Robust normal estimation in unstructured 3D point clouds by selective normal space exploration

We present a fast and practical approach for estimating robust normal vectors in unorganized point clouds. Our proposed technique is robust to noise and outliers and can preserve sharp features in the input model while being significantly faster than the current state-of-the-art alternatives. The ke...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Visual computer Ročník 34; číslo 6-8; s. 961 - 971
Hlavní autori: Mura, Claudio, Wyss, Gregory, Pajarola, Renato
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2018
Springer Nature B.V
Predmet:
ISSN:0178-2789, 1432-2315
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We present a fast and practical approach for estimating robust normal vectors in unorganized point clouds. Our proposed technique is robust to noise and outliers and can preserve sharp features in the input model while being significantly faster than the current state-of-the-art alternatives. The key idea to this is a novel strategy for the exploration of the normal space: First, an initial candidate normal vector, optimal under a robust least median norm, is selected from a discrete subregion of this space, chosen conservatively to include the correct normal; then, the final robust normal is computed, using a simple, robust procedure that iteratively refines the candidate normal initially selected. This strategy allows us to reduce the computation time significantly with respect to other methods based on sampling consensus and yet produces very reliable normals even in the presence of noise and outliers as well as along sharp features. The validity of our approach is confirmed by an extensive testing on both synthetic and real-world data and by a comparison against the most relevant state-of-the-art approaches.
AbstractList We present a fast and practical approach for estimating robust normal vectors in unorganized point clouds. Our proposed technique is robust to noise and outliers and can preserve sharp features in the input model while being significantly faster than the current state-of-the-art alternatives. The key idea to this is a novel strategy for the exploration of the normal space: First, an initial candidate normal vector, optimal under a robust least median norm, is selected from a discrete subregion of this space, chosen conservatively to include the correct normal; then, the final robust normal is computed, using a simple, robust procedure that iteratively refines the candidate normal initially selected. This strategy allows us to reduce the computation time significantly with respect to other methods based on sampling consensus and yet produces very reliable normals even in the presence of noise and outliers as well as along sharp features. The validity of our approach is confirmed by an extensive testing on both synthetic and real-world data and by a comparison against the most relevant state-of-the-art approaches.
Author Wyss, Gregory
Pajarola, Renato
Mura, Claudio
Author_xml – sequence: 1
  givenname: Claudio
  orcidid: 0000-0002-6017-557X
  surname: Mura
  fullname: Mura, Claudio
  email: claudio@ifi.uzh.ch
  organization: Department of Informatics, University of Zurich
– sequence: 2
  givenname: Gregory
  surname: Wyss
  fullname: Wyss, Gregory
  organization: Department of Informatics, University of Zurich
– sequence: 3
  givenname: Renato
  surname: Pajarola
  fullname: Pajarola, Renato
  organization: Department of Informatics, University of Zurich
BookMark eNp9kF1LwzAUhoNMcJv-AO8CXldz0nRJL2V-wkAQvTWkaSodXVKTVNy_N1sVQdCrw4H3OR_PDE2sswahUyDnQAi_CITkHDICIoOC0WxxgKbAcprRHIoJmhLgIqNclEdoFsKapJ6zcopeHl01hIit8xvVYRNiu1GxdRa3Fg82RD_oOHhT4_wK9661EevODXXA1RYH0xkd23fzjYdeaYPNR985v59yjA4b1QVz8lXn6Pnm-ml5l60ebu-Xl6tMM1rErFaVrhRorkpgjPMaCpH-yWvV0GYBRvCGQl3WijJDWQUlN1woJljRaC1ync_R2Ti39-5tSF_ItRu8TSslLUEAMMEXKcXHlPYuBG8aqdu4vzN61XYSiNzJlKNMmWTKnUy5I-EX2fskym__ZejIhJS1r8b_3PQ39AkM34og
CitedBy_id crossref_primary_10_1016_j_jocs_2023_102028
crossref_primary_10_1088_1361_6501_ac7035
crossref_primary_10_1108_EC_09_2022_0606
crossref_primary_10_3390_s23063292
crossref_primary_10_1007_s00371_021_02258_4
crossref_primary_10_1109_ACCESS_2019_2952157
crossref_primary_10_1016_j_csi_2021_103608
crossref_primary_10_3390_buildings15071126
crossref_primary_10_1016_j_compstruct_2023_116976
Cites_doi 10.1111/j.1467-8659.2012.03181.x
10.1007/3DRes.02(2011)3
10.1111/j.1467-8659.2005.00886.x
10.1145/2487228.2487237
10.1145/142920.134011
10.1145/1073204.1073227
10.1145/777792.777840
10.1109/MCG.2004.14
10.1016/j.cag.2010.01.004
10.1016/j.cag.2015.05.024
10.1145/1276377.1276406
10.1111/cgf.12983
10.1111/cgf.13343
10.1109/TVCG.2010.264
10.1016/j.cad.2007.02.008
10.1109/ICRA.2011.5980567
10.1016/j.cag.2004.08.009
10.1145/882262.882319
10.1145/358669.358692
10.1142/S0218195904001470
10.1111/j.1467-8659.2007.01016.x
10.1002/9780470434697
10.1145/1857907.1857911
10.1111/cgf.12802
10.1016/j.cad.2013.06.003
10.1016/j.cag.2013.05.008
10.1016/j.cagd.2004.09.004
10.1109/CVPR.1996.517089
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2018
Springer-Verlag GmbH Germany, part of Springer Nature 2018.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00371-018-1542-6
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1432-2315
EndPage 971
ExternalDocumentID 10_1007_s00371_018_1542_6
GrantInformation_xml – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (CH)
  grantid: 159225
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YOT
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c425t-dabcba1c7a914477d1580373daf2f61e87f21d9da24e24b197e78a4845fcc83c3
IEDL.DBID P5Z
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000433557400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-2789
IngestDate Wed Nov 05 08:27:05 EST 2025
Sat Nov 29 02:23:25 EST 2025
Tue Nov 18 22:23:33 EST 2025
Fri Feb 21 02:34:57 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6-8
Keywords Robust statistics
Normal estimation
Point cloud processing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-dabcba1c7a914477d1580373daf2f61e87f21d9da24e24b197e78a4845fcc83c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6017-557X
PQID 2918114876
PQPubID 2043737
PageCount 11
ParticipantIDs proquest_journals_2918114876
crossref_citationtrail_10_1007_s00371_018_1542_6
crossref_primary_10_1007_s00371_018_1542_6
springer_journals_10_1007_s00371_018_1542_6
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle International Journal of Computer Graphics
PublicationTitle The Visual computer
PublicationTitleAbbrev Vis Comput
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References GrossMHPfisterHPoint-Based Graphics, Series in Computer Graphics2007BurlingtonMorgan Kaufmann Publishers
GuennebaudGGrossMAlgebraic point set surfacesACM Trans. Graph.20072632310.1145/1276377.1276406
LiBSchnabelRKleinRChengZDangGShiyaoJRobust normal estimation for point clouds with sharp featuresComput. Graph.20103429410610.1016/j.cag.2010.01.004
Sainz, M., Pajarola, R., Lario, R.: Points reloaded: point-based rendering revisited. In: Proceedings Eurographics/IEEE VGTC Symposium on Point-Based Graphics, pp. 121–128 (2004)
BergerMTagliasacchiASeverskyLMAlliezPGuennebaudGLevineJASharfASilvaCTA survey of surface reconstruction from point cloudsComput. Graph. Forum201736130132910.1111/cgf.12802
ZhengYFuHAuOKCTaiCLBilateral normal filtering for mesh denoisingIEEE Trans. Visual Comput. Graph.201117101521513010.1109/TVCG.2010.264
BoulchAMarletRDeep learning for robust normal estimation in unstructured point cloudsComput. Graph. Forum201635528129010.1111/cgf.12983
Huber, P.J., Ronchetti, E.M.: Robust Statistics. Wiley Series in Probability and Statistics. Wiley (2009)
KazhdanMHoppeHScreened poisson surface reconstructionACM Trans. Graph.201332329:129:1310.1145/2487228.24872371322.68228
MitraNJNguyenAGuibasLEstimating surface normals in noisy point cloud dataInt. J. Comput. Geom. Appl.2004144–5261276208782410.1142/S02181959040014701056.94504
YoonMLeeYLeeSIvrissimtzisISeidelHPSurface and normal ensembles for surface reconstructionComput. Aided Des.200739540842010.1016/j.cad.2007.02.008
Miller, J.V., Stewart, C.V.: MUSE: Robust surface fitting using unbiased scale estimates. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, pp. 300–306 (1996)
GuerreroPKleimanYOvsjanikovMMitraNJPCPNET: learning local shape properties from raw point cloudsComput. Graph. Forum20183727585
Mitra, N.J., Nguyen, A.: Estimating surface normals in noisy point cloud data. In: Proceedings ACM Symposium on Computational Geometry, pp. 322–328 (2003)
SchnabelRWahlRKleinREfficient RANSAC for point-cloud shape detectionComput. Graph. Forum200726221422610.1111/j.1467-8659.2007.01016.x
BorrmannDElsebergJLingemannKNüchterAThe 3D hough transform for plane detection in point clouds: a review and a new accumulator design3D Res.20112232:132:1310.1007/3DRes.02(2011)3
CloudCompare (version 2.9.1). [GPL software]. URL http://www.cloudcompare.org/ (2017)
PaulyMKeiserRKobbeltLGrossMShape modeling with point-sampled geometryACM Trans. Graph.200322364165010.1145/882262.882319
FischlerMABollesRCRandom sample consensus: a paradigm for model fitting with applications to image analysis and automated cartographyCommun. ACM198124638139561815810.1145/358669.358692
LiuXZhangJCaoJLiBLiuLQuality point cloud normal estimation by guided least squares representationComput. Graph.201551Supplement C10611610.1016/j.cag.2015.05.024
ZhangJCaoJLiuXWangJLiuJShiXPoint cloud normal estimation via low-rank subspace clusteringComput. Graph.201337669770610.1016/j.cag.2013.05.008
BoulchAMarletRFast and robust normal estimation for point clouds with sharp featuresComput. Graph. Forum20123151765177410.1111/j.1467-8659.2012.03181.x
BotschMKobbeltLReal-time shape editing using radial basis functionsComput. Graph. Forum200524361162110.1111/j.1467-8659.2005.00886.x
CazalsFPougetMEstimating differential quantities using polynomial fitting of osculating jetsComput. Aided Geom. Des.2005222121146211609810.1016/j.cagd.2004.09.0041084.65017
KobbeltLBotschMA survey of point-based techniques in computer graphicsComput. Graph.200428680181410.1016/j.cag.2004.08.009
Rusu, R.B., Cousins, S.: 3D is here: Point Cloud Library (PCL). In: International Conference on Robotics and Automation (ICRA), pp. 1–4 (2011)
JonesTRDurandFZwickerMNormal improvement for point renderingIEEE Comput. Graph. Appl.2004244535610.1109/MCG.2004.14
AvronHSharfAGreifCCohen-OrDl1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1$$\end{document}-Sparse reconstruction of sharp point set surfacesACM Trans. Graph.2010295135:1135:1210.1145/1857907.1857911
Hoppe, H., DeRose, T., Duchampt, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. In: Proceedings ACM SIGGRAPH, pp. 71–78 (1992)
FleishmanSCohen-OrDSilvaCTRobust moving least-squares fitting with sharp featuresACM Trans. Graph.200524354455210.1145/1073204.1073227
WangYFengHYDelormeFEEnginSAn adaptive normal estimation method for scanned point clouds with sharp featuresComput. Aided Des.201345111333134810.1016/j.cad.2013.06.003
Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T.: Point set surfaces. In: Proceedings IEEE Visualization, pp. 21–28 (2001)
F Cazals (1542_CR8) 2005; 22
1542_CR22
1542_CR23
S Fleishman (1542_CR11) 2005; 24
M Botsch (1542_CR5) 2005; 24
M Pauly (1542_CR25) 2003; 22
P Guerrero (1542_CR14) 2018; 37
M Kazhdan (1542_CR18) 2013; 32
A Boulch (1542_CR6) 2012; 31
D Borrmann (1542_CR4) 2011; 2
TR Jones (1542_CR17) 2004; 24
1542_CR26
1542_CR27
L Kobbelt (1542_CR19) 2004; 28
Y Zheng (1542_CR32) 2011; 17
G Guennebaud (1542_CR13) 2007; 26
1542_CR9
Y Wang (1542_CR29) 2013; 45
(1542_CR12) 2007
X Liu (1542_CR21) 2015; 51
1542_CR1
B Li (1542_CR20) 2010; 34
MA Fischler (1542_CR10) 1981; 24
M Yoon (1542_CR30) 2007; 39
NJ Mitra (1542_CR24) 2004; 14
R Schnabel (1542_CR28) 2007; 26
J Zhang (1542_CR31) 2013; 37
1542_CR15
1542_CR16
M Berger (1542_CR3) 2017; 36
H Avron (1542_CR2) 2010; 29
A Boulch (1542_CR7) 2016; 35
References_xml – reference: Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T.: Point set surfaces. In: Proceedings IEEE Visualization, pp. 21–28 (2001)
– reference: ZhengYFuHAuOKCTaiCLBilateral normal filtering for mesh denoisingIEEE Trans. Visual Comput. Graph.201117101521513010.1109/TVCG.2010.264
– reference: LiBSchnabelRKleinRChengZDangGShiyaoJRobust normal estimation for point clouds with sharp featuresComput. Graph.20103429410610.1016/j.cag.2010.01.004
– reference: BotschMKobbeltLReal-time shape editing using radial basis functionsComput. Graph. Forum200524361162110.1111/j.1467-8659.2005.00886.x
– reference: Huber, P.J., Ronchetti, E.M.: Robust Statistics. Wiley Series in Probability and Statistics. Wiley (2009)
– reference: PaulyMKeiserRKobbeltLGrossMShape modeling with point-sampled geometryACM Trans. Graph.200322364165010.1145/882262.882319
– reference: WangYFengHYDelormeFEEnginSAn adaptive normal estimation method for scanned point clouds with sharp featuresComput. Aided Des.201345111333134810.1016/j.cad.2013.06.003
– reference: FleishmanSCohen-OrDSilvaCTRobust moving least-squares fitting with sharp featuresACM Trans. Graph.200524354455210.1145/1073204.1073227
– reference: Miller, J.V., Stewart, C.V.: MUSE: Robust surface fitting using unbiased scale estimates. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, pp. 300–306 (1996)
– reference: LiuXZhangJCaoJLiBLiuLQuality point cloud normal estimation by guided least squares representationComput. Graph.201551Supplement C10611610.1016/j.cag.2015.05.024
– reference: MitraNJNguyenAGuibasLEstimating surface normals in noisy point cloud dataInt. J. Comput. Geom. Appl.2004144–5261276208782410.1142/S02181959040014701056.94504
– reference: BorrmannDElsebergJLingemannKNüchterAThe 3D hough transform for plane detection in point clouds: a review and a new accumulator design3D Res.20112232:132:1310.1007/3DRes.02(2011)3
– reference: ZhangJCaoJLiuXWangJLiuJShiXPoint cloud normal estimation via low-rank subspace clusteringComput. Graph.201337669770610.1016/j.cag.2013.05.008
– reference: CazalsFPougetMEstimating differential quantities using polynomial fitting of osculating jetsComput. Aided Geom. Des.2005222121146211609810.1016/j.cagd.2004.09.0041084.65017
– reference: Mitra, N.J., Nguyen, A.: Estimating surface normals in noisy point cloud data. In: Proceedings ACM Symposium on Computational Geometry, pp. 322–328 (2003)
– reference: BoulchAMarletRFast and robust normal estimation for point clouds with sharp featuresComput. Graph. Forum20123151765177410.1111/j.1467-8659.2012.03181.x
– reference: FischlerMABollesRCRandom sample consensus: a paradigm for model fitting with applications to image analysis and automated cartographyCommun. ACM198124638139561815810.1145/358669.358692
– reference: JonesTRDurandFZwickerMNormal improvement for point renderingIEEE Comput. Graph. Appl.2004244535610.1109/MCG.2004.14
– reference: Rusu, R.B., Cousins, S.: 3D is here: Point Cloud Library (PCL). In: International Conference on Robotics and Automation (ICRA), pp. 1–4 (2011)
– reference: BoulchAMarletRDeep learning for robust normal estimation in unstructured point cloudsComput. Graph. Forum201635528129010.1111/cgf.12983
– reference: KobbeltLBotschMA survey of point-based techniques in computer graphicsComput. Graph.200428680181410.1016/j.cag.2004.08.009
– reference: AvronHSharfAGreifCCohen-OrDl1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1$$\end{document}-Sparse reconstruction of sharp point set surfacesACM Trans. Graph.2010295135:1135:1210.1145/1857907.1857911
– reference: KazhdanMHoppeHScreened poisson surface reconstructionACM Trans. Graph.201332329:129:1310.1145/2487228.24872371322.68228
– reference: Sainz, M., Pajarola, R., Lario, R.: Points reloaded: point-based rendering revisited. In: Proceedings Eurographics/IEEE VGTC Symposium on Point-Based Graphics, pp. 121–128 (2004)
– reference: SchnabelRWahlRKleinREfficient RANSAC for point-cloud shape detectionComput. Graph. Forum200726221422610.1111/j.1467-8659.2007.01016.x
– reference: YoonMLeeYLeeSIvrissimtzisISeidelHPSurface and normal ensembles for surface reconstructionComput. Aided Des.200739540842010.1016/j.cad.2007.02.008
– reference: CloudCompare (version 2.9.1). [GPL software]. URL http://www.cloudcompare.org/ (2017)
– reference: GuerreroPKleimanYOvsjanikovMMitraNJPCPNET: learning local shape properties from raw point cloudsComput. Graph. Forum20183727585
– reference: BergerMTagliasacchiASeverskyLMAlliezPGuennebaudGLevineJASharfASilvaCTA survey of surface reconstruction from point cloudsComput. Graph. Forum201736130132910.1111/cgf.12802
– reference: GrossMHPfisterHPoint-Based Graphics, Series in Computer Graphics2007BurlingtonMorgan Kaufmann Publishers
– reference: Hoppe, H., DeRose, T., Duchampt, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. In: Proceedings ACM SIGGRAPH, pp. 71–78 (1992)
– reference: GuennebaudGGrossMAlgebraic point set surfacesACM Trans. Graph.20072632310.1145/1276377.1276406
– volume: 31
  start-page: 1765
  issue: 5
  year: 2012
  ident: 1542_CR6
  publication-title: Comput. Graph. Forum
  doi: 10.1111/j.1467-8659.2012.03181.x
– volume: 2
  start-page: 32:1
  issue: 2
  year: 2011
  ident: 1542_CR4
  publication-title: 3D Res.
  doi: 10.1007/3DRes.02(2011)3
– volume: 24
  start-page: 611
  issue: 3
  year: 2005
  ident: 1542_CR5
  publication-title: Comput. Graph. Forum
  doi: 10.1111/j.1467-8659.2005.00886.x
– ident: 1542_CR9
– volume: 32
  start-page: 29:1
  issue: 3
  year: 2013
  ident: 1542_CR18
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2487228.2487237
– ident: 1542_CR15
  doi: 10.1145/142920.134011
– ident: 1542_CR1
– volume: 24
  start-page: 544
  issue: 3
  year: 2005
  ident: 1542_CR11
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1073204.1073227
– ident: 1542_CR23
  doi: 10.1145/777792.777840
– volume: 24
  start-page: 53
  issue: 4
  year: 2004
  ident: 1542_CR17
  publication-title: IEEE Comput. Graph. Appl.
  doi: 10.1109/MCG.2004.14
– volume: 34
  start-page: 94
  issue: 2
  year: 2010
  ident: 1542_CR20
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2010.01.004
– volume: 51
  start-page: 106
  issue: Supplement C
  year: 2015
  ident: 1542_CR21
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2015.05.024
– volume: 26
  start-page: 23
  issue: 3
  year: 2007
  ident: 1542_CR13
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1276377.1276406
– volume: 35
  start-page: 281
  issue: 5
  year: 2016
  ident: 1542_CR7
  publication-title: Comput. Graph. Forum
  doi: 10.1111/cgf.12983
– volume: 37
  start-page: 75
  issue: 2
  year: 2018
  ident: 1542_CR14
  publication-title: Comput. Graph. Forum
  doi: 10.1111/cgf.13343
– volume: 17
  start-page: 1521
  issue: 10
  year: 2011
  ident: 1542_CR32
  publication-title: IEEE Trans. Visual Comput. Graph.
  doi: 10.1109/TVCG.2010.264
– volume-title: Point-Based Graphics, Series in Computer Graphics
  year: 2007
  ident: 1542_CR12
– volume: 39
  start-page: 408
  issue: 5
  year: 2007
  ident: 1542_CR30
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2007.02.008
– ident: 1542_CR27
– ident: 1542_CR26
  doi: 10.1109/ICRA.2011.5980567
– volume: 28
  start-page: 801
  issue: 6
  year: 2004
  ident: 1542_CR19
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2004.08.009
– volume: 22
  start-page: 641
  issue: 3
  year: 2003
  ident: 1542_CR25
  publication-title: ACM Trans. Graph.
  doi: 10.1145/882262.882319
– volume: 24
  start-page: 381
  issue: 6
  year: 1981
  ident: 1542_CR10
  publication-title: Commun. ACM
  doi: 10.1145/358669.358692
– volume: 14
  start-page: 261
  issue: 4–5
  year: 2004
  ident: 1542_CR24
  publication-title: Int. J. Comput. Geom. Appl.
  doi: 10.1142/S0218195904001470
– volume: 26
  start-page: 214
  issue: 2
  year: 2007
  ident: 1542_CR28
  publication-title: Comput. Graph. Forum
  doi: 10.1111/j.1467-8659.2007.01016.x
– ident: 1542_CR16
  doi: 10.1002/9780470434697
– volume: 29
  start-page: 135:1
  issue: 5
  year: 2010
  ident: 1542_CR2
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1857907.1857911
– volume: 36
  start-page: 301
  issue: 1
  year: 2017
  ident: 1542_CR3
  publication-title: Comput. Graph. Forum
  doi: 10.1111/cgf.12802
– volume: 45
  start-page: 1333
  issue: 11
  year: 2013
  ident: 1542_CR29
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2013.06.003
– volume: 37
  start-page: 697
  issue: 6
  year: 2013
  ident: 1542_CR31
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2013.05.008
– volume: 22
  start-page: 121
  issue: 2
  year: 2005
  ident: 1542_CR8
  publication-title: Comput. Aided Geom. Des.
  doi: 10.1016/j.cagd.2004.09.004
– ident: 1542_CR22
  doi: 10.1109/CVPR.1996.517089
SSID ssj0017749
Score 2.2752936
Snippet We present a fast and practical approach for estimating robust normal vectors in unorganized point clouds. Our proposed technique is robust to noise and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 961
SubjectTerms Artificial Intelligence
Computer Graphics
Computer Science
Estimation
Image Processing and Computer Vision
Methods
Neighborhoods
Original Article
Outliers (statistics)
Robustness
Space exploration
Three dimensional models
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-qAPTqfidEoefFIKa_qR9FH8wAcZMj_YkyVNUhiMdqyt4H9vkjadigr6nORIL3eXu17udwCnXGAimUeciA2Z44dUOlQjDvnuME1IyGVUgyTdkdGITibRfVPHXdjX7jYlaSx1W-xm0OVU6KuinsDHTrgKa-q2o7pfw_jhuU0dKH_G-LyuCo90madNZX5H4vNltPQwvyRFzV1z0_3XLrdhq3Et0UUtCzuwIrMedG3bBtRocQ82P2AQ7sLLOE-qokSZdl5nSINu1NWMaJqhqsGXrRZSIO8KzfNpViI-yytRoOQNFaaLjjKYdrmyT1wiaR72GSp78HRz_Xh56zRNFxyu1Ld0BEt4wlxOWKRiLUKEG1D1SZ5gKU5DV1KSYldEgmFfYj9xIyIJZT71g5Rz6nFvHzpZnskDQFEgQsa9MEgl0bBaTMO9JSyVAnO1VvRhaLkf8waRXDfGmMUtlrLhZqy4GWtuxmEfztol8xqO47fJA3ukcaOZRYwj5dOoGJCo4XN7hMvhH4kd_mn2EWxgLQPmd80AOuqs5DGs89dyWixOjMC-A_s55b4
  priority: 102
  providerName: Springer Nature
Title Robust normal estimation in unstructured 3D point clouds by selective normal space exploration
URI https://link.springer.com/article/10.1007/s00371-018-1542-6
https://www.proquest.com/docview/2918114876
Volume 34
WOSCitedRecordID wos000433557400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1432-2315
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: P5Z
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1432-2315
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: K7-
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1432-2315
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-2315
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LS8MwGP9wmwc9-Banc-TgSQm26SPtSXwNQRljPhgeLGmSwmC0c90E_3uTtN1UcBcvvbQJJb8v3zP5fQAnXBAqmUNxyCyGXT-QONCMQ65tJTH1uQwLkqQH2u0Gg0HYKxNueXmsstKJRlGLjOsc-TkJlS1Svjv1L8bvWHeN0tXVsoVGDRqaJUG3buh5r_MqgnJtjPtrq0hJ3_isqpqWIRF1qA6kVQzluQT7P-3Swtn8VR81Zqez-d8f3oKN0uFEl4WEbMOKTHdg_RsN4S689bN4lk9Rqv3XEdK8G8WFRjRM0aykmJ1NpEDODRpnw3SK-CibiRzFnyg3jXSUzqyGKxXFJZLmbJ-ZZQ-eO7dP13e47LuAudrBUyxYzGNmc8pCFW5RKmwvUKvlCJaQxLdlQBNii1Aw4krixnZIJQ2YG7hewnngcGcf6mmWygNAoSd8xh3fSyTVzFpMM77FLJGCcDVWNMGqVj3iJSm57o0xiuZ0ygaoSAEVaaAivwmn8yHjgpFj2cetCpyo3Jx5tECmCWcVvIvXf052uHyyI1gjWp5MiqYFdQWOPIZV_jEd5pM2NK5uu71-G2r3FLeNnKpn__HlC60H7cU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH_axqSxw9j40MrK5gNcQBaJncT2YZoQZWrVUiE0pJ0Iju1IlaqkW5qh_VP8jdhO0gISu-2wc_KelLyf34ef_XsAr5UmzEjKsJCBxFHCDeaOcSgKgzxjiTKiIUmasOmUX16KLxvwq7sL445Vdj7RO2pdKrdH_p4IG4ts7s6Ss8UVdlOjXHe1G6HRwGJsbn_akq06HQ2sfd8Qcv7p4uMQt1MFsLL4XGItM5XJUDEpbDHBmA5jHlBGtcxJnoSGs5yEWmhJIkOiLBTMMC4jHsW5UpwqavVuwqOIcubW1ZjhVdfCplI-3Q5tZeZumHZd1MCTllLmCndbs8URwcnfcXCd3P7Tj_Vh7vzJQ_tB-7DXJtToQ7MCDmDDFE9h9w-axWfw_WuZ1dUSFS4_nyPHK9Jc2ESzAtUthW59bTSiA7QoZ8USqXlZ6wplt6jyg4JsTOjErQtWBhl_dtFreQ7f7uUDX8BWURbmEJCIdSIVTeLcMMccJh2jXSZzo4mysroHQWflVLWk6272xzxd0UV7YKQWGKkDRpr04O1KZNEwjtz1cr8DQ9o6nypdI6EH7zo4rR__V9nLu5WdwM7w4vMknYym4yN4TByW_XZUH7asocwr2FY3y1l1fexXBYIf942y3xl0R8A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90iuiD06k4P_Pgk1K2ph9pH8U5FMcYfrEnS5qkMBjtWFvB_94k_ZiKCuJzckd6l0vuernfAZwxjomgFjF82qWG7XrC8BTikG12o5C4TPgFSNKADIfeeOyPyj6nafXavUpJFjUNCqUpzjozHnXqwjeNNCfDYBkBOTY23GVYsdU7ehWuPzzXaQTp22j_15Shkir5rNKa37H4fDEtvM0vCVJ97_Sb_17xFmyWLie6LPbINiyJuAXNqp0DKq27BRsfsAl34OU-CfM0Q7FyaqdIgXEUVY5oEqO8xJ3N54Ijq4dmySTOEJsmOU9R-IZS3V1HHqQVuTy3mEBCP_jTXHbhqX_9eHVjlM0YDCbNOjM4DVlITUaoL2MwQrjpePKTLE4jHLmm8EiETe5zim2B7dD0iSAetT3biRjzLGbtQSNOYrEPyHe4S5nlOpEgCm6LKhi4kEaCYyZpeRu6lSYCViKVq4YZ06DGWNbSDKQ0AyXNwG3DeU0yK2A6fpt8VKk3KC02DbAvfR0ZGxI5fFGpczH8I7ODP80-hbVRrx8Mbod3h7CO1XbQf3SOoCHVJo5hlb1mk3R-ovfxO-6P8YY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+normal+estimation+in+unstructured+3D+point+clouds+by+selective+normal+space+exploration&rft.jtitle=The+Visual+computer&rft.au=Mura%2C+Claudio&rft.au=Wyss%2C+Gregory&rft.au=Pajarola%2C+Renato&rft.date=2018-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=34&rft.issue=6-8&rft.spage=961&rft.epage=971&rft_id=info:doi/10.1007%2Fs00371-018-1542-6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon