id=info:doi/10.1016%2Fj.dam.2010.12.016&rft.externalDBID=n%2Fa&rft.externalDocID=24532319 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon |