Robust normal estimation in unstructured 3D point clouds by selective normal space exploration
We present a fast and practical approach for estimating robust normal vectors in unorganized point clouds. Our proposed technique is robust to noise and outliers and can preserve sharp features in the input model while being significantly faster than the current state-of-the-art alternatives. The ke...
Uložené v:
| Vydané v: | The Visual computer Ročník 34; číslo 6-8; s. 961 - 971 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2018
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0178-2789, 1432-2315 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We present a fast and practical approach for estimating robust normal vectors in unorganized point clouds. Our proposed technique is robust to noise and outliers and can preserve sharp features in the input model while being significantly faster than the current state-of-the-art alternatives. The key idea to this is a novel strategy for the exploration of the normal space: First, an initial candidate normal vector, optimal under a robust least median norm, is selected from a discrete subregion of this space, chosen conservatively to include the correct normal; then, the final robust normal is computed, using a simple, robust procedure that iteratively refines the candidate normal initially selected. This strategy allows us to reduce the computation time significantly with respect to other methods based on sampling consensus and yet produces very reliable normals even in the presence of noise and outliers as well as along sharp features. The validity of our approach is confirmed by an extensive testing on both synthetic and real-world data and by a comparison against the most relevant state-of-the-art approaches. |
|---|---|
| AbstractList | We present a fast and practical approach for estimating robust normal vectors in unorganized point clouds. Our proposed technique is robust to noise and outliers and can preserve sharp features in the input model while being significantly faster than the current state-of-the-art alternatives. The key idea to this is a novel strategy for the exploration of the normal space: First, an initial candidate normal vector, optimal under a robust least median norm, is selected from a discrete subregion of this space, chosen conservatively to include the correct normal; then, the final robust normal is computed, using a simple, robust procedure that iteratively refines the candidate normal initially selected. This strategy allows us to reduce the computation time significantly with respect to other methods based on sampling consensus and yet produces very reliable normals even in the presence of noise and outliers as well as along sharp features. The validity of our approach is confirmed by an extensive testing on both synthetic and real-world data and by a comparison against the most relevant state-of-the-art approaches. |
| Author | Wyss, Gregory Pajarola, Renato Mura, Claudio |
| Author_xml | – sequence: 1 givenname: Claudio orcidid: 0000-0002-6017-557X surname: Mura fullname: Mura, Claudio email: claudio@ifi.uzh.ch organization: Department of Informatics, University of Zurich – sequence: 2 givenname: Gregory surname: Wyss fullname: Wyss, Gregory organization: Department of Informatics, University of Zurich – sequence: 3 givenname: Renato surname: Pajarola fullname: Pajarola, Renato organization: Department of Informatics, University of Zurich |
| BookMark | eNp9kF1LwzAUhoNMcJv-AO8CXldz0nRJL2V-wkAQvTWkaSodXVKTVNy_N1sVQdCrw4H3OR_PDE2sswahUyDnQAi_CITkHDICIoOC0WxxgKbAcprRHIoJmhLgIqNclEdoFsKapJ6zcopeHl01hIit8xvVYRNiu1GxdRa3Fg82RD_oOHhT4_wK9661EevODXXA1RYH0xkd23fzjYdeaYPNR985v59yjA4b1QVz8lXn6Pnm-ml5l60ebu-Xl6tMM1rErFaVrhRorkpgjPMaCpH-yWvV0GYBRvCGQl3WijJDWQUlN1woJljRaC1ync_R2Ti39-5tSF_ItRu8TSslLUEAMMEXKcXHlPYuBG8aqdu4vzN61XYSiNzJlKNMmWTKnUy5I-EX2fskym__ZejIhJS1r8b_3PQ39AkM34og |
| CitedBy_id | crossref_primary_10_1016_j_jocs_2023_102028 crossref_primary_10_1088_1361_6501_ac7035 crossref_primary_10_1108_EC_09_2022_0606 crossref_primary_10_3390_s23063292 crossref_primary_10_1007_s00371_021_02258_4 crossref_primary_10_1109_ACCESS_2019_2952157 crossref_primary_10_1016_j_csi_2021_103608 crossref_primary_10_3390_buildings15071126 crossref_primary_10_1016_j_compstruct_2023_116976 |
| Cites_doi | 10.1111/j.1467-8659.2012.03181.x 10.1007/3DRes.02(2011)3 10.1111/j.1467-8659.2005.00886.x 10.1145/2487228.2487237 10.1145/142920.134011 10.1145/1073204.1073227 10.1145/777792.777840 10.1109/MCG.2004.14 10.1016/j.cag.2010.01.004 10.1016/j.cag.2015.05.024 10.1145/1276377.1276406 10.1111/cgf.12983 10.1111/cgf.13343 10.1109/TVCG.2010.264 10.1016/j.cad.2007.02.008 10.1109/ICRA.2011.5980567 10.1016/j.cag.2004.08.009 10.1145/882262.882319 10.1145/358669.358692 10.1142/S0218195904001470 10.1111/j.1467-8659.2007.01016.x 10.1002/9780470434697 10.1145/1857907.1857911 10.1111/cgf.12802 10.1016/j.cad.2013.06.003 10.1016/j.cag.2013.05.008 10.1016/j.cagd.2004.09.004 10.1109/CVPR.1996.517089 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2018 Springer-Verlag GmbH Germany, part of Springer Nature 2018. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s00371-018-1542-6 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1432-2315 |
| EndPage | 971 |
| ExternalDocumentID | 10_1007_s00371_018_1542_6 |
| GrantInformation_xml | – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (CH) grantid: 159225 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR YOT Z45 Z5O Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c425t-dabcba1c7a914477d1580373daf2f61e87f21d9da24e24b197e78a4845fcc83c3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000433557400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0178-2789 |
| IngestDate | Wed Nov 05 08:27:05 EST 2025 Sat Nov 29 02:23:25 EST 2025 Tue Nov 18 22:23:33 EST 2025 Fri Feb 21 02:34:57 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6-8 |
| Keywords | Robust statistics Normal estimation Point cloud processing |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c425t-dabcba1c7a914477d1580373daf2f61e87f21d9da24e24b197e78a4845fcc83c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6017-557X |
| PQID | 2918114876 |
| PQPubID | 2043737 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2918114876 crossref_citationtrail_10_1007_s00371_018_1542_6 crossref_primary_10_1007_s00371_018_1542_6 springer_journals_10_1007_s00371_018_1542_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-06-01 |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | International Journal of Computer Graphics |
| PublicationTitle | The Visual computer |
| PublicationTitleAbbrev | Vis Comput |
| PublicationYear | 2018 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | GrossMHPfisterHPoint-Based Graphics, Series in Computer Graphics2007BurlingtonMorgan Kaufmann Publishers GuennebaudGGrossMAlgebraic point set surfacesACM Trans. Graph.20072632310.1145/1276377.1276406 LiBSchnabelRKleinRChengZDangGShiyaoJRobust normal estimation for point clouds with sharp featuresComput. Graph.20103429410610.1016/j.cag.2010.01.004 Sainz, M., Pajarola, R., Lario, R.: Points reloaded: point-based rendering revisited. In: Proceedings Eurographics/IEEE VGTC Symposium on Point-Based Graphics, pp. 121–128 (2004) BergerMTagliasacchiASeverskyLMAlliezPGuennebaudGLevineJASharfASilvaCTA survey of surface reconstruction from point cloudsComput. Graph. Forum201736130132910.1111/cgf.12802 ZhengYFuHAuOKCTaiCLBilateral normal filtering for mesh denoisingIEEE Trans. Visual Comput. Graph.201117101521513010.1109/TVCG.2010.264 BoulchAMarletRDeep learning for robust normal estimation in unstructured point cloudsComput. Graph. Forum201635528129010.1111/cgf.12983 Huber, P.J., Ronchetti, E.M.: Robust Statistics. Wiley Series in Probability and Statistics. Wiley (2009) KazhdanMHoppeHScreened poisson surface reconstructionACM Trans. Graph.201332329:129:1310.1145/2487228.24872371322.68228 MitraNJNguyenAGuibasLEstimating surface normals in noisy point cloud dataInt. J. Comput. Geom. Appl.2004144–5261276208782410.1142/S02181959040014701056.94504 YoonMLeeYLeeSIvrissimtzisISeidelHPSurface and normal ensembles for surface reconstructionComput. Aided Des.200739540842010.1016/j.cad.2007.02.008 Miller, J.V., Stewart, C.V.: MUSE: Robust surface fitting using unbiased scale estimates. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, pp. 300–306 (1996) GuerreroPKleimanYOvsjanikovMMitraNJPCPNET: learning local shape properties from raw point cloudsComput. Graph. Forum20183727585 Mitra, N.J., Nguyen, A.: Estimating surface normals in noisy point cloud data. In: Proceedings ACM Symposium on Computational Geometry, pp. 322–328 (2003) SchnabelRWahlRKleinREfficient RANSAC for point-cloud shape detectionComput. Graph. Forum200726221422610.1111/j.1467-8659.2007.01016.x BorrmannDElsebergJLingemannKNüchterAThe 3D hough transform for plane detection in point clouds: a review and a new accumulator design3D Res.20112232:132:1310.1007/3DRes.02(2011)3 CloudCompare (version 2.9.1). [GPL software]. URL http://www.cloudcompare.org/ (2017) PaulyMKeiserRKobbeltLGrossMShape modeling with point-sampled geometryACM Trans. Graph.200322364165010.1145/882262.882319 FischlerMABollesRCRandom sample consensus: a paradigm for model fitting with applications to image analysis and automated cartographyCommun. ACM198124638139561815810.1145/358669.358692 LiuXZhangJCaoJLiBLiuLQuality point cloud normal estimation by guided least squares representationComput. Graph.201551Supplement C10611610.1016/j.cag.2015.05.024 ZhangJCaoJLiuXWangJLiuJShiXPoint cloud normal estimation via low-rank subspace clusteringComput. Graph.201337669770610.1016/j.cag.2013.05.008 BoulchAMarletRFast and robust normal estimation for point clouds with sharp featuresComput. Graph. Forum20123151765177410.1111/j.1467-8659.2012.03181.x BotschMKobbeltLReal-time shape editing using radial basis functionsComput. Graph. Forum200524361162110.1111/j.1467-8659.2005.00886.x CazalsFPougetMEstimating differential quantities using polynomial fitting of osculating jetsComput. Aided Geom. Des.2005222121146211609810.1016/j.cagd.2004.09.0041084.65017 KobbeltLBotschMA survey of point-based techniques in computer graphicsComput. Graph.200428680181410.1016/j.cag.2004.08.009 Rusu, R.B., Cousins, S.: 3D is here: Point Cloud Library (PCL). In: International Conference on Robotics and Automation (ICRA), pp. 1–4 (2011) JonesTRDurandFZwickerMNormal improvement for point renderingIEEE Comput. Graph. Appl.2004244535610.1109/MCG.2004.14 AvronHSharfAGreifCCohen-OrDl1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1$$\end{document}-Sparse reconstruction of sharp point set surfacesACM Trans. Graph.2010295135:1135:1210.1145/1857907.1857911 Hoppe, H., DeRose, T., Duchampt, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. In: Proceedings ACM SIGGRAPH, pp. 71–78 (1992) FleishmanSCohen-OrDSilvaCTRobust moving least-squares fitting with sharp featuresACM Trans. Graph.200524354455210.1145/1073204.1073227 WangYFengHYDelormeFEEnginSAn adaptive normal estimation method for scanned point clouds with sharp featuresComput. Aided Des.201345111333134810.1016/j.cad.2013.06.003 Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T.: Point set surfaces. In: Proceedings IEEE Visualization, pp. 21–28 (2001) F Cazals (1542_CR8) 2005; 22 1542_CR22 1542_CR23 S Fleishman (1542_CR11) 2005; 24 M Botsch (1542_CR5) 2005; 24 M Pauly (1542_CR25) 2003; 22 P Guerrero (1542_CR14) 2018; 37 M Kazhdan (1542_CR18) 2013; 32 A Boulch (1542_CR6) 2012; 31 D Borrmann (1542_CR4) 2011; 2 TR Jones (1542_CR17) 2004; 24 1542_CR26 1542_CR27 L Kobbelt (1542_CR19) 2004; 28 Y Zheng (1542_CR32) 2011; 17 G Guennebaud (1542_CR13) 2007; 26 1542_CR9 Y Wang (1542_CR29) 2013; 45 (1542_CR12) 2007 X Liu (1542_CR21) 2015; 51 1542_CR1 B Li (1542_CR20) 2010; 34 MA Fischler (1542_CR10) 1981; 24 M Yoon (1542_CR30) 2007; 39 NJ Mitra (1542_CR24) 2004; 14 R Schnabel (1542_CR28) 2007; 26 J Zhang (1542_CR31) 2013; 37 1542_CR15 1542_CR16 M Berger (1542_CR3) 2017; 36 H Avron (1542_CR2) 2010; 29 A Boulch (1542_CR7) 2016; 35 |
| References_xml | – reference: Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T.: Point set surfaces. In: Proceedings IEEE Visualization, pp. 21–28 (2001) – reference: ZhengYFuHAuOKCTaiCLBilateral normal filtering for mesh denoisingIEEE Trans. Visual Comput. Graph.201117101521513010.1109/TVCG.2010.264 – reference: LiBSchnabelRKleinRChengZDangGShiyaoJRobust normal estimation for point clouds with sharp featuresComput. Graph.20103429410610.1016/j.cag.2010.01.004 – reference: BotschMKobbeltLReal-time shape editing using radial basis functionsComput. Graph. Forum200524361162110.1111/j.1467-8659.2005.00886.x – reference: Huber, P.J., Ronchetti, E.M.: Robust Statistics. Wiley Series in Probability and Statistics. Wiley (2009) – reference: PaulyMKeiserRKobbeltLGrossMShape modeling with point-sampled geometryACM Trans. Graph.200322364165010.1145/882262.882319 – reference: WangYFengHYDelormeFEEnginSAn adaptive normal estimation method for scanned point clouds with sharp featuresComput. Aided Des.201345111333134810.1016/j.cad.2013.06.003 – reference: FleishmanSCohen-OrDSilvaCTRobust moving least-squares fitting with sharp featuresACM Trans. Graph.200524354455210.1145/1073204.1073227 – reference: Miller, J.V., Stewart, C.V.: MUSE: Robust surface fitting using unbiased scale estimates. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, pp. 300–306 (1996) – reference: LiuXZhangJCaoJLiBLiuLQuality point cloud normal estimation by guided least squares representationComput. Graph.201551Supplement C10611610.1016/j.cag.2015.05.024 – reference: MitraNJNguyenAGuibasLEstimating surface normals in noisy point cloud dataInt. J. Comput. Geom. Appl.2004144–5261276208782410.1142/S02181959040014701056.94504 – reference: BorrmannDElsebergJLingemannKNüchterAThe 3D hough transform for plane detection in point clouds: a review and a new accumulator design3D Res.20112232:132:1310.1007/3DRes.02(2011)3 – reference: ZhangJCaoJLiuXWangJLiuJShiXPoint cloud normal estimation via low-rank subspace clusteringComput. Graph.201337669770610.1016/j.cag.2013.05.008 – reference: CazalsFPougetMEstimating differential quantities using polynomial fitting of osculating jetsComput. Aided Geom. Des.2005222121146211609810.1016/j.cagd.2004.09.0041084.65017 – reference: Mitra, N.J., Nguyen, A.: Estimating surface normals in noisy point cloud data. In: Proceedings ACM Symposium on Computational Geometry, pp. 322–328 (2003) – reference: BoulchAMarletRFast and robust normal estimation for point clouds with sharp featuresComput. Graph. Forum20123151765177410.1111/j.1467-8659.2012.03181.x – reference: FischlerMABollesRCRandom sample consensus: a paradigm for model fitting with applications to image analysis and automated cartographyCommun. ACM198124638139561815810.1145/358669.358692 – reference: JonesTRDurandFZwickerMNormal improvement for point renderingIEEE Comput. Graph. Appl.2004244535610.1109/MCG.2004.14 – reference: Rusu, R.B., Cousins, S.: 3D is here: Point Cloud Library (PCL). In: International Conference on Robotics and Automation (ICRA), pp. 1–4 (2011) – reference: BoulchAMarletRDeep learning for robust normal estimation in unstructured point cloudsComput. Graph. Forum201635528129010.1111/cgf.12983 – reference: KobbeltLBotschMA survey of point-based techniques in computer graphicsComput. Graph.200428680181410.1016/j.cag.2004.08.009 – reference: AvronHSharfAGreifCCohen-OrDl1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1$$\end{document}-Sparse reconstruction of sharp point set surfacesACM Trans. Graph.2010295135:1135:1210.1145/1857907.1857911 – reference: KazhdanMHoppeHScreened poisson surface reconstructionACM Trans. Graph.201332329:129:1310.1145/2487228.24872371322.68228 – reference: Sainz, M., Pajarola, R., Lario, R.: Points reloaded: point-based rendering revisited. In: Proceedings Eurographics/IEEE VGTC Symposium on Point-Based Graphics, pp. 121–128 (2004) – reference: SchnabelRWahlRKleinREfficient RANSAC for point-cloud shape detectionComput. Graph. Forum200726221422610.1111/j.1467-8659.2007.01016.x – reference: YoonMLeeYLeeSIvrissimtzisISeidelHPSurface and normal ensembles for surface reconstructionComput. Aided Des.200739540842010.1016/j.cad.2007.02.008 – reference: CloudCompare (version 2.9.1). [GPL software]. URL http://www.cloudcompare.org/ (2017) – reference: GuerreroPKleimanYOvsjanikovMMitraNJPCPNET: learning local shape properties from raw point cloudsComput. Graph. Forum20183727585 – reference: BergerMTagliasacchiASeverskyLMAlliezPGuennebaudGLevineJASharfASilvaCTA survey of surface reconstruction from point cloudsComput. Graph. Forum201736130132910.1111/cgf.12802 – reference: GrossMHPfisterHPoint-Based Graphics, Series in Computer Graphics2007BurlingtonMorgan Kaufmann Publishers – reference: Hoppe, H., DeRose, T., Duchampt, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. In: Proceedings ACM SIGGRAPH, pp. 71–78 (1992) – reference: GuennebaudGGrossMAlgebraic point set surfacesACM Trans. Graph.20072632310.1145/1276377.1276406 – volume: 31 start-page: 1765 issue: 5 year: 2012 ident: 1542_CR6 publication-title: Comput. Graph. Forum doi: 10.1111/j.1467-8659.2012.03181.x – volume: 2 start-page: 32:1 issue: 2 year: 2011 ident: 1542_CR4 publication-title: 3D Res. doi: 10.1007/3DRes.02(2011)3 – volume: 24 start-page: 611 issue: 3 year: 2005 ident: 1542_CR5 publication-title: Comput. Graph. Forum doi: 10.1111/j.1467-8659.2005.00886.x – ident: 1542_CR9 – volume: 32 start-page: 29:1 issue: 3 year: 2013 ident: 1542_CR18 publication-title: ACM Trans. Graph. doi: 10.1145/2487228.2487237 – ident: 1542_CR15 doi: 10.1145/142920.134011 – ident: 1542_CR1 – volume: 24 start-page: 544 issue: 3 year: 2005 ident: 1542_CR11 publication-title: ACM Trans. Graph. doi: 10.1145/1073204.1073227 – ident: 1542_CR23 doi: 10.1145/777792.777840 – volume: 24 start-page: 53 issue: 4 year: 2004 ident: 1542_CR17 publication-title: IEEE Comput. Graph. Appl. doi: 10.1109/MCG.2004.14 – volume: 34 start-page: 94 issue: 2 year: 2010 ident: 1542_CR20 publication-title: Comput. Graph. doi: 10.1016/j.cag.2010.01.004 – volume: 51 start-page: 106 issue: Supplement C year: 2015 ident: 1542_CR21 publication-title: Comput. Graph. doi: 10.1016/j.cag.2015.05.024 – volume: 26 start-page: 23 issue: 3 year: 2007 ident: 1542_CR13 publication-title: ACM Trans. Graph. doi: 10.1145/1276377.1276406 – volume: 35 start-page: 281 issue: 5 year: 2016 ident: 1542_CR7 publication-title: Comput. Graph. Forum doi: 10.1111/cgf.12983 – volume: 37 start-page: 75 issue: 2 year: 2018 ident: 1542_CR14 publication-title: Comput. Graph. Forum doi: 10.1111/cgf.13343 – volume: 17 start-page: 1521 issue: 10 year: 2011 ident: 1542_CR32 publication-title: IEEE Trans. Visual Comput. Graph. doi: 10.1109/TVCG.2010.264 – volume-title: Point-Based Graphics, Series in Computer Graphics year: 2007 ident: 1542_CR12 – volume: 39 start-page: 408 issue: 5 year: 2007 ident: 1542_CR30 publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2007.02.008 – ident: 1542_CR27 – ident: 1542_CR26 doi: 10.1109/ICRA.2011.5980567 – volume: 28 start-page: 801 issue: 6 year: 2004 ident: 1542_CR19 publication-title: Comput. Graph. doi: 10.1016/j.cag.2004.08.009 – volume: 22 start-page: 641 issue: 3 year: 2003 ident: 1542_CR25 publication-title: ACM Trans. Graph. doi: 10.1145/882262.882319 – volume: 24 start-page: 381 issue: 6 year: 1981 ident: 1542_CR10 publication-title: Commun. ACM doi: 10.1145/358669.358692 – volume: 14 start-page: 261 issue: 4–5 year: 2004 ident: 1542_CR24 publication-title: Int. J. Comput. Geom. Appl. doi: 10.1142/S0218195904001470 – volume: 26 start-page: 214 issue: 2 year: 2007 ident: 1542_CR28 publication-title: Comput. Graph. Forum doi: 10.1111/j.1467-8659.2007.01016.x – ident: 1542_CR16 doi: 10.1002/9780470434697 – volume: 29 start-page: 135:1 issue: 5 year: 2010 ident: 1542_CR2 publication-title: ACM Trans. Graph. doi: 10.1145/1857907.1857911 – volume: 36 start-page: 301 issue: 1 year: 2017 ident: 1542_CR3 publication-title: Comput. Graph. Forum doi: 10.1111/cgf.12802 – volume: 45 start-page: 1333 issue: 11 year: 2013 ident: 1542_CR29 publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2013.06.003 – volume: 37 start-page: 697 issue: 6 year: 2013 ident: 1542_CR31 publication-title: Comput. Graph. doi: 10.1016/j.cag.2013.05.008 – volume: 22 start-page: 121 issue: 2 year: 2005 ident: 1542_CR8 publication-title: Comput. Aided Geom. Des. doi: 10.1016/j.cagd.2004.09.004 – ident: 1542_CR22 doi: 10.1109/CVPR.1996.517089 |
| SSID | ssj0017749 |
| Score | 2.2752936 |
| Snippet | We present a fast and practical approach for estimating robust normal vectors in unorganized point clouds. Our proposed technique is robust to noise and... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 961 |
| SubjectTerms | Artificial Intelligence Computer Graphics Computer Science Estimation Image Processing and Computer Vision Methods Neighborhoods Original Article Outliers (statistics) Robustness Space exploration Three dimensional models |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-qAPTqfidEoefFIKa_qR9FH8wAcZMj_YkyVNUhiMdqyt4H9vkjadigr6nORIL3eXu17udwCnXGAimUeciA2Z44dUOlQjDvnuME1IyGVUgyTdkdGITibRfVPHXdjX7jYlaSx1W-xm0OVU6KuinsDHTrgKa-q2o7pfw_jhuU0dKH_G-LyuCo90madNZX5H4vNltPQwvyRFzV1z0_3XLrdhq3Et0UUtCzuwIrMedG3bBtRocQ82P2AQ7sLLOE-qokSZdl5nSINu1NWMaJqhqsGXrRZSIO8KzfNpViI-yytRoOQNFaaLjjKYdrmyT1wiaR72GSp78HRz_Xh56zRNFxyu1Ld0BEt4wlxOWKRiLUKEG1D1SZ5gKU5DV1KSYldEgmFfYj9xIyIJZT71g5Rz6nFvHzpZnskDQFEgQsa9MEgl0bBaTMO9JSyVAnO1VvRhaLkf8waRXDfGmMUtlrLhZqy4GWtuxmEfztol8xqO47fJA3ukcaOZRYwj5dOoGJCo4XN7hMvhH4kd_mn2EWxgLQPmd80AOuqs5DGs89dyWixOjMC-A_s55b4 priority: 102 providerName: Springer Nature |
| Title | Robust normal estimation in unstructured 3D point clouds by selective normal space exploration |
| URI | https://link.springer.com/article/10.1007/s00371-018-1542-6 https://www.proquest.com/docview/2918114876 |
| Volume | 34 |
| WOSCitedRecordID | wos000433557400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1432-2315 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0017749 issn: 0178-2789 databaseCode: P5Z dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1432-2315 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0017749 issn: 0178-2789 databaseCode: K7- dateStart: 19970201 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1432-2315 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0017749 issn: 0178-2789 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1432-2315 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017749 issn: 0178-2789 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LS8MwGP9wmwc9-Banc-TgSQm26SPtSXwNQRljPhgeLGmSwmC0c90E_3uTtN1UcBcvvbQJJb8v3zP5fQAnXBAqmUNxyCyGXT-QONCMQ65tJTH1uQwLkqQH2u0Gg0HYKxNueXmsstKJRlGLjOsc-TkJlS1Svjv1L8bvWHeN0tXVsoVGDRqaJUG3buh5r_MqgnJtjPtrq0hJ3_isqpqWIRF1qA6kVQzluQT7P-3Swtn8VR81Zqez-d8f3oKN0uFEl4WEbMOKTHdg_RsN4S689bN4lk9Rqv3XEdK8G8WFRjRM0aykmJ1NpEDODRpnw3SK-CibiRzFnyg3jXSUzqyGKxXFJZLmbJ-ZZQ-eO7dP13e47LuAudrBUyxYzGNmc8pCFW5RKmwvUKvlCJaQxLdlQBNii1Aw4krixnZIJQ2YG7hewnngcGcf6mmWygNAoSd8xh3fSyTVzFpMM77FLJGCcDVWNMGqVj3iJSm57o0xiuZ0ygaoSAEVaaAivwmn8yHjgpFj2cetCpyo3Jx5tECmCWcVvIvXf052uHyyI1gjWp5MiqYFdQWOPIZV_jEd5pM2NK5uu71-G2r3FLeNnKpn__HlC60H7cU |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH_axqSxw9j40MrK5gNcQBaJncT2YZoQZWrVUiE0pJ0Iju1IlaqkW5qh_VP8jdhO0gISu-2wc_KelLyf34ef_XsAr5UmzEjKsJCBxFHCDeaOcSgKgzxjiTKiIUmasOmUX16KLxvwq7sL445Vdj7RO2pdKrdH_p4IG4ts7s6Ss8UVdlOjXHe1G6HRwGJsbn_akq06HQ2sfd8Qcv7p4uMQt1MFsLL4XGItM5XJUDEpbDHBmA5jHlBGtcxJnoSGs5yEWmhJIkOiLBTMMC4jHsW5UpwqavVuwqOIcubW1ZjhVdfCplI-3Q5tZeZumHZd1MCTllLmCndbs8URwcnfcXCd3P7Tj_Vh7vzJQ_tB-7DXJtToQ7MCDmDDFE9h9w-axWfw_WuZ1dUSFS4_nyPHK9Jc2ESzAtUthW59bTSiA7QoZ8USqXlZ6wplt6jyg4JsTOjErQtWBhl_dtFreQ7f7uUDX8BWURbmEJCIdSIVTeLcMMccJh2jXSZzo4mysroHQWflVLWk6272xzxd0UV7YKQWGKkDRpr04O1KZNEwjtz1cr8DQ9o6nypdI6EH7zo4rR__V9nLu5WdwM7w4vMknYym4yN4TByW_XZUH7asocwr2FY3y1l1fexXBYIf942y3xl0R8A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90iuiD06k4P_Pgk1K2ph9pH8U5FMcYfrEnS5qkMBjtWFvB_94k_ZiKCuJzckd6l0vuernfAZwxjomgFjF82qWG7XrC8BTikG12o5C4TPgFSNKADIfeeOyPyj6nafXavUpJFjUNCqUpzjozHnXqwjeNNCfDYBkBOTY23GVYsdU7ehWuPzzXaQTp22j_15Shkir5rNKa37H4fDEtvM0vCVJ97_Sb_17xFmyWLie6LPbINiyJuAXNqp0DKq27BRsfsAl34OU-CfM0Q7FyaqdIgXEUVY5oEqO8xJ3N54Ijq4dmySTOEJsmOU9R-IZS3V1HHqQVuTy3mEBCP_jTXHbhqX_9eHVjlM0YDCbNOjM4DVlITUaoL2MwQrjpePKTLE4jHLmm8EiETe5zim2B7dD0iSAetT3biRjzLGbtQSNOYrEPyHe4S5nlOpEgCm6LKhi4kEaCYyZpeRu6lSYCViKVq4YZ06DGWNbSDKQ0AyXNwG3DeU0yK2A6fpt8VKk3KC02DbAvfR0ZGxI5fFGpczH8I7ODP80-hbVRrx8Mbod3h7CO1XbQf3SOoCHVJo5hlb1mk3R-ovfxO-6P8YY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+normal+estimation+in+unstructured+3D+point+clouds+by+selective+normal+space+exploration&rft.jtitle=The+Visual+computer&rft.au=Mura%2C+Claudio&rft.au=Wyss%2C+Gregory&rft.au=Pajarola%2C+Renato&rft.date=2018-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=34&rft.issue=6-8&rft.spage=961&rft.epage=971&rft_id=info:doi/10.1007%2Fs00371-018-1542-6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon |